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The price-only contract is the simplest and most common contract between a supplier and buyer in a supply chain. In such a contract,
the supplier proposes a fixed wholesale price, and the buyer chooses a corresponding order quantity. The buyer’s optimal behavior
is modeled using the Newsvendor model and the supplier’s optimal behavior is modeled as the solution to an optimization problem.
This article explores, for the first time, the impact of general production costs on the supplier’s and buyer’s behavior. It is revealed that
increased supplier’s production efficiency, reflected in lower marginal production costs, increases the buyer’s optimal profit. Therefore,
a buyer would always prefer the more efficient supplier. A higher supplier efficiency, however, may or may not increase the supplier’s
optimal profit, depending on the production function’s fixed costs. The effect of demand uncertainty, as measured by the coefficient
of variation, is shown to increase the optimal order quantity. The uncertainty effect on the firms’ optimal profits is analyzed. Also,
the relationship between production efficiency and the response to demand uncertainty is explored and it is shown that a higher
efficiency level increases the responsiveness and volatility of the supplier’s production quantities. Thus, higher-efficiency suppliers are
better positioned to respond to changes in the demand uncertainty in the supply chain.
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1. Introduction

The framework of price-only contracts is one of the most
common in supply chain interactions between a supplier
and a buyer. In such a contract, the supplier proposes
a fixed wholesale price, and the buyer chooses an order
quantity, as a function of the wholesale price. The supply
chain operates under uncertainty, where customer demand
is modeled as a random variable with a known distribution.
The Newsvendor model is a formalization of the buyer’s
reaction to the contract terms given by the supplier and
the demand uncertainty, which maximizes the buyer’s ex-
pected profit. Lariviere and Porteus (2001) were the first
to study the supplier’s optimal behavior under price-only
contracts. They derived the supplier’s optimal wholesale
price that maximizes the supplier’s profit, assuming an op-
timal behavior on the part of the buyer as modeled by the
Newsvendor problem, under mild conditions.

In spite of the ubiquitous presence of price-only con-
tacts, there has been no study of the effects of production
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efficiencies on the performance of the supply chain. Fur-
thermore, the effect of demand uncertainty in price-only
contracts was only studied under the assumption that the
supplier has a fixed unit production cost (or a linear total
production cost function), independent of the quantity pro-
duced/ordered. We investigate here, for the first time, the
effects of production efficiencies and demand uncertainty
in the presence of general total production cost functions.
Although a quantity discount contract might be chosen
in the context of varying marginal production costs, Al-
tintas et al. (2008) showed that these contracts can am-
plify variability in a bullwhip-type effect, raising questions
about their value. It is therefore more practical to retain
price-only contracts in the face of changing production
functions.

Instead of fixed unit production costs, we introduce total
production cost functions that allow varying unit produc-
tion costs. We study both convex and concave production
functions. Concave production cost functions are impor-
tant as they model economies of scale, where the unit cost
of production decreases with the total quantity produced.
Convex functions arise in situations where a manufactur-
ing plant has a standard capacity, which can be expanded
with overtime at a higher unit cost (i.e., steeper slope). As
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a concrete example, consider a plant that faces demand
stochastically distributed between ℓ and u. This plant can,
under their regular capacity, produce at a unit cost of p up
to a quantity x1; additional capacity, up to a quantity x2,
can be obtained by overtime shifts, whose additional labor
charges result in a higher unit production cost of p1 > p;
finally, even more capacity (up to u) can be achieved by
contracting to an outside firm, at an even higher unit pro-
duction (or procurement) cost of p2 > p1. This scenario
motivates our interest in convex production cost functions.
Still, our results also hold for general non-decreasing pro-
duction functions.

The performance of price-only contracts is studied here
in the context of a simple supply chain consisting of a single
product, with one supplier and one buyer. We investigate
the impact of production efficiency on the optimal decen-
tralized behavior of the supplier and buyer, the effect of
demand uncertainty on the optimal order quantities and
profits of the supplier and buyer, and the interaction of
production efficiency with the uncertainty of the demand
distribution. The behavior of these parameters can be de-
termined if the general production cost function satisfies
a condition on its production elasticity; we show that this
condition is satisfied by all convex production cost func-
tions, and many concave functions. In particular, our con-
tributions are as follows.

