
MANAGEMENT SCIENCE
Vol. 63, No. 5, May 2017, pp. 1625–1643

http://pubsonline.informs.org/journal/mnsc/ ISSN 0025-1909 (print), ISSN 1526-5501 (online)

Closed-Form Solutions for Robust Inventory Management
Hamed Mamani,a Shima Nassiri,a Michael R. Wagnera

a Foster School of Business, University of Washington, Seattle, Washington 98195
Contact: hmamani@uw.edu (HM); shiman@uw.edu (SN); mrwagner@uw.edu (MRW)

Received: June 11, 2014
Revised: October 7, 2014; July 14, 2015;
October 13, 2015
Accepted: October 27, 2015
Published Online in Articles in Advance:
April 29, 2016

https://doi.org/10.1287/mnsc.2015.2391

Copyright: © 2016 INFORMS

Abstract. We propose and analyze robust optimization models of an inventory manage-
ment problem, where cumulative purchase, inventory, and shortage costs over n periods
are minimized for correlated nonidentically distributed demand. We assume that the
means and covariance matrix of stochastic demand are known; the distributions are not
needed. We derive closed-form ordering quantities for both symmetric and asymmetric
uncertainty sets, under capacitated inventory constraints, in both static and dynamic set-
tings. The behaviors of our robust strategies differ qualitatively depending on the symme-
try of the uncertainty set. For instance, considering our simplest static problem, (1) if the
uncertainty set is symmetric, then there is positive ordering in all periods, whereas (2) if
the set is asymmetric, then there is a set of periods in the middle of the planning horizon
with zero orders. We also link the symmetry of the uncertainty set to the symmetry of the
demand distribution. Finally, we present encouraging computational results where our
solution compares favorably to previously studied, more complex robust solutions.
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1. Introduction
Intelligent inventory management is a highly impor-
tant area of management science that has received
significant attention for decades. However, even with
the most advanced techniques, firms still face inven-
tory problems. For example, during December 2006,
Nintendo faced widespread shortages of its Wii video
game system in Europe, as reported by BBC News
(2006). Similarly, during January 2008, Microsoft faced
shortages of its Xbox 360 system, as seen in the Seat-
tle Post-Intelligencer (2008). Inventory surpluses and
write-offs have also been costly. For example, Re-
search in Motion wrote off $485 million in unsold
or discounted PlayBook tablets in 2011; see Connors
and Cummins (2011) for further details. Similarly,
Microsoft wrote off $900 million in Surface tablet
inventory; see Covert (2013). Inventory management
models also serve as building blocks for more sophis-
ticated material requirements planning (MRP), enter-
prise resource planning, and supply chain manage-
ment systems; see Chap. 3 of Hopp and Spearman
(2011) for further details.

In this paper we analyze a classic n-period inven-
tory management problem for a single product with
no fixed costs and backordering allowed. Demand is
stochastic, correlated, and not identically distributed;
we assume that the means and covariance matrix are
available but not the distributions. We apply recent
advances in robust optimization by utilizing uncer-
tainty sets that are motivated by the central limit
theorem (CLT). These sets, pioneered by Bandi and

Bertsimas (2012), provide an intuitive link between
robust and stochastic optimization, which leads to
tractable robust counterparts of stochastic optimization
problems that suffer from the curse of dimensionality.
These achievements strongly suggest that robust opti-
mization should be the methodology of choice for deci-
sion making under uncertainty for a variety of difficult
problems.

Our basic model is a static one, where all order quan-
tities must be determined at time 0. For this prob-
lem we derive closed-form robust order quantities that
require only knowledge of the means and covariance
matrix of demand, and not the underlying distribu-
tion; we do so for both symmetric and asymmetric
uncertainty sets. Furthermore, the simple nature of our
results allows a decision maker to better understand
the inventory management strategy he or she imple-
ments, in contrast to the computational solution to
an optimization problem. We then extend our model
in multiple directions. We first introduce capacitated
inventories, and we again derive closed-form order
quantities. We show that if the capacity is within a
threshold value, the order quantities are reduced for
an intermediate range of periods, and the remaining
quantities are unchanged from the uncapacitated case;
if the capacity is above the threshold, the uncapac-
itated results apply for all periods. We then study
dynamic decision making, which allows the decision
in each period to depend on the currently observed
inventory position, under capacitated inventories; in
computational results, our dynamic strategy performs
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favorably compared with more complex robust opti-
mization models presented in the literature.

A large portion of the existing literature on inventory
management requires uncertain demand to be charac-
terized by a stochastic distribution. However, as has
been noted in the literature, solutions are highly sensi-
tive to the distribution itself, and the application of an
incorrect distribution can have a damaging impact; for
example, see Isaacs (1963) for the implications of bas-
ing decisions on inaccurate probability distributions.
In practice, choosing an appropriate distribution is not
a trivial matter. In many cases, historical data are used
to derive a distribution, which is premised on (1) his-
tory repeating itself and (2) the data having a high
quality; both of these assumptions are suspect in real-
istic situations. Indeed, changing market trends and
consumer behaviors can render past behavior, and past
data, useless. When data are unavailable (e.g., fash-
ion items, new product introductions), an alternative
choice is to select a well-known theoretical distribution,
whose match with reality is not always vetted. Alter-
natively, although it is possible to use management’s
expert opinion to create forecasts, these distributions
are unlikely to be of the high quality necessary for
quantitative models. Even if an accurate distribution is
known, the resulting stochastic optimization problem
might be intractable (i.e., the curse of dimensionality).
Therefore, there is motivation to study inventory man-
agement problems with uncertain demand for which
probabilistic distributions are not known. We next sur-
vey the relevant literature on alternative characteriza-
tions of uncertain demand.

1.1. Literature Review
One of the more popular approaches to study inven-
tory management problems without probabilistic dis-
tributions is to assume that the mean and variance
of demand are known and apply a worst-case anal-
ysis (i.e., a min-max approach) over all probabilistic
distributions that have the given mean and variance.
Scarf (1958) derives an ordering rule for the newsven-
dor problem under this scenario. Gallego and Moon
(1993) gives a new compact proof of Scarf’s ordering
rule and also investigates the recourse case, where a
secondary procurement decision is allowed. Consid-
ering the continuous and periodic review inventory
models, Moon and Gallego (1994) studies the case
where the distribution of the lead time is unknown,
but the mean and variance of the lead time are given.
Returning to the newsvendor model, Perakis and Roels
(2008) studies the case where a demand distribution is
unavailable but other information is available to par-
tially characterize demand (as before, mean and vari-
ance, but also symmetry and/or unimodality of the
distribution). Note that these models utilize a min-
max approach to differing degrees, which implies that

the models result in decisions that are risk averse,
in contrast to the risk neutrality of stochastic mod-
els that optimize expected values. Other examples of
this min-max style of research include Ehrhardt (1979)
and Natarajan et al. (2008). For other examples of risk-
averse decision making in inventory management, see
Lau (1980), Eeckhoudt et al. (1995), Chen et al. (2007b),
Van Mieghem (2007), and the references therein.

Robust optimization, where uncertain parameters,
rather than distributions, vary over a deterministic
set, is another approach that can handle uncertain
demand without a stochastic distribution. Generally
speaking, robust optimization can be overly conser-
vative, as a worst-case solution is derived. However,
Bertsimas and Sim (2004) introduce the use of “budgets
of uncertainty” to reduce the conservatism of robust
models. Bertsimas and Thiele (2006) design a robust
optimization model of inventory management that uti-
lizes the budgets of uncertainty, resulting in excel-
lent performance, but it comes at the cost of rather
heavy optimization machinery, which can handle fixed
costs, capacitated orders and inventory, and network
topologies. Our paper is motivated by Bertsimas and
Thiele (2006), and we study a similar and simpler
problem (zero fixed costs and a single station), except
that we use uncertainty sets whose structure is moti-
vated by the CLT. Notably, we derive closed-form solu-
tions under both symmetric and asymmetric uncer-
tainty sets for correlated nonidentically distributed
demand, which is only possible in Bertsimas and
Thiele (2006) under a symmetric set with indepen-
dent and identically distributed (i.i.d.) demand. Chen
et al. (2007a) study how to create generic robust uncer-
tainty sets allowing for asymmetry, resulting in a
second-order cone counterpart (which does not gen-
erally lead to simple solutions). Bienstock and Özbay
(2008) generalize Bertsimas and Thiele (2006) in mul-
tiple directions (period-dependent costs, more gen-
eral uncertainty sets) and also analyze data-driven
robust models, focusing on an algorithmic perspective
to inventory management. See and Sim (2010) ana-
lyze a robust inventory management problem under
a “factor-based” model of uncertainty, which in that
case is also equivalent to a second-order cone program.
Wagner (2010) studies a similar model to that consid-
ered in this paper, except that demand is only known to
be nonnegative and revenues are incorporated to form
a profit objective. Wagner (2011) analyzes a simplifica-
tion without revenues.

To the best of our knowledge, the idea of combin-
ing robust optimization with the limit theorems of
probability has its origins in the paper by Bertsimas
et al. (2011), which analyzes queuing networks with
a robust uncertainty set motivated by the probabilis-
tic law of the iterated logarithm (Chung 2001). This
paper is based on the Ph.D. thesis of Rikun (2011),
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who also analyze robust inventory management with
a simple CLT-inspired uncertainty set, which is solved
using a simulated-annealing algorithm (i.e., no closed-
form solutions are available). The CLT structure of our
uncertainty sets is primarily motivated by Bandi and
Bertsimas (2012), which provides an in-depth anal-
ysis of the combination of robust optimization with
the limit theorems of probability. This connection inti-
mately links robust and stochastic optimization in an
intuitive manner. Taking this new approach, it is possi-
ble to formulate tractable robust counterparts of diffi-
cult stochastic optimization problems that suffer from
the “curse of dimensionality.” These ideas have been
applied to information theory (Bandi and Bertsimas
2011), option pricing (Bandi and Bertsimas 2014b),
queueing theory (Bandi et al. 2012, 2015), and auction
design (Bandi and Bertsimas 2014a). We continue the
preliminary work of Rikun (2011), under a different
fundamental model, providing an in-depth analysis of
these ideas applied to inventory management.

We next discuss dynamic robust optimization, where
some variable values can be set after uncertain param-
eters become known, which is useful in multiperiod
decision making. Ben-Tal et al. (2004) introduce the
adjustable robust optimization problem, which is
shown to be NP-hard in general; this negative result
motivates the analysis of an affinely adjustable robust
counterpart as an approximation to this difficult robust
problem, where the optimization is performed over a
subset of (suboptimal) affine policies. These authors
compare their approach, in a linear inventory model,
with dynamic programming (DP) and conclude that
if the curse of dimensionality is present, the robust
approach is superior to the DP one, because of its com-
putational advantage. Ben-Tal et al. (2005) utilize an
affinely adjustable robust model to study a retailer–
supplier flexible commitment problem, which analyzes
inventory management in a supply chain. Bertsimas
et al. (2010) prove the optimality of affine policies for
a general class of multistage robust optimization mod-
els where independent random disturbances are con-
strained to lie in intervals. By contrast, our uncertainty
sets have coupling constraints over multiple periods,
which allow us to capture correlated disturbances (i.e.,
demands); in Bertsimas et al. (2010), the authors pro-
vide examples where coupling constraints render the
affine policies suboptimal. Iancu et al. (2013) continue
the study of affine policies, further characterizing the
problem structures where affine policies are optimal in
dynamic robust optimization. Chen et al. (2008) utilize
second-order cone approximations to improve upon
the linear decision rules in a generic multiperiod prob-
lem. Georghiou et al. (2015) apply a lifting technique
to the primal and dual linear decision rule approx-
imations (which usually provide loose bounds) and
prove that the bounds that they introduce are tighter

than those derived from a linear decision rule. The
authors numerically compare these bounds across dif-
ferent approximations in terms of their optimality gaps
and running times. They admit that these approxima-
tions can be difficult to solve for different sets of param-
eters in inventory control problems. Bertsimas and
Georghiou (2015) review the limitations of the deci-
sion rules used in the approximations above, because
of their a priori design and not incorporating adaptive
decisions. They propose a methodology for the optimal
design of such decisions through a mixed-integer pro-
gram. We provide our own closed-form solutions for
both symmetric and asymmetric sets under a rolling
horizon framework, whose simple intuitive structure is
appealing from a decision maker’s viewpoint; further-
more, our strategy exhibits encouraging computational
performance.

Gorissen and Hertog (2013) argue that the approach
in Bertsimas and Thiele (2006) is conservative because
it considers the worst-case scenario for each individual
constraint as opposed to a global worst-case scenario.
They propose a less conservative robust reformulation
for optimization problems containing sums of max-
ima of linear functions. They compare various solu-
tion methodologies and propose an algorithm based
on cutting-plane methods. Their numerical results
show that affinely adjustable robust counterpart refor-
mulations of inventory problems do not significantly
improve on the approach provided in Bertsimas and
Thiele (2006). Although more complex cutting-plane
methods improve on costs, this comes at a relatively
significant increase in computational time. They illus-
trate that after splitting up the constraint sums, the
initial conservative approach can achieve similar costs
as the cutting-plane-based algorithms without a signif-
icant increase in computational time.

1.2. Contributions
We study new robust variants of a classic single-
echelon n-period inventory management problem for
a single product, with purchasing, holding, and short-
age costs. Our results make the following contributions
to the operations management literature.

• We introduce a generic uncertainty set based
on bounds on partial sums of demand as well as
bounds on individual demands. We derive a closed-
form recursion for the robust order quantities for this
generic uncertainty set, for static and dynamic ro-
bust inventory models under capacitated inventory
constraints. We then build on the recent work of
Bandi and Bertsimas (2012), which introduces CLT-
style uncertainty sets, to parameterize our uncertainty
set. We derive closed-form solutions in a static setting
with correlated nonidentically distributed demand
with capacitated inventories; these simple and intuitive
solutions allow a decision maker to more easily under-
stand the inventory management strategy and more
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readily implement it (e.g., no optimization software is
needed).

• We identify uncertainty set symmetry, or the lack of
it, as an important characteristic of our robust inventory
management problems, which leads to qualitatively dif-
ferent ordering behaviors. If the robust uncertainty set
is symmetric, our robust strategies order positive quan-
tities in all periods. By contrast, if the uncertainty set is
asymmetric, this results in a lull of zero ordering (for
multiple periods) in the middle of the planning hori-
zon; these closed-form solutions are, to the best of our
knowledge, the first for an asymmetric uncertainty set.

• We define a sequence of static problems whose
collective solutions result in a dynamic ordering strat-
egy. The order quantity in each period depends on the
observable inventory position at the beginning of the
period. These order quantities are also closed form and
allow for correlated nonidentically distributed demand
and capacitated inventories.

• We perform extensive numerical experiments to
evaluate the effectiveness of the robust solutions
derived in this paper. We find that our approach com-
pares favorably to the robust solution developed in
Bertsimas and Thiele (2006), which studies a similar
problem, and to the dynamic affine policies studied in
Bertsimas et al. (2010), which can be used for inven-
tory problems. Our robust solutions perform particu-
larly well when demand across periods is correlated
and for high service-level values (above 90%). For these
cases, our robust solutions indeed lower costs com-
pared with the solutions in Bertsimas and Thiele (2006)
and Bertsimas et al. (2010) in 71% and 66% of all the sce-
narios considered, respectively, and average cost reduc-
tions can be as high as 47% and 50%, respectively.
Furthermore, our robust solution had a better worst-
case cost than those in Bertsimas and Thiele (2006)
and Bertsimas et al. (2010) in 60% and 55% of scenar-
ios, respectively. These results are especially promising
considering that the robust solutions developed in this
paper require much less computational time as a result
of their simple form.

1.3. Paper Outline
In Section 2 we discuss preliminaries, focusing on the
CLT uncertainty sets. In Section 3 we introduce our
static robust optimization model and detail our robust
strategies. In Section 3.1 we derive the order quanti-
ties when the robust uncertainty set is symmetric, and
in Section 3.2 we do the same for an uncertainty set
that is asymmetric. Section 3.3 discusses the transition
from the symmetric case to the asymmetric case, and
Section 3.4 provides our closed-form ordering quan-
tities for the capacitated inventory case. In Section 4
we derive analogous dynamic robust order quantities,
which are functions of observable inventory positions.
Computational experiments, focusing on our dynamic

strategies, and a discussion of the results are provided
in Section 5. Managerial implications and concluding
thoughts are given in Section 6. All proofs are given in
the online appendix.

2. Preliminaries
2.1. Notations
We first detail the data for our models. We consider the
n-period inventory management of a single product
where the objective is to minimize total cost. The unit
purchase cost is c > 0, the unit inventory holding cost
is h > 0, and the unit inventory shortage cost is s > 0.
In period i ⇤ 1, . . . , n, d

i

� 0 are the stochastic demands;
however, the distributions of the d

i

are not known. We
allow for period-dependent moments and correlated
demand; we discuss details in Section 2.5. Note that
the support of demand can be unbounded. In period i,
q

i

� 0 is the order quantity. We assume zero lead times.

2.2. Robust Optimization
Robust optimization is a methodology for optimization
under uncertainty, where sets are utilized to character-
ize the uncertainty, rather than stochastic distributions.
In stochastic optimization, an objective function g(x , y)
depends on a decision x and a random variable y with
a known distribution F. By contrast, in robust optimiza-
tion, the distribution F is not known, and the uncer-
tainty in y is instead characterized by an “uncertainty
set” U. In other words, y 2 U, where U is not necessar-
ily the support of the original random variable. Indeed,
choosing an uncertainty set that is smaller than the
support can lead to good performance; see, for exam-
ple, the discussion on pp. 32–33 of Ben-Tal et al. (2009).
There is a variety of approaches to define a robust
counterpart to a stochastic program; we next discuss
some of the most common ones.

One of the first studies of robust linear programs
is Soyster (1973), where uncertain problem parameters
are characterized by “interval uncertainty” (i.e., each
parameter is constrained to be within a given inter-
val). One shortcoming of this analysis is the overcon-
servatism of the optimal solution, which restricted its
practicality. In a series of papers (El-Ghaoui and Lebret
1997; El-Ghaoui et al. 1998; Ben-Tal and Nemirovski
1998, 1999, 2000), this issue of overconservatism is ad-
dressed via more sophisticated uncertainty sets, which
results in more complex but solvable convex optimiza-
tion problems (such as a second-order cone program).
Bertsimas and Sim (2004) consider a different approach
to address the overconservatism of Soyster (1973): they
keep the interval uncertainty sets yet limit the total
dispersion of uncertain parameters from nominal val-
ues by using the notion of a “budget of uncertainty.”
By doing so, they retain the complexity of the origi-
nal optimization model (e.g., a robust linear program
is still a linear program). More recently, Bandi and
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Bertsimas (2012) utilize an alternative method based on
the limit theorems of probability, instead of the budgets
of uncertainty, to reduce the conservatism of robust
models; this work strongly influences the parameteri-
zation of our robust uncertainty sets.

2.3. Partial-Sum Uncertainty Sets
We utilize the following class of uncertainty sets in this
paper:

⌦ ⇤

⇢
(d1 , . . . , dn

): a

i


iX

j⇤1
d

j

 b

i

,

`
i

 d

i

 u

i

, i ⇤ 1, . . . , n
�
, (1)

where the parameters (a
i

, b
i

, `
i

, u
i

)
i

are exogenous.
Note that, for all i,

a

i

� b

i�1  d

i

⇤

iX
j⇤1

d

j

�
i�1X
j⇤1

d

j

 b

i

� a

i�1.

To guarantee that ⌦ is not empty, we assume a

i

 b

i

,
0  `

i

 u

i

, a

i

� b

i�1  b

i

� a

i�1, and [a
i

� b

i�1 , bi

� a

i�1]\
[`

i

, u
i

], ; for i ⇤ 1, . . . , n. In this paper we analyze mul-
tiple parameterizations of this uncertainty set, deriving
closed-form ordering quantities in all cases.

We contrast our uncertainty set with that of
Bertsimas and Thiele (2006), which studies a similar ro-
bust optimization approach to inventory management.
In the Bertsimas and Thiele model, demand in period i

is restricted to a symmetric set d

i

2 [d
i

� d̂

i

, d
i

+ d̂

i

]
for all i, where the parameters d

i

and d̂

i

are exoge-
nous. Furthermore, these authors utilize “budgets of
uncertainty” constraints, where, in period i, the con-
straints P

i

j⇤1 |(dj

� d

j

)/d̂

j

|  �
i

hold, where the �
i

are
again exogenous. This uncertainty set can be written as

⌦BT ⇤

⇢
(d1 , . . . , dn

):
iX

j⇤1

����dj

� d

j

d̂

j

����  �i

,

d

i

� d̂

i

 d

i

 d

i

+ d̂

i

, i ⇤ 1, . . . , n
�
.

We provide a specific parameterization of our un-
certainty set to allow a clearer comparison. If we let
`

i

⇤ d

i

� d̂

i

, u

i

⇤ d

i

+ d̂

i

, a

i

⇤ �d̂

i

�
i

+
P

i

j⇤1 d

j

, and b

i

⇤

d̂

i

�
i

+
P

i

j⇤1 d

j

, our uncertainty set can be written as

⌦0
⇤

⇢
(d1 , . . . , dn

):
����

iX
j⇤1

d

j

� d

j

d̂

i

����  �i

,

d

i

� d̂

i

 d

i

 d

i

+ d̂

i

, i ⇤ 1, . . . , n
�
.

It turns out that in this comparison, the primary dif-
ference between these uncertainty sets is that ⌦0 has
n absolute value of summation constraints, and ⌦BT

has n summation of absolute values constraints. Under
similar operational settings (zero fixed costs and no
capacities) and c  s, both the Bertsimas and Thiele
(2006) study and our paper derive closed-form solu-
tions; these solutions are similar yet not identical (see
Remark 3 in Section 3). We also study the c > s case,
which Bertsimas and Thiele do not, and show how
the ordering ceases prematurely in period n � k + 1,
where ks < c  (k +1)s for some k 2 {1, . . . , n �1}; if c >
ns, there is no ordering. Furthermore, the closed-form
results in Bertsimas and Thiele rely on i.i.d. demand;
we extend our results in a natural way to correlated
nonidentically distributed demand.