1. We identify production efficiency as a critical character-
istic of production cost functions. A more-efficient pro-
duction cost function grows at a slower rate as a function
of production quantity. A surprising result derived here
is that increased supplier production efficiency always
increases the buyer’s optimal profit but does not neces-
sarily increase the supplier’s optimal profit. This implies
that a buying manager is always motivated to seek out
more-efficient suppliers. The impact of efficiency on the
supplier is different: if the supplier can choose a more-
efficient process, associated with a higher fixed cost, the
supplier’s optimal profit increases provided that the in-
crease in fixed cost is bounded by a quantity we derive
here. This analysis guides a supply manager to the de-
termination of whether an investment in increased effi-
ciency is justifiable.

2. The effect of demand uncertainty on the optimal or-
dering quantities in the presence of general production
cost functions is analyzed. As the demand uncertainty
increases, the supplier induces a higher buyer’s order
quantity, unless the marginal production cost decreases
quickly; in particular, if marginal costs decrease more
quickly than marginal revenues, the profit-maximizing
optimality condition (that sets them equal) must occur
at a lower order quantity. We further study the impact
of demand uncertainty on the profits of the supplier and
buyer.

3. We quantify the agility of the optimal supplier’s
wholesale price and buyer’s purchase quantity to the

uncertainty of demand: provided that the production
cost benefits from economies of scale, the more-efficient
supplier manifests higher agility in response to demand
volatility. Thus, higher-efficiency suppliers are better po-
sitioned to respond to changes in the demand uncer-
tainty in the supply chain.

Next, we provide a literature review, surveying the most
relevant research.

1.1. Literature review

Our article studies an extension of the basic price-only con-
tract, by looking at the effect of general production cost
functions on the supplier’s side. The paper most relevant to
our research is Cho and Gerchak (2005), which introduced
production costs for the supplier and operating costs for
the buyer in a similar setting; their focus is on the buy-
ers’s operating costs, whereas our focus is on the supplier’s
production costs. In particular, (i) these authors assume
that the production costs are concave, which we do not,
and (ii) these authors do not differentiate between fixed
and variable supplier production costs, which we focus on
here. Gilbert and Cvsa (2003) also considered the effect
of supplier production costs under a price-only contract.
However, they took a different perspective on this issue,
studying the tradeoff between investing to lower produc-
tion costs and allowing the wholesale price to adjust to
market demands. Donohue (2000) studied the effect of dif-
ferent production modes (an expensive fast one and a cheap
slow one), in a supply chain for fashionable goods; we in-
stead allow for a continuum of production modes. A related
study of capacity, instead of production, can be found in
Van Mieghem (1999), which considered subcontracting as
a mechanism to increase capacity (for both the supplier and
buyer). There have also been other generalizations of this
basic contract, including demand updating (Cachon and
Lariviere, 2005), competing manufacturers (Cachon and
Kok, 2010), effort-dependent demand (Corbett and De-
Croix, 2001), and multiple selling seasons (Anupindi and
Bassok, 1998). For more general information and addi-
tional references, Lariviere (1999) surveyed supply chain
contracts in a stochastic demand environment.

Most related to our article is Lariviere and Porteus
(2001), which was the first to completely analyze the price-
only contract in a supply chain consisting of a single sup-
plier and buyer under demand uncertainty; they modeled
the buyer’s optimal response to the supplier’s wholesale
price by the Newsvendor model, which allowed them to
define the supplier’s profit maximization problem. Under
the (mild) assumption of Increasing Generalized Failure
Rate (IGFR) distributions, the supplier’s optimal whole-
sale price is shown to be unique. However, they only con-
sidered fixed unit production costs, which imply linear
total production cost functions. A portion of our con-
tribution is that we generalize several of the results in
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192 Hochbaum and Wagner

Lariviere and Porteus (2001) to general production cost
functions.

1.2. Overview of the price-only contract

In a price-only contract, the supplier specifies a wholesale
price w, and the buyer decides on the order quantity q. The
buyer then sells the product to a final customer at a unit
revenue of r . Customer demand is a random variable D
with support on [ℓ, u] represented by a distribution F . It is
assumed that F has a finite mean µ and standard deviation
σ , that F−1 exists, and that the density f is positive on [ℓ, u].
Demand uncertainty is measured here as the coefficient of
variation ρ = σ/µ.