Our paper further diverges in that we allow asym-
metric uncertainty sets ⌦ as a result of the addi-
tional flexibility of the (a

i

, b
i

, `
i

, u
i

)
i

parameterization;
for instance, we could modify the above definition of
⌦0 by letting `

i

⇤ 0 for all i. The symmetry of the
uncertainty set is crucial in the Bertsimas and Thiele
(2006) study, since the analysis is based on the work of
Bertsimas and Sim (2004), which has symmetric ran-
dom variables as a model primitive. We derive closed-
form solutions under asymmetric uncertainty sets that
have very different structures than those in Bertsimas
and Thiele by appropriately choosing the (a

i

, b
i

, `
i

, u
i

)
i

parameterization.

2.4. Robust Optimization Models of
Inventory Management

Our canonical model, motivated by that in Bertsimas
and Thiele (2006), is formulated as the following robust
optimization model:

min
(q1 ,...,qn

)�0

nX
i⇤1

(cq

i

+ y

i

)

s.t. I

i

⇤

iX
j⇤1

(q
j

� d

j

), i ⇤1, . . . ,n ,

y

i

� hI

i

, i ⇤1, . . . ,n , 8 (d1 , . . . , dn

)2⌦,
y

i

��sI

i

, i ⇤1, . . . ,n , 8 (d1 , . . . , dn

)2⌦,

(2)

where I

i

is the inventory position, and y

i

captures
the mismatch cost max{hI

i

,�sI

i

} in period i. In this
static model, we assume zero initial inventory, though
we relax this restriction in Section 4, where we ana-
lyze a dynamic rolling horizon strategy. Feasible values
of variables q

i

and y

i

satisfy all constraints for every
demand vector in ⌦.

Remark 1. Note that our model is different than, and
arguably suboptimal with respect to,

min
(q1 ,...,qn

)�0

⇢
max

(d1 ,...,dn

)2⌦

⇢
nX

i⇤1
(cq

i

+max{hI

i

,�sI

i

})
��

s.t. I

i

⇤

iX
j⇤1

(q
j

� d

j

), i ⇤ 1, . . . , n ,
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which considers a single worst-case scenario. A vari-
ant of this model was analyzed by Rikun (2011),
and a solution algorithm based on simulated anneal-
ing was developed; Gorissen and Hertog (2013) and
Ardestani-Jaafari and Delage (2016) provide alterna-
tive approaches for a broader class of robust optimiza-
tion problems involving sums of maxima and sums of
piecewise linear functions, respectively. However, our
aim is to derive closed-form ordering solutions that
allow a decision maker to more easily understand an
inventory control strategy and implement it in prac-
tice; this led us to formulate the model in problem (2).
Furthermore, auxiliary computational studies (omit-
ted) demonstrate that any suboptimality is minimal; in
particular, our proposed closed-form solution results
in an average 2% increase in cost relative to the sin-
gle worst-case formulation, where the average is taken
over various parameter (c , s , h , µ, �) values.

The structure of ⌦ allows us to determine, in closed
form, the minimum and maximum cumulative de-
mands for the first k periods, k ⇤ 1, . . . , n, which we
generically denote as

D

k

⇤ min
(d1 ,...,dn

)2⌦

kX
j⇤1

d

j

and D

k

⇤ max
(d1 ,...,dn

)2⌦

kX
j⇤1

d

j

, (3)

respectively. Note that both D

k

and D

k

are increas-
ing in k. The next lemma provides expressions for
these partial sums for the uncertainty set defined in
Equation (1).
Lemma 1. For k ⇤ 1, . . . , n,

D

k

⇤ min
⇢

kX
j⇤1

u

j

, min
i<k

⇢
b

i

+

kX
j⇤i+1

min{u

j

, b
j

� a

j�1}
�
,

b

k

, min
i>k

⇢
b

i

�
iX

j⇤k+1
max{`

j

, a
j

� b

j�1}
��
,

and

D

k

⇤ max
⇢

kX
j⇤1
`

j

, max
i<k

⇢
a

i

+

kX
j⇤i+1

max{`
j

, a
j

� b

j�1}
�
,

a

k

, max
i>k

⇢
a

i

�
iX

j⇤k+1
min{u

j

, b
j

� a

j�1}
��
.

An appealing characteristic of our formulation is
that we are able to find a robust ordering vector
(q⇤

1 , . . . , q
⇤
n

) where the cumulative orders Pi

j⇤1 q

⇤
j

satisfy
a newsvendor-type optimality condition, analogous to
the case where cumulative demand up to period i is
uniformly distributed on [D

i

,D
i

] for all i. Further-
more, this characteristic persists in more complex envi-
ronments, including a dynamic model, and we are also
able to derive closed-form robust solutions in those
cases. The next lemma provides an optimality condi-
tion for model (2).

Lemma 2. If ks < c  (k + 1)s for some integer 0  k 
n � 1, then the robust order quantities satisfy

iX
j⇤1

q

⇤
j

⇤
sD

i

+ h D

i

s + h

, i ⇤ 1, . . . , n � k , and

q

⇤
i

⇤ 0, i > n � k.

If ns < c, then q

⇤
i

⇤ 0 for all i.

The reasoning behind this lemma balances the
worst-case holding costs and backordering costs for the
first n � k periods (the entire horizon if c  s). In other
words, the worst-case holding cost in period i for
the smallest possible cumulative demand D

i

—namely,
h(Pi

j⇤1 q

j

� D

i

)—will equal the worst-case backorder-
ing cost for the largest possible cumulative demand
D

i

—namely, s(D
i

�P
i

j⇤1 q

j

). This intuition is similar in
spirit to that of the dual balancing policies of Levi et al.
(2007) and Levi et al. (2008), but it allows for closed-
form ordering quantities in multiple environments.

Note that for the ks < c  (k + 1)s case, since (sD

i

+

h D

i

)/(s + h) is nonnegative and increasing in i, this
lemma provides a recursion for determining the robust
ordering quantities:

q

⇤
i

⇤

8>>>><
>>>>:

sD

i

+ h D

i

s + h

�
i�1X
j⇤1

q

⇤
i

i ⇤ 1, . . . , n � k ,

0 i > n � k.

(4)

Although this recursion is valid for all parameteriza-
tions (a

i

, b
i

, `
i

, u
i

)
i

of the uncertainty set ⌦ in Equa-
tion (1), we are more interested in nonrecursive closed-
form expressions for the ordering quantities q

⇤
i

. In the
next subsection, we discuss a class of parameteriza-
tions, motivated by the central limit theorem, which
allows for such closed-form expressions.

2.5. Central Limit Theorem–Inspired
Parameterizations

The central limit theorem is one of the most well-
known, and powerful, results of probability theory.
Consider the sum of n i.i.d. random variables X

i

, i ⇤

1, . . . , n, each with mean µ and standard deviation �.
In one of its simplest forms, the CLT states that

lim
n!1

P

✓P
n

i⇤1 X

i

� nµ
p

n�
 t

◆
⇤�(t) 8 t , (5)

where �(t) is the cumulative distribution of the stan-
dard normal random variable. Note that if the distribu-
tion of X

i

is reasonably symmetrical and well behaved,
then summations of very few variables (e.g., n ⇤ 5) can
be well approximated by a normal distribution.

Although the CLT is typically presented for i.i.d.
random variables, as above, this is not necessary. The
Lindeberg CLT allows for nonidentically distributed
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(and independent) random variables. For instance,
if demands are uniformly bounded, and the stan-
dard deviation of the cumulative demand diverges
as n !1, then the Lindeberg CLT holds; full techni-
cal details about this extension can be found in Feller
(1968, Chap. X, Section 5). There also exist variants of
the CLT that allow for correlation. These results hold
if subsequences that are far apart are “almost” inde-
pendent; see Billingsley (2012, Chap. 5, Section 27) for
technical details.

The generality of the CLT motivates the structure of
uncertainty sets for our robust optimization models,
an approach pioneered by Bandi and Bertsimas (2012).
These sets lead to tractable robust formulations of dif-
ficult stochastic optimization problems in the areas of
auction design, option pricing, queueing theory, and
information theory (Bandi and Bertsimas 2011, 2014a,
b; Bandi et al. 2012, 2015), and we extend this work to
inventory management.

We assume that the demand in period i, d

i

, is a ran-
dom variable with mean µ

i

and standard deviation �
i

;
we assume that these statistics are known but the dis-
tributions are not. We also assume that the demand
covariance matrix ⌃ is known. The partial sum P

k

j⇤1 d

j

has mean P
k

j⇤1 µ j

and standard deviation
p

e0
k

⌃
k

e
k

,
where ⌃

k

is the submatrix composed of the first k rows
and columns of ⌃ and e

k

is the k-dimensional vector
of all ones. Motivated by the CLT, we let a

i

⇤
P

i

j⇤1 µ j

�
�

i

p
e0

i

⌃
i

e
i

, b

i

⇤
P

i

j⇤1 µ j

+�
i

p
e0

i

⌃
i

e
i

, `
i

⇤max{µ
i

� �̂
i

�
i

, 0},
and u

i

⇤ µ
i

+ �̂
i

�
i

, so that our uncertainty set becomes

⌦CLT ⇤

⇢
(d1 , . . . , dn

): ��
i


iX

j⇤1

d

j

�µ
jp

e0
i

⌃
i

e
i

 �
i

,

max{µ
i

� �̂
i

�
i

,0} d

i

 µ
i

+ �̂
i

�
i

, i ⇤1, . . . ,n
�
. (6)

Remark 2. Our approach to modeling correlation
information is different from that of Bandi and
Bertsimas (2012), whose approach is motivated by a
factor-based model that generates correlated random
variables from a vector of i.i.d. random variables. Our
initial attempt to model correlation used a similar set
to that in Bandi and Bertsimas (2012), but we were
unable to derive closed-form solutions (because of the
complications from the additional vector of generat-
ing variables); we consequently devised our current
approach. Furthermore, our approach is appealing
since the correlation information is a model primitive,
as opposed to the approach in Bandi and Bertsimas
(2012), where the factors are related to a decomposition
(e.g., Cholesky) of the covariance matrix.

The constraints d

i

2 [max{µ
i

� �̂
i

�
i

, 0}, µ
i

+ �̂
i

�
i

] pre-
clude extreme demand movements that are unlikely
to appear in practice and are similar to the interval

uncertainty in Bertsimas and Thiele (2006). Further-
more, these period-specific constraints can be viewed
to hold with high probability, as a result of, for exam-
ple, the Chebyshev inequality: P(|d

i

�µ
i

| � �̂
i

�
i

) 1/�̂2
i

.
The ��

i

 P
i

j⇤1((dj

� µ
j

)/
p

e0
i

⌃
i

e
i

)  �
i

constraints are
motivated by the CLT. The �

i

� 0 and �̂
i

� 0 are tunable
parameters that allow adjustment of the conservatism
of the robust optimization approach, as pioneered in
Bertsimas and Sim (2004). We next discuss the selection
of these parameters.

Practically speaking, the �
i

will be chosen as small
constants, usually no more than 3; this is motivated by
the fact that if Z is a standard normal random variable,
then P(�3  Z  3) ⇡ 99.7%. The simplest parameteri-
zation is to set �

i

⇤ � for all i, where � 2 [2, 3]. Another
parameterization that we explore in our paper, one that
emphasizes the limit aspect of the CLT, is to set �

i

!1
for i < n and �

n

2 [2, 3].
The �̂

i

parameters can be set using a qualitative de-
scription of the demand d

i

in period i. For example,
if demand in period i is assumed to be symmetric,
we select �̂

i

 µ
i

/�
i

, so that the constraint µ
i

� �̂
i

�
i


d

i

 µ
i

+ �̂
i

�
i

is symmetric around µ
i

. By contrast,
if the distribution of demand in period i is asym-
metric, a value of �̂

i

> µ
i

/�
i

is required to have an
asymmetric constraint 0  d

i

 µ
i

+ �̂
i

�
i

; this implies
that �̂

i

2 (µ
i

/�
i

, 3], which is feasible only when the
coefficient of variation is �

i

/µ
i

� 0.33. Put differently,
in this paper we study asymmetric demand distribu-
tions where the lower bound of demand is zero. Such
demand distributions arise in inventory management
and are used to model the demand for “slow-moving”
or “low-volume” products where demand is intermit-
tent (Chen and Yu 2005). For instance, many spare
aircraft parts satisfy the bound on �

i

/µ
i

and exhibit
asymmetric demand patterns, earning descriptions of
“lumpy” and “erratic” in the literature (Ghobbar and
Friend 2003, Williams 1984). In particular, Ghobbar and
Friend (2003) studies a variety of aircraft parts with
coefficients of variation up to 1.28. Therefore, highly
variable asymmetric demands warrant a value of �̂

i

2
(µ

i

/�
i

, 3] and the resulting asymmetric uncertainty set.

2.6. Heavy-Tail Parameterizations
Although our paper focuses on the above CLT-inspired
parameterizations, the general form of Equation (1)
allows us to also capture demand distributions that are
“heavy tailed” (e.g., distributions without finite vari-
ance). Although the CLT does not apply for these dis-
tributions, other stable laws do apply; for instance, if Y

i

are i.i.d. random variables with mean µ but no finite
variance, a typical stable law is lim

n!1
P

n

i⇤1(Yi

� µ)/
n

1/↵ ⇠ Y for some random variable Y and ↵ 2 (1, 2]; see
Theorem 1 in Bandi and Bertsimas (2012) for details
and further citations. This discussion motivates the
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following robust uncertainty set that is expressible in
our framework:

⌦HT ⇤

⇢
(d1 , . . . , dn

): ��
i


iX

j⇤1

d

j

� µ
j

n

1/↵  �
i

,

`
i

 d

i

 u

i

, i ⇤ 1, . . . , n
�
. (7)

3. Robust Order Quantities for the
Static Problem

In this section we derive closed-form ordering solu-
tions for the static model in Equation (2) for var-
ious parameterizations of the ⌦CLT uncertainty set
defined in Equation (6). These robust order quantities
(q⇤

1 , . . . , q
⇤
n

) must be completely specified at time 0. In
Section 4 we define a dynamic analogue of this model,
and we solve for optimal robust order quantities that
are functions of observable inventory positions.

Although dynamic policies are perhaps the most
useful in practice, there is value in considering the
static policies as well. Specifying multiple order quan-
tities in advance is an appropriate model for some
supply chain contracting, such as “advanced booking
discount” programs (Tang et al. 2004). Similarly, Özer
and Wei (2006) study advanced purchase contracts and
show their strategic value in information sharing. In
addition, Chen et al. (2014) study supply chain con-
tracts for short-life-cycle products (e.g., fashion, high
technology), where there is usually a single order-
ing opportunity for the life cycle. They explore inven-
tory management within the product’s life cycle. They
provide examples where restrictions (e.g., space con-
straints at 7-Eleven Japan, cash flow constraints) pre-
clude the entire order being received at once, which
results in a staggered delivery of products and accom-
panying inventory management issues. However, as in
our static model, the staggered deliveries (and the total
order) must be specified in advance.

In Section 3.1, we consider the case where µ
i

� �̂
i

·
�

i

� 0 for all i, which results in a symmetric uncertainty
set, and in Section 3.2, we analyze the case where µ

i

�
�̂

i

�
i

< 0 for all i, which gives an asymmetric uncertainty
set; we obtain closed-form solutions in both cases. If
there exists a set S ⇢ {1, . . . , n} where µ

i

� �̂
i

�
i

� 0 for
i 2 S, and µ

i

� �̂
i

�
i

< 0 otherwise, then Lemma 2 can
be used to obtain a recursion that can be solved for
the robust quantities. In Section 3.3, we consider the
transition from symmetric to asymmetric uncertainty
sets for i.i.d. demand, and in Section 3.4, we generalize
our results to capacitated inventories.

3.1. Symmetric Uncertainty Set
In this subsection we consider symmetric uncertainty
sets. We assume that �̂

i

are selected so that µ
i

� �̂
i

�
i

� 0
for all i. Furthermore, we let �

i

!1 for i < n to retain
only a constraint on the full summation P

n

j⇤1 d

j

, in

the asymptotic spirit of the CLT. If finite values of �
i

,
i < n, are required, the ordering quantities can still be
determined using recursion (4); unfortunately, we are
unable to derive closed-form q

⇤
i

for finite �
i

, i < n. The
uncertainty set that we consider in this subsection is

⌦
symmetric
CLT ⇤

⇢
(d1 , . . . , dn

): ��
n


nX

j⇤1

d

j

�µ
jp

e0⌃e
 �

n

,

µ
i

� �̂
i

�
i

 d

i

 µ
i

+ �̂
i

�
i

, i ⇤1, . . . ,n
�
, (8)

where e is the n-dimensional vector of ones. This
uncertainty set also captures pooling effects in the
sense that the demands in periods 1, . . . , j, for large
enough j, are not all allowed to simultaneously be at
their maximum (or minimum) bounds. In other words,
the total amount of uncertainty over these periods is
reduced, and this is due to the global constraint of the
uncertainty set, which is motivated by the CLT. If j is
not large enough, then there is no pooling effect, and
the intuition is that the “limit” of the CLT does not
yet apply. The threshold value of j depends on many
details, but, for example, a threshold for i.i.d. demand
is (n +

p
n)/2, as we shall see shortly.

Our first theorem characterizes the robust order
quantities in closed form. The subsequent discussion
focuses on the c  s case; if c > s, the ordering pattern is
preserved, with the simple modification that ordering
stops before period n, per Lemma 2.
Theorem 1. If µ

i

� �̂
i

�
i

� 0 for all i and c  s, the robust
order quantities are

q

⇤
i

⇤

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

µ
i

+ �̂
i

�
i

✓
s � h

s + h

◆
i  ,

µ
i

+

✓
�

n

p
e0⌃e+

nX
j⇤+2
�̂

j

�
j

�
X

j⇤1
�̂

j

�
j

◆

·
✓

s � h

s + h

◆
i ⇤ + 1,

µ
i

� �̂
i

�
i

✓
s � h

s + h

◆
i > + 1,

(9)

where  ⇤ max{i: Pi

j⇤1 �̂ j

�
j

 (�
n

p
e0⌃e +

P
n

j⇤1 �̂ j

�
j

)/2}.
If ks < c  (k +1)s for some integer 1  k  n�1, the orders
in Equation (9) are applied for i ⇤ 1, . . . , n � k and q

⇤
i

⇤ 0 for
i ⇤ n � k + 1, . . . , n. If ns < c, q

⇤
i

⇤ 0 for all i.
If ⌃ ⇤ �I, where I is the identity matrix and µ

i

⇤ µ
for all i, we obtain the case of i.i.d. demand with mean
µ and standard deviation �. For simplicity, we also let
�

n

⇤ �̂
i

⇤ � for all i. The uncertainty set in Equation (8)
simplifies to⇢

(d1 , . . . , dn

): �� 
P

n

j⇤1 d

j

� nµ
p

n�
 �,

µ���  d

i

 µ+��, i ⇤ 1, . . . , n
�
.
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The ordering quantities for i.i.d. demand are especially
simple and are presented in the following corollary.
The remainder of this subsection focuses on these sim-
pler ordering quantities since they allow an intuitive
discussion.
Corollary 1 (i.i.d. Demand). If µ � �� � 0 and c  s, the
robust order quantities are

q

⇤
i

⇤

8>>>>>>>>><
>>>>>>>>>:

µ+��

✓
s � h

s + h

◆
i  b⌧c ,

µ���
✓

s � h

s + h

◆
(1� 2✏) i ⇤ b⌧c + 1,

µ���
✓

s � h

s + h

◆
i > b⌧c + 1,

(10)

where ⌧ ⇤ (n +
p

n)/2 and ✏ ⇤ ⌧ � b⌧c. If ks < c  (k + 1)s
for some integer 1 k  n�1, the orders in Equation (10) are
applied for i ⇤ 1, . . . , n� k and q

⇤
i

⇤ 0 for i ⇤ n� k+1, . . . , n.
If ns < c, q

⇤
i

⇤ 0 for all i.
Remark 3. Under the c  s case and comparable con-
ditions, Bertsimas and Thiele (2006) derive a sim-
ilar order-up-to level S

k

⇤ µ + ��((s � h)/(s + h)) ·
(�

k

� �
k�1), where �

k

is the budget of uncertainty for
period k (see Remark 3 on p. 156 of Bertsimas and
Thiele 2006). However, this solution is different from
ours for any sequence of �

k

since these budgets must
be nondecreasing in k, which is not compatible with
the third case of Equation (10). Furthermore, Bertsimas
and Thiele (2006) do not analyze the c > s case, as we
do throughout our paper, and their result depends on
identically distributed demand; our Theorem 1 pro-
vides a closed-form solution for correlated nonidenti-
cally distributed demand.

The robust strategy in Corollary 1 orders in every
period; this will not be true when µ � �� < 0 (which
we study in the next section). Note that if ordering too
much is equivalent to ordering too little (i.e., s ⇤ h),
then the robust strategy will always order the mean of
demand µ, as in the classic newsvendor solution (when
the median equals the mean). More generally, in Fig-
ure 1, we plot various ordering strategies and observe
a clear pattern that depends on the relative size of s

and h, conveniently represented as the service level
s/(s + h). For service levels that are at least 50%, the
strategy first orders aggressively, until a threshold b⌧c,
and then reduces the orders; the opposite behavior of
ordering conservatively at first, and then aggressively,
is observed for service levels below 50% (plots are omit-
ted). We also observe that the standard deviation � and
the budget-of-uncertainty parameter � appear in the
ordering strategy as the product ��, which can be inter-
preted as the key variability metric in the i.i.d. case.
Similar behavior is observed for other values of n, µ, �,
and �.

The threshold period induced by the value of ⌧,
where the ordering behavior changes, can be explained

Figure 1. Illustration of Corollary 1 for n ⇤ 30, µ ⇤ 10, � ⇤ 3,
�⇤ 3, and Various Service Levels s/(s + h)
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as follows: When i  b⌧c, the order quantity is driven
by the period-dependent constraints d

i

2 [µ � ��, µ +
��], whereas when i > b⌧c + 1, the order quan-
tity is driven by the CLT constraints ��  (Pn

i⇤1 d

i

�
nµ)/(pn�)  �. When i ⇤ b⌧c + 1, both have an
influence. Note that this threshold is independent of
the values of µ, �, and �; this is not true in the next sec-
tion, where µ��� < 0 and the uncertainty set contains
the zero vector.

Next we discuss the comparative statics, with respect
to µ and �, of the individual orders q

⇤
i

, i ⇤ 1, . . . , n, and
the total cumulative order Q ⇤

P
n

i⇤1 q

⇤
i

. Note that the
order quantities’ behavior as a function of � is identical
to that of �. The following corollaries summarize these
behaviors.

Corollary 2. For c  s,
��� @q

⇤
i

/@µ > 0 for all i.
��� If s > h, then @q

⇤
i

/@� > 0 for i  b⌧c� @q

⇤
i

/@� < 0
otherwise.

��� If s < h, then @q

⇤
i

/@� < 0 for i  b⌧c� @q

⇤
i

/@� > 0
otherwise.

Note that all order quantities are increasing in µ,
which is not surprising. However, the effect of � is
not monotone. Larger � values increase the space of
feasible demand vectors. In particular, increasing �
widens the range of possible demand in each period by
increasing the upper bound of demand and decreas-
ing the lower bound. If shortages are more expen-
sive than holding inventory (s > h), then the robust
order quantities primarily protect against shortages
on the upper bound of demand, and in the earlier
stages, orders increase. Subsequent order quantities are
then decreased to compensate for increased inventory
accumulated during the early periods. Alternatively, if
shortages are less expensive (s < h), then the robust
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quantities primarily protect against inventory hold-
ing costs on the lower bound of demand, and early
orders are decreased. Subsequent quantities are then
increased to compensate for larger backorders accrued
in the early stages.

We next consider how the total order quantity Q ⇤P
n

i⇤1 q

⇤
i

behaves as a function of µ and �. It can be easily
shown, using basic algebra, that Q ⇤ nµ+

p
n��((s�h)/

(s + h)).
Corollary 3. For c  s, the total number of orders over n

periods, Q ⇤ nµ +
p

n��((s � h)/(s + h)), is increasing in
µ. Furthermore, if s > h, then @Q/@� > 0, and if s < h, then
@Q/@� < 0.

Corollary 3 can be interpreted in terms of the news-
vendor model. Letting ��1 denote the inverse cumu-
lative distribution function of the standard normal,
if demand is normally distributed with mean µ and
standard deviation �, then the newsvendor solution
is µ+ �z, where z ⇤ ��1(s/(s + h)) is the z-score that
depends on the overage and underage costs. In our
model, the mean of cumulative demand is D ⇤

P
n

i⇤1 d

i

is µ
D

⇤ nµ, the standard deviation is �
D

⇤
p

n�, and
the total robust order quantity can be written as Q ⇤

µ
D

+�
D

�((s�h)/(s+h)). Therefore, z̃ ⇤�((s�h)/(s+h))
can be interpreted as a robust z-score.

It is also insightful to note that, from Lemma 2, the
optimality conditions are Q

i

⇤ (sD

i

+ h D

i

)/(s + h)8 i,
where Q

i

⇤
P

i

j⇤1 q

⇤
j

, and D

i

( D

i

) is the maximum (mini-
mum) cumulative demand up to period i that respects
the uncertainty set. This condition is identical to the
newsvendor solution for demand that is uniformly dis-
tributed on [D

i

,D
i

] with overage and underage costs
of h and s, respectively. Therefore, the derivation of
the robust quantities can be viewed as a sequence of
newsvendor solutions, where in the ith application, the
costs up to period i are minimized for uniformly dis-
tributed demand, whose interval is determined from
the uncertainty set. Note that this also shows why hold-
ing and shortage costs must be period independent;
if not, the optimality condition would be generalized
to Q

i

⇤ (s
i

D

i

+ h

i

D

i

)/(s
i

+ h

i

), which is not necessarily
nondecreasing in i, a requirement for q

i

⇤Q

i

�Q

i�1 � 0.

3.2. Asymmetric Uncertainty Set
Here, we solve our static robust model, as described
in model (2), under the assumption that µ

i

� �̂
i

�
i

< 0
for all i, which results in the bounds d

i

2 [0, µ
i

+ �̂
i

�
i

]
that are asymmetric around µ

i

. We again let �
i

! 1
for i < n, so that the uncertainty set considered in this
subsection is

⌦
asymmetric
CLT ⇤

⇢
(d1 , . . . , dn

): ��
n


nX

j⇤1

d

j

� µ
jp

e0⌃e
 �

n

,

0  d

i

 µ
i

+ �̂
i

�
i

, i ⇤ 1, . . . , n
�
. (11)

The following theorem characterizes the robust
order quantities for this case in closed form.

Theorem 2. If µ
i

� �̂
i

�
i

< 0 for all i and c  s, the robust
order quantities are

q

⇤
i

⇤

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

s

s + h

(µ
i

+ �̂
i

�
i

) i  1 ,

s

s + h

✓
nX

j⇤1
µ

j

+�
n

p
e0⌃e�

1X
j⇤1

(µ
j

+ �̂
j

�
j

)
◆

i ⇤ 1 + 1,

0 1 + 1 < i  2 ,

h

s + h

✓2+1X
j⇤1

(µ
j

+ �̂
j

�
j

)��
n

p
e0⌃e�

nX
j⇤1
�̂

j

�
j

◆

i ⇤ 2 + 1,
h

s + h

(µ
i

+ �̂
i

�
i

) i � 2 + 2,
(12)

where

1 ⇤max
⇢

i:
iX

j⇤1
(µ

j

+ �̂
j

�
j

) 
nX

j⇤1
µ

j

+�
n

p
e0⌃e

�
and

2 ⇤max
⇢

i:
iX

j⇤1
(µ

j

+ �̂
j

�
j

)  �
n

p
e0⌃e+

nX
j⇤1
�̂

j

�
j

�
.

If ks < c  (k +1)s for some integer 1  k  n�1, the orders
in Equation (12) are applied for i ⇤ 1, . . . , n � k and q

⇤
i

⇤ 0
for i ⇤ n � k + 1, . . . , n. If ns < c, q

⇤
i

⇤ 0 for all i.

We first explain the interval of zero ordering, which
was not present in the previous subsection for a sym-
metric uncertainty set. For the asymmetric uncertainty
set ⌦asymmetric

CLT , demand can be zero, and the worst-
case cumulative demands D

i

and D

i

are not neces-
sarily strictly increasing in i. Indeed, the periods with
zero ordering, i 2 (1 + 1, 2], correspond exactly to the
periods where D

i

and D

i

are both constant. There-
fore, matching the worst-case costs, or, equivalently,P

i

j⇤1 q

⇤
j

⇤ (sD

i

+ h D

i

)/(s + h), results in zero ordering.
Next, as in the previous subsection, we now focus on

the case of i.i.d. demand by setting ⌃ ⇤ �I and µ
i

⇤ µ
for all i; we also let �

n

⇤ �̂
i

⇤ � for all i. The uncertainty
set in Equation (11) simplifies to

⇢
(d1 , . . . , dn

): �� 
P

n

j⇤1 d

j

� nµ
p

n�
 �,

0  d

i

 µ+��, i ⇤ 1, . . . , n
�
,

and the ordering quantities are presented in the fol-
lowing corollary.
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Corollary 4 (i.i.d. Demand). If µ � �� < 0 and c  s, the
robust order quantities are

q

⇤
i

⇤

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

s

s + h

(µ+��) i  b⌧1c ,

✏
s

s + h

(µ+��) i ⇤ b⌧1c+1,

0 b⌧1c+1< i  b⌧2c ,

(1� ") h

s + h

(µ+��) i ⇤ b⌧2c+1,

h

s + h

(µ+��) i > b⌧2c+1,

(13)

where ⌧1 ⇤ (nµ+p
n��)/(µ+ ��), ⌧2 ⇤ (n +

p
n)��/(µ+

��), ✏⇤ ⌧1 � b⌧1c, and "⇤ ⌧2 � b⌧2c. If ks < c  (k+1)s for
some integer 1  k  n � 1, the orders in Equation (13) are
applied for i ⇤ 1, . . . , n� k and q

⇤
i

⇤ 0 for i ⇤ n� k+1, . . . , n.
If ns < c, q

⇤
i

⇤ 0 for all i.

The different structure of the uncertainty set for the
µ � �� < 0 case results in qualitatively different order-
ing behavior; in particular, there is a range of periods
for which no ordering takes place (q⇤

i

⇤ 0). There are
now two thresholds, ⌧1 and ⌧2, that dictate this lack
of ordering, rather than the single threshold ⌧ under
the case where µ��� � 0. It can be easily shown using
basic algebra that ⌧1 < ⌧ < ⌧2. The drivers of the thresh-
olds ⌧1 and ⌧2, where the ordering behavior changes,
can be explained as follows: When i  b⌧1c, the order
quantity is driven by the period-dependent constraints
d

i

2 [0, µ + ��], whereas when i > b⌧2c + 1, the order
quantity is driven by the CLT constraints�� (Pn

i⇤1 d

i

�
nµ)/(pn�)  �. When b⌧1c + 1  i  b⌧2c + 1, both con-
straints have an influence, as can be seen in the proof of
Theorem 2. Unlike the threshold ⌧ in the previous sec-
tion, these thresholds depend on µ, �, and �. As in the
previous section, � and � appear in the ordering strat-
egy, as well as the threshold definitions, as the product
��, which further supports using this product as the
key variability metric in the i.i.d. case. Basic calculus
shows that @⌧1/@µ > 0 and @⌧2/@µ < 0, which implies
that, as the mean of demand increases, the range of
intervals with zero ordering is reduced. Intuitively, this
ordering strategy approaches that of the previous sec-
tion. Conversely, we can show that @⌧1/@� < 0 and
@⌧2/@� > 0, which implies that as the standard devia-
tion of demand increases, the range of intervals with
zero ordering is enlarged. Finally, note that it is pos-
sible to have ⌧2 > n and the last regime of ordering is
never reached; this occurs if n < (��/µ)2. In this sce-
nario, ordering takes place only in early periods, which
then ceases after period b⌧1c + 1.

The ordering behavior when s ⇤ h also differs from
the µ � �� � 0 case. Apart from not ordering in the
middle of the horizon, the robust strategy will order a
constant amount equal to half the maximum demand

Figure 2. Illustration of Corollary 4 for n ⇤ 30, µ ⇤ 10, � ⇤ 5,
�⇤ 3, and Various Service Levels s/(s + h)
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(µ + ��)/2; note that this is in contrast to a newsven-
dor solution. However, this solution makes intuitive
sense: since the costs of over- and underordering are
the same, the robust strategy orders the average of the
range of demand [0, µ+��].

In Figure 2 we plot various ordering strategies for
service levels s/(s + h) � 50%. We observe some similar
patterns to that in Figure 1: the strategy first orders
aggressively, then orders nothing, and finally orders
conservatively; the opposite behavior is observed for
service levels below 50% (plots are omitted).

Next we discuss the comparative statics, which are
summarized in the following corollaries.

Corollary 5. For c  s, the robust order quantities q

⇤
i

are
increasing in µ and �.

We compare and contrast this result with Corol-
lary 2, which addresses the case of positive period-
dependent constraints d

i

2 [µ � ��, µ + ��]. In both
cases, the robust order quantities are increasing in µ.
By contrast, here, the robust order quantities are always
increasing in �, as opposed to those in Corollary 2,
whose behaviors are not monotone in �. This differ-
ence is due to � increasing the upper bound of demand
(µ + ��) but not changing the lower bound (0). The
rates of increase of q

⇤
i

(with respect to either µ or �)
depend on the values of s and h, and they can be found
by inspection.

We next consider how the total order quantity Q ⇤P
n

i⇤1 q

⇤
i

behaves as a function of µ and �. Assum-
ing that n � (��/µ)2, so that ⌧2  n, it can be easily
shown, using basic algebra, that Q ⇤ nµ+

p
n��((s�h)/

(s + h)). Note that this is the same expression as in the
previous section, which implies that Corollary 3, and
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its accompanying discussion, apply here as well; we
formalize this observation in the following corollary.
Corollary 6. For c  s, if n � (��/µ)2, then the total num-
ber of orders over n periods, Q ⇤ nµ +

p
n��((s � h)/

(s + h)), are increasing in µ. Furthermore, if s > h, then
@Q/@� > 0, and if s < h, then @Q/@� < 0.

Therefore, as long as n is not too small, the cumula-
tive orders over n periods do not depend on the value
of µ � ��. This is due to the lower bound on n, which
ensures that the CLT applies equally in both the cases
µ � �� � 0 and µ � �� < 0; note that in our discussion
of the thresholds ⌧, ⌧1, and ⌧2, we elaborate on how
the CLT dominates for n > ⌧ and n > ⌧2. The major dif-
ference between the µ � �� � 0 and µ � �� < 0 cases—
namely, the symmetry of the uncertainty set—does not
factor into the cumulative ordering totals. However, if
n < (��/µ)2, ordering under the µ � �� < 0 case ends
prematurely in period b⌧1c +1, and there are no orders
for the remainder of the time horizon. In this scenario,
the cumulative order is Q ⇤ (s/(s + h))(nµ +

p
n��),

which increases in µ and �; we formalize this in the
following corollary.
Corollary 7. For c  s, if n < (��/µ)2, then the total num-
ber of orders over n periods, Q ⇤ (s/(s + h))(nµ +p

n��),
are increasing in µ and �.

3.3. Strategies as a Function of �
In this subsection, we discuss, for the i.i.d. case, the
transition of our robust ordering strategies from the
symmetric to the asymmetric cases, as a function of �.
If � < µ/�, then the symmetric strategy of Corollary 1
applies, and if � > µ/�, then the asymmetric strategy
of Corollary 4 is used. If �⇤ µ/�, then these two strate-
gies are equivalent since ⌧ ⇤ ⌧1 ⇤ ⌧2; the first cases of
Corollaries 1 and 4 both simplify to an ordering level of
2µs/(s + h), the last cases both simplify to 2µh/(s + h),
and the three middle cases of Corollary 4 simplify to
the middle case of Corollary 1.

To understand the general dynamic, we present
graphs for various values of � 2 [0, 3]; we set µ⇤ 15 and
� ⇤ 10, so that the threshold µ/� ⇤ 1.5 is the midpoint
of [0, 3] and has a service level of 83% (an intermediate
value considered in Figures 1 and 2; similar behaviors
are observed for other service levels). In Figure 3 we
consider � 2 {0.25, 0.75, 1.50, 2.00, 2.75}, where the first
two values lead to the symmetric strategy, the last two
values result in the asymmetric one, and the middle
value results in the equivalence of the two strategies.
As � is increased from 0.25 to 1.50, the early (before
period ⌧) order level increases, and the later (after
period ⌧) order level decreases, expanding the range of
ordering. Once the threshold µ/� is surpassed and � is
increased from 1.50 to 2.75, the early (before period ⌧1)
and later (after period ⌧2) order levels both increase
(early levels increasing faster if and only if s > h), and

Figure 3. Transition from Symmetric to Asymmetric
Demand; n ⇤ 30, µ ⇤ 15, � ⇤ 10, Service Level⇤ 83%, and
Various �’s
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the number of periods with no ordering also increases,
since the size of the interval [⌧1 , ⌧2] is increasing in � (⌧1
is decreasing and ⌧2 is increasing). These periods with
zero ordering are observed in practice, for demand
that is “lumpy” and “erratic,” typically characterized
by high coefficients of variation. For instance, the Steel
Works, Inc., case presented in Simchi-Levi et al. (2008)
discusses such an environment with frequent firm
orders of zero (i.e., no ordering). As discussed in Sec-
tion 2.5, this demand pattern corresponds to our asym-
metric uncertainty set, which is the only set where
zero orders (in intermediate periods) are optimal.
See Ghobbar and Friend (2003) and Williams (1984)
for further details regarding highly variable demand
patterns.

3.4. Capacitated Problems
In this section we consider capacitated problems. In the
first variant, we consider capacitated inventories and
extend Lemma 2 to this case. In the second variant,
we analyze capacitated orders and show that a natu-
ral extension of our results is not optimal, suggesting
capacitated orders are more difficult than capacitated
inventories in our modeling framework.
3.4.1. Capacitated Inventories. We introduce a capac-
ity C that bounds the amount of inventory that can be
held in each period. We add the constraints

max
(d1 ,...,dn

)2⌦
I

i

 C, i ⇤ 1, . . . , n ,

to our basic model in Equation (2). Note that these con-
straints are equivalent to P

i

j⇤1 q

j

 C + D

i

for all i. The
next result extends our closed-form recursive solutions
to include capacitated inventories.
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Lemma 3. If c  s, the robust order quantity for period i

satisfies the following�
iX

j⇤1
q

⇤
j

⇤min
⇢

C + D

i

,
sD

i

+ h D

i

s + h

�
, i ⇤ 1, . . . , n (14)

for i ⇤ 1, . . . , n. If ks < c  (k + 1)s for some integer 1 
k  n � 1, the orders in Equation (14) are applied for i ⇤

1, . . . , n � k and q

⇤
i

⇤ 0 for i ⇤ n � k + 1, . . . , n. If ns < c,
then q

⇤
i

⇤ 0 for all i.
This lemma allows us to extend Theorems 1 and 2 for

capacitated inventories. The impact of a capacity can be
explained relatively simply: (1) if the capacity is high
enough, the uncapacitated order quantities are opti-
mal; (2) otherwise, there exist two indices ` < `0 such
that the ordering quantities before period ` and after
period `0 are not affected by the capacity, whereas for
the intermediate periods, ordering is reduced. Our first
result, which generalizes Theorem 1, is for the symmet-
ric uncertainty set ⌦symmetric

CLT , defined in Equation (8).
Theorem 3. If µ

i

� �̂
i

�
i

� 0 for all i and c  s, we have the
following�

• If C � (2s/(s + h))max{P
j⇤1 �̂ j

�
j

,�
n

p
e0⌃e +P

n

j⇤+2 �̂ j

�
j

}, then the order quantities of Theorem � are opti-
mal.

• Otherwise,

q

⇤
i

⇤

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

µ
i

+ �̂
i

�
i

s � h

s + h

i ⇤1, . . . , ` ,

C+ D`+1 �
X̀
j⇤1

✓
µ

j

+ �̂
j

�
j

s � h

s + h

◆
i ⇤ `+1,

D

i

� D

i�1 `+1< i < `0 �1,

sD`0 + h D`0

s + h

� (C+ D`0�1) i ⇤ `0,

µ
i

� �̂
i

�
i

s � h

s + h

i > `0,

where

` ⇤max
⇢

i  : 2s

s + h

iX
j⇤1
�̂

j

�
j

 C

�
and

`0 ⇤min
⇢

i > : 2s

s + h

✓
�

n

p
e0⌃e+

nX
j⇤i+1
�̂

j

�
j

◆
 C

�
.

If ks < c  (k + 1)s for some integer 1  k  n � 1, the
orders are applied for i ⇤ 1, . . . , n � k and q

⇤
i

⇤ 0 for i ⇤

n � k + 1, . . . , n. If ns < c, q

⇤
i

⇤ 0 for all i.
Our second result, which generalizes Theorem 2, is

for the asymmetric uncertainty set ⌦asymmetric
CLT , defined

in Equation (11).
Theorem 4. If µ

i

� �̂
i

�
i

< 0 for all i and c  s, we have the
following�

• If C � (s/(s + h))(Pn

j⇤1 µ j

+ �
n

p
e0⌃e), then the order

quantities of Theorem � are optimal.

• Otherwise,

q

⇤
i

⇤

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

s

s + h

(µ
i

+ �̂
i

�
i

) i ⇤1, . . . , ` ,

C+ D`+1 �
X̀
j⇤1

s

s + h

(µ
j

+ �̂
j

�
j

) i ⇤ `+1,

D

i

� D

i�1 `+1< i < `0 �1,

sD`0 + h D`0

s + h

� (C+ D`0�1) i ⇤ `0,

h

s + h

(µ
i

+ �̂
i

�
i

) i > `0,

where

`⇤max
⇢

i  1:
s

s + h

iX
j⇤1

(µ
j

+ �̂
j

�
j

) C

�
and

`0⇤min
⇢

i > 2:
s

s + h

✓
nX

j⇤i+1
(µ

j

+ �̂
j

�
j

)+2�
n

p
e0⌃e

◆
 C

�
.

If ks < c  (k + 1)s for some integer 1  k  n � 1, the
orders are applied for i ⇤ 1, . . . , n � k and q

⇤
i

⇤ 0 for i ⇤

n � k + 1, . . . , n. If ns < c, then q

⇤
i

⇤ 0 for all i.

3.4.2. Capacitated Orders. We introduce a capacity B

that bounds the order quantity in any period. We add
the constraints

q

i

 B, i ⇤ 1, . . . , n ,

to our basic model in Equation (2). We conjectured that
the optimal orders satisfy the natural recursion

q

⇤
i

⇤min
⇢

B,
sD

i

+ h D

i

s + h

�
i�1X
j⇤1

q

⇤
j

�
, i ⇤ 1, . . . , n ,

but unfortunately, this solution is not optimal. For
example, when c ⇤ 1, s ⇤ 2, h ⇤ 5, n ⇤ 50, µ ⇤ 15, � ⇤ 5,
and � ⇤ 3, this conjectured solution gives a cost that
is 1% higher than the optimal cost (as determined
using Matlab’s linprog function). In extensive com-
putational tests, we discovered gaps exceeding 2% for
large values of n. These gaps appeared only for h > s,
and it does seem that the conjectured solution is indeed
optimal for s  h. We leave a proof of this to future
work.

4. Robust Policies for a Rolling
Horizon Problem

In this section we analyze a dynamic robust model
based on reoptimization, where in period k, past de-
mands and order quantities are known, which are
denoted by (d̂1 , . . . , d̂k�1) and (q⇤

1 , . . . , q
⇤
k�1), respectively.

Consequently, the inventory position at the end of
period k � 1, denoted by Î

k�1 ⇤
P

k�1
j⇤1 (q⇤

j

� d̂

j

), is also
known.
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We define the uncertainty set in period k, ⌦k

CLT, by
the intersection of the original uncertainty set ⌦CLT,
defined in Equation (6), with the knowledge of realized
demand, or

⌦k

CLT

⇤⌦CLT \ {d1 ⇤ d̂1 , . . . , dk�1 ⇤ d̂

k�1}

⇤

⇢
(d

k

, . . . , d
n

) :��
i


P

k�1
j⇤1 d̂

j

+
P

i

j⇤k

d

j

�P
i

j⇤1 µ jp
e0

i

⌃
i

e
i

 �
i

,

max{µ
i

� �̂
i

�
i

,0} d

i

 µ
i

+ �̂
i

�
i

, i ⇤ k , . . . ,n

�
;

we assume that⌦k

CLT is not empty. Note that, in contrast
to the results of Section 3, we allow finite values of �

i

for i < n; the reoptimization aspect of our approach
allows us to also obtain closed-form ordering quanti-
ties under this more general uncertainty set. We next
provide a sequence of optimization models that col-
lectively define a dynamic version of model (2). These
models are used to find the robust order quantity in
period k, q

⇤
k

, for k ⇤ 1, . . . , n, which is a function of the
inventory position Î

k�1. In period k ⇤ 1, . . . , n, we lever-
age the known information by solving the following
model:

min
(q

k

,...,q
n

)�0

nX
i⇤k

(cq

i

+ y

i

)

s.t. I

i

⇤ Î

k�1+
iX

j⇤k

(q
j

�d

j

), i⇤k . . . ,n ,

y

i

�hI

i

, i⇤k , . . . ,n , 8(d
k

, . . . ,d
n

)2⌦k

CLT ,

y

i

��sI

i

, i⇤k , . . . ,n , 8(d
k

, . . . ,d
n

)2⌦k

CLT ,
(15)

where I

i

is the inventory position in period i � k. Note
that in period k, only the solution q

⇤
k

will be imple-
mented, as the final determination of q

⇤
j

will depend
on the realized Î

j�1 for j > k.

Remark 4. Note that problem (15) is not in the
dynamic programming style, as each period’s opti-
mization does not factor in future optimizations, and
is suboptimal. However, we believe this relaxation is
the reason we are able to derive closed-form solu-
tions that can still be applied in a dynamic setting and
that exhibit excellent computational performance (see
Section 5). Alternatively, there are papers that explic-
itly combine the dynamic programming philosophy
with robust uncertainty sets. For example, Bertsimas
et al. (2010) and Iancu et al. (2013) successfully analyze
such approaches. Although these papers are unable to
determine simple and intuitive closed-form solutions,
their solutions are tractable (solvable as convex opti-
mization problems), and their models more general
than ours (e.g., allowing multiple inventory locations).

The definitions of D

i

and D

i

must be redefined
slightly in this section to accommodate the past de-
mand realizations:

D

i

⇤ min
(d

k

,...,d
n

)2⌦k

CLT

iX
j⇤k

d

j

, i ⇤ k , . . . , n and

D

i

⇤ max
(d

k

,...,d
n

)2⌦k

CLT

iX
j⇤k

d

j

, i ⇤ k , . . . , n.

(16)

The main structural difference between the opti-
mization in period k, k ⇤ 1, . . . , n, and the static prob-
lem of the previous section is the possibility of nonzero
initial inventory. Therefore, we generalize Lemma 2
to accommodate nonzero initial inventory, includ-
ing backlogs, which we then leverage in subsequent
results. The presentation of the new lemma is facili-
tated if we consider the full horizon i ⇤ 1, . . . , n, with
initial inventory I0, and we introduce some conditions:

Condition 1. ks < c  (k +1)s for some integer 0  k 
n � 1.

Condition 2. (sD

m

+ h D

m

)/(s + h) < I0  (sD

m+1 +

h D

m+1)/(s + h) for some integer 0  m  n � 1, where
D0 ⇤ D0 ⇤ 0.

Condition 3. m < n � k.

Lemma 4. The robust order quantities satisfy the
following�

��� If I0 > 0 and Conditions �–� hold,
(a) q

⇤
i

⇤ 0, i ⇤ 1, . . . ,m;
(b) P

i

j⇤m+1 q

⇤
j

⇤ (sD

i

+ h D

i

)/(s + h) � I0 i ⇤ m +

1, . . . , n � k; and
(c) q

⇤
i

⇤ 0, i ⇤ n � k + 1, . . . , n.
Otherwise, q

⇤
i

⇤ 0 for all i.
��� If I0 < 0 and Condition � holds,

(a) P
i

j⇤1 q

⇤
j

⇤ (sD

i

+ h D

i

)/(s + h)� I0, i ⇤ 1, . . . , n �
k; and

(b) q

⇤
i

⇤ 0, i ⇤ n � k + 1, . . . , n.
Otherwise, q

⇤
i

⇤ 0 for all i.

The following result only requires the minimum and
maximum demands in the first period, which are D

i

and D

i

, from Equation (16), evaluated at i ⇤ k:

d

k

⇤ min
(d

k

,...,d
n

)2⌦k

CLT

d

k

and d

k

⇤ max
(d

k

,...,d
n

)2⌦k

CLT

d

k

. (17)

This simplification is due to the reoptimization nature
of our approach, since in period k we only need to solve
for q

⇤
k

, which requires only d

k

and d

k

. This fact allows
us to utilize the more general uncertainty set⌦CLT, with
finite �

i

for i < n, and still obtain closed-form ordering
quantities, in contrast to the static closed-form ordering
quantities of Section 3, which required �

i

!1 for i < n.
The dynamic robust ordering strategy is presented in
the next theorem.
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Theorem 5. If c  s(n � k + 1), the robust order quantities
in period k ⇤ 1, . . . , n are

q

⇤
k

⇤max
⇢

sd

k

+ h d

k

s + h

� Î

k�1 , 0
�
, (18)

where

d

k

⇤ min
⇢
µ

k

+ �̂
k

�
k

, min
i⇤k ,...,n

⇢
iX

j⇤1
µ

j

+�
i

p
e0

i

⌃
i

e
i

�
k�1X
j⇤1

d̂

j

�
iX

j⇤k+1
max{µ

j

� �̂
j

�
j

, 0, µ
j

��
j

q
e0

j

⌃
j

e
j

��
j�1

q
e0

j�1⌃ j�1e j�1}
��

and

d

k

⇤ max
⇢
max{µ

k

� �̂
k

�
k

,0}, max
i⇤k ,...,n

⇢
iX

j⇤1
µ

j

��
i

p
e0

i

⌃
i

e
i

�
k�1X
j⇤1

d̂

j

�
iX

j⇤k+1
min{µ

j

+ �̂
j

�
j

, µ
j

+�
j

q
e0

j

⌃
j

e
j

+�
j�1

q
e0

j�1⌃ j�1e j�1}
��
.

If c > s(n � k + 1), then q

⇤
k

⇤ 0 for k ⇤ 1, . . . , n.
Note that, as in the static case, we again have closed-

form solutions. By contrast, in this dynamic case q

⇤
k

depends on the currently available inventory position
Î

k�1, allowing feedback and improved decision making.
Remark 5. Note that the order quantities derived in
Theorem 5 are state-dependent base stock policies
where the base stock for period k ⇤ 1, . . . , n is (sd

k

+

h d

k

)/(s + h); the dependence on state is from the def-
initions of d

k

and d

k

in Equation (17), which are func-
tions of ⌦k

CLT, a set that depends on the past demand
realizations d̂1 , . . . , d̂k�1. When the demand distribu-
tion is available, base stock policies are known to mini-
mize the expected total inventory-related costs in a peri-
odic review model with no fixed ordering cost. When
the demand distribution is not known, Bertsimas and
Thiele (2006) show that the state-dependent base stock
policy is the optimal robust inventory policy under their
setting. Our results extend the Bertsimas and Thiele
conclusion to a different class of demand uncertainty
sets, including, for the first time, asymmetric sets.

Finally, we can extend our dynamic results to the
capacitated inventory case. Lemmas 3 and 4 (and their
proofs) imply the following result.
Corollary 8. If c  s(n � k + 1), the robust order quantities
in period k ⇤ 1, . . . , n are

q

⇤
k

⇤min
⇢

C + d

k

,max
⇢

sd

k

+ h d

k

s + h

� Î

k�1 , 0
��
,

where d

k

and d

k

are defined in Theorem �. If c > s(n �
k + 1), then q

⇤
k

⇤ 0 for k ⇤ 1, . . . , n.

5. Computational Experiments
In this section we present numerical experiments that
respond to the motivating questions in the introduc-
tion and evaluate the effectiveness of the closed-form
robust solutions derived in this paper. We do so by
comparing the average total costs of the robust solu-
tion obtained from our model to that of Bertsimas and
Thiele (2006), hereafter BT, as well as the dynamic
affine policies in Bertsimas et al. (2010), hereafter AP,
via Monte Carlo simulation. Given that the BT and AP
models are dynamic implementations, in this section
we present the results for our dynamic robust policy of
Section 4 to create a more equitable comparison.

As argued previously, a firm may set its inventory
ordering policy solely based on the means and covari-
ance matrix of demand because it may not have the
full knowledge of the demand distribution. That said,
we assume that the actual demand follows a distribu-
tion F that is unknown to the firm. We therefore assess
the average total cost of all models (BT, AP, and our
paper’s) in terms of F.

In summary, Section 5.1 compares the average total
cost of BT and the robust policies developed in this
paper when outcomes are evaluated based on the true
demand distribution F. We find that although our
model is simpler than the one in BT, which allows
us to derive easy to implement closed-form solutions
that can handle asymmetric uncertainty sets, it per-
forms remarkably well and outperforms the BT solu-
tion in a majority of scenarios. Our model performs
particularly well when the value of the service level is
high, demand across periods is correlated, per-period
demand variability is large, and/or demand uncer-
tainty sets are asymmetric. We note that the model
proposed in BT performs very well compared with the
dynamic programming policies (Bertsimas and Thiele
2006); therefore, we expect our model’s performance to
be comparable as well.

Section 5.2 compares the outcomes of AP and the
robust policies developed in this paper with respect to
the average total costs based on the true demand dis-
tribution F. We find that whereas, by definition, the AP
solution outperforms our solution when the demands
in different periods are independent and have the same
support as the uncertainty sets defined in Bertsimas
et al. (2010), our robust solution leads to a lower cost
when either one of these assumptions is not valid.
More specifically, we show that our policy outperforms
the AP solution in the majority of the scenarios consid-
ered, if F follows a multivariate normal distribution.

Table 1 lists the parameter values used in our experi-
ments. We normalize the holding cost at h ⇤ 1 and vary
shortage costs in the specified range to evaluate the
effects of relatively low to high service levels (s/(s + h)
⇤ 75% to s/(s + h) ⇤ 98%). We choose demand across
periods to follow a multivariate normal distribution.
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Table 1. Parameter Values for Numerical
Experiments

n {3, 10}
h 1
s {3, 5, 20, 40}
c {0.1, 0.5, 1, 2}
� {1.0, 1.5, 2.0, 2.5, 3.0}
µ 5
� {0.1µ, 0.3µ, 0.5µ, 0.8µ, 1µ, 1.5µ, 2µ}

We assume per-period demand distributions have an
average of µ ⇤ 5 and standard deviations that are var-
ied in the range specified in Table 1. The results of our
simulations are averaged across 70 randomly selected
symmetric positive definite matrices as the covariance
matrix of the multivariate normal distribution.

We ran nsims ⇤ 1,000 simulation trials, where in each
trial k we generated a demand vector (d̂k

1 , . . . , d̂
k

n

) from
the multivariate normal distribution F. In particular,
letting

G(q1 , . . . , qn

, d1 , . . . , dn

) ⇤
nX

i⇤1


c

i

q

i

+ h

i

max
⇢

iX
j⇤1

(q
j

� d

j

),0
�

+ s

i

max
⇢
�

iX
j⇤1

(q
j

� d

j

),0
��

in Section 5.1, we compare the estimated expected costs
for the (dynamic) robust and BT quantities, namely,

E[CR]⇤
P

nsims
k⇤1 G(q⇤

1 , . . . , q
⇤
n

, d̂k

1 , . . . , d̂
k

n

)
nsims

and

E[CBT]⇤
P

nsims
k⇤1 G(qBT

1 , . . . , q
BT
n

, d̂k

1 , . . . , d̂
k

n

)
nsims

,

(19)

respectively. In Section 5.2 we compare the estimated
expected costs for the (dynamic) robust and AP quan-
tities, namely,

E[CR]⇤
P

nsims
k⇤1 G(q⇤

1 , . . . , q
⇤
n

, d̂k

1 , . . . , d̂
k

n

)
nsims

and

E[CAP]⇤
P

nsims
k⇤1 G(qAP

1 , . . . , q
AP
n

, d̂k

1 , . . . , d̂
k

n

)
nsims

,

(20)

respectively.
Note that the robust order quantities q

⇤
i

are given
in Theorem 5, whereas the BT quantities q

BT
i

are pro-
vided in Theorem 3.2 of Bertsimas and Thiele (2006)
and the AP quantities q

AP
i

are provided in Theorem 3.1
of Bertsimas et al. (2010). In calculating BT quantities,
one needs to define the so-called budgets of uncer-
tainty, which ensure that the total variation of the
parameters cannot exceed a certain threshold. We use
period-dependent budgets of uncertainty based on the

algorithm in Bertsimas and Thiele (2006), though our
results are not sensitive to small variations of these
parameters. Furthermore, when µ � �� < 0, we modi-
fied the demand intervals in BT accordingly to make
the two approaches commensurable.

Before presenting our results, we note that in all of
our experiments, the simulations generate fairly stable
outcomes. More specifically, the standard errors of the
BT, the AP, and our robust solutions were, on average,
less than 1% of the average total cost of each policy for
nsims ⇤ 1,000 trials. Furthermore, the maximum stan-
dard error observed in our experiments was less than
2% of the corresponding average total cost.

5.1. BT Comparison
In this section we compare the average total cost of
an inventory system when the robust quantities are
selected based on the framework developed in this
paper versus that of Bertsimas and Thiele (2006). Inter-
estingly, when true demand is multivariate normally
distributed, our results indicate that our robust solu-
tion can indeed outperform the BT solution’s average
cost in 70% of the cases in the entire test set. Further-
more, for scenarios where our robust solution leads to
a lower cost than the BT policy, the average cost savings
for using our robust policy is more than 45%. Put differ-
ently, the average percentage improvement in total cost
for using our solution over the BT solution ((E[CBT] �
E[CR])/E[CBT]) for these scenarios was more than 45%.
For those scenarios where the BT solution leads to a
lower cost than our robust policy, the average cost sav-
ings for using the BT policy ((E[CR] � E[CBT])/E[CR])
is less than 10%. It is noteworthy to point out that our
robust policy achieves such an improvement in per-
formance while being less complicated and extremely
easy to implement, is insightful because of its closed-
form nature, and can be run in a shorter time.

Figure 4 presents the simulation results for 70 ran-
domly selected multivariate normal distributions and
parameter values chosen from Table 1. Figure 4 plots
the average percentage cost improvement of BT over
our closed-form robust solution on the left axis,
whereas the right axis shows the percentage of cases
where our solution yields a lower average total cost
than BT, as a function of the service level (s/(s + h)).
We observe that our model performs considerably bet-
ter for larger values of the service level. For instance,
for all service level values above 95%, our robust solu-
tion yields a lower average cost than BT in all scenarios
of our simulation. We note that, in general, our model
performs best for larger values of c and �, moder-
ate values of �, and smaller values of n (graphs not
provided here). Furthermore, our robust solution per-
forms better when the uncertainty set⌦ is asymmetric
and demand across periods is correlated.
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Figure 4. Performance of BT Compared with Our
Robust Solution for Randomly Selected Multivariate
Normal Distributions

75 85 95 98
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Outperformed BT

Notes. The average percentage improvements of our policy over BT
for all scenarios are shown on the left axis. Percentages of scenarios
where our robust solution outperforms the BT policy are shown on
the right axis.

Finally, we also investigate the case where demand
is correlated but not normally distributed. In particu-
lar, we utilize uniform, not normal, random variables
as the primitive to generate correlated demand with a
given covariance matrix. Our robust solution still out-
performs the BT solution’s average in 65% of the cases
over the entire test set. For the scenarios where our
robust solution leads to a lower cost than the BT policy,
the average cost savings from using our robust policy is
more than 46%. For those scenarios where the BT solu-
tion leads to a lower cost than our robust policy, the
average cost savings for the BT policy is less than 19%.

5.2. AP Comparison
In this section we compare the total cost of our robust
solution to that of the dynamic affine policies devel-
oped in Bertsimas et al. (2010), modified to account for
the uncertainty set ⌦CLT in (6). Whereas the dynamic
affine policies in Bertsimas et al. (2010) are shown
to be optimal under some assumptions, we observe
that our robust solution outperforms the AP solution’s
average cost in more than 51% of scenarios in our
simulations when some of those assumptions are vio-
lated. Furthermore, for the scenarios where our robust
solution leads to a lower cost than the AP solution,
the average cost reduction for using our robust policy
((E[CAP] � E[CR])/E[CAP]) is more than 8%. For those
scenarios where the AP solution leads to a lower cost
than our robust policy, the average cost savings for
using the AP solution ((E[CR]� E[CAP])/E[CR]) is less
than 10%.

Figure 5 presents the simulation results for 70 ran-
domly selected multivariate normal distributions and

Figure 5. Performance of AP Compared with Our
Robust Solution for Randomly Selected Multivariate
Normal Distributions
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Notes. The average percentage improvements of our policy over AP
for all scenarios are shown on the left axis. Percentages of scenarios
where our robust solution outperforms the AP policy are shown on
the right axis.

parameter values chosen from Table 1. It plots the
average percentage cost improvement of AP over our
closed-form robust solution on the left axis, whereas
the right axis shows the percentage of cases where our
solution yields a lower average total cost than AP, as a
function of the service level.

Not surprisingly, the solution from the dynamic
affine robust policy developed in Bertsimas et al. (2010)
outperforms the robust solution in Bertsimas and
Thiele (2006). Interestingly enough, however, although
the dynamic affine policies in Bertsimas et al. (2010)
are shown to be optimal, we observe that our robust
solution outperforms the AP solution in the major-
ity of scenarios. The reason for this observation is
twofold: (1) the AP solution performs particularly well
when the support of the demand vector coincides with
the uncertainty set, which is not the case for nor-
mally distributed demand; and (2) the AP solution
assumes demand across different periods are indepen-
dent, whereas the demand in our simulation is cor-
related across different periods. In fact, if we repeat
the numerical experiments with independent uniform
demand in each period, with the support being iden-
tical to the range of the uncertainty set, then the
AP solution outperforms our robust solution in all
scenarios.

These observations suggest that the main advantage
of our robust solution is in its considerations of gen-
eral demand scenarios where demand across periods
can be correlated and/or the support of the demand
vectors are not the same as the range of the uncertainty
sets and/or for higher values of the service level.
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6. Managerial Implications and Conclusion
The main contribution of our paper is deriving closed-
form robust order quantities for a generic inventory
management problem, which greatly facilitates their
adoption into existing systems (e.g., MRP software).
To derive these robust quantities, we only require
the means and covariance matrix of demand to be
known, but not the distributions. Our results are appli-
cable to static and dynamic models with capacitated
inventories. We believe our robust strategies can be
successfully deployed in practice as a result of these
minimal requirements. Indeed, a manager, using his-
torical data, can easily estimate the means and covari-
ance matrix of demand using standard spreadsheet
software. In particular, we derive closed-form order-
ing quantities for correlated nonidentically distributed
demand for both symmetric and asymmetric uncer-
tainty sets, under capacitated inventory constraints, in
both static and dynamic settings.

An intriguing result of our paper is that the sym-
metry of the uncertainty set is important. Our analyt-
ical results show that the symmetric uncertainty set
⌦

symmetric
CLT drives qualitatively different behavior than

the asymmetric set ⌦asymmetric
CLT . The values of µ

i

� �̂
i

�
i

determine the symmetry, as a result of the embedded
constraints max{µ

i

� �̂
i

�
i

, 0}  d

i

 µ
i

+ �̂
i

�
i

. Finally,
note that �̂

i

are parameters chosen by a user of our
model to influence the degree of conservatism embed-
ded in the robust optimization; therefore, a user can
influence whether or not the uncertainty set is sym-
metric for a given set of µ

i

and �
i

values. We provide
advice for selecting appropriate values of �̂

i

.
We also present very encouraging computational re-

sults. While significantly reducing the computational
time, our robust solution performs favorably compared
to more complicated robust policies studied in the liter-
ature, which examine a similar problem and are shown
to often outperform the dynamic programming-based
policies. In particular, when demand across periods is
correlated and the demand uncertainty sets are not the
same as the support of demand, our robust solution
leads to lower average costs for the majority of numer-
ical scenarios considered in this paper. Our computa-
tional results are based on multivariate normal distri-
butions of demand.

Finally, we discuss the assumptions of our basic
model. We assume zero discounting, which turns out
to be an innocuous assumption. Our model is applica-
ble under discounting, and, if all costs are discounted
at the same fixed rate, then our robust strategy will not
change and will not depend on the discount rate. We
have also assumed zero fixed ordering costs. Adding
fixed costs into our model will likely change the struc-
ture of our robust strategy, potentially eliminating our
ability to find closed-form solutions; we leave the reso-
lution of this question to future research.
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