The buyer’s optimal behavior is determined via the stan-
dard Newsvendor model, in which the optimal order quan-
tity q∗ is a function of the specified wholesale price w, the
unit-revenue r , and the demand distribution F . More pre-
cisely, the buyer solves maxq EF [r min{D, q} − wq], which
has the solution q∗ = F−1(1 − w/r ); note that this behav-
ior also induces the optimal price curve w(q) = r (1 − F(q))
(the inverse of the Newsvendor solution). The buyer guar-
antees the supplier payment for the quantity purchased.
The supplier therefore does not face any demand uncer-
tainty. All demand uncertainty is absorbed by the buyer,
who has to make the quantity decision to balance the risk
of over-ordering versus under-ordering.

The supplier, knowing that the buyer will react according
to the Newsvendor model, will incorporate this knowledge
into her own profit maximization problem, whose solution
provides the optimal wholesale price. Note that since both
the supplier and buyer are solving their respective opti-
mization models, there is decentralized decision making in
the supply chain. It is well known that this decentraliza-
tion, partially due to the buyer absorbing all demand un-
certainty, results in suboptimal supply chain performance;
indeed, the buyer orders a quantity that is smaller than the
system’s optimal. It is nevertheless shown here, for general
production functions, that as the risk increases, the sup-
plier, at optimality, does absorb some of the risk indirectly
by reducing the wholesale price, which, in turn, induces the
buyer to increase the order quantity.

1.3. Article outline

In Section 2 we introduce the concept of production elastic-
ity and characterize the supplier’s optimal wholesale price
under general production cost functions. We introduce in
Section 3 the concept of relative efficiency of two produc-
tion cost functions and demonstrate the impact of efficiency
on the optimal wholesale price and order quantity. In this
section, we also study the supplier’s and buyer’s profits,
showing the surprising result that the supplier can, but
not necessarily will, benefit from increased production effi-
ciency, whereas the buyer will always benefit. In Section 4
we show how the optimal order quantity and firm profits are

dependent on the uncertainty of the demand distribution,
as measured by the coefficient of variation. In Section 5,
it is demonstrated that the agile response to uncertainty
increases with production efficiency. Concluding remarks
are provided in Section 6.

2. Supplier’s optimal behavior for a general production
cost function

The supplier’s profit maximization problem in a price-
only contract was first considered by Lariviere and Por-
teus (2001), for constant unit production costs and zero fixed
setup costs. They characterized the optimal wholesale price
for the supplier and considered the effects on it of market
size and demand uncertainty. Here we study the supplier’s
profit maximization decision for non-constant unit produc-
tion costs and positive fixed setup costs.

The supplier produces q > 0 units of a single product
with a total production cost of

P(q) = c +
∫ q

0
p(x)dx,

where c ≥ 0 is the setup cost of production and p(q) > 0
is the continuous marginal cost production function. We
assume that c is small enough to allow the supplier to ex-
tract a positive profit from the price-only contract, which
is relatively innocuous as most of our results do not de-
pend on c. Note that this total production cost function
is continuous and nonlinear. We focus here on convex and
concave production cost functions P(q), though our results
can be applied to any functional form. To handle piecewise
linear total production cost functions, we utilize nonlin-
ear approximations; since we only require continuity, this
approximation can be arbitrarily good.

We review here in detail the buyer’s optimization model,
since the buyer’s optimal behavior is used in defining the
supplier’s optimization model. Under a fixed price contract,
the supplier proposes a unit wholesale price w; the buyer,
facing uncertain demand D ∈ [ℓ, u], 0 ≤ ℓ ≤ u ≤ ∞, char-
acterized by a continuous distribution F and unit revenue
r , solves

q(w) = arg max
q

r E[min{q, D}] − wq

= F−1(1 − w/r ),

which gives the expected profit-maximizing order quantity
for the buyer. The supplier, knowing that the buyer will
behave according to this Newsvendor model, will optimize
her profit by appropriately selecting a profit-maximizing
wholesale price w that solves the following problem:

max
w

wq(w) − P(q(w)).
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Production and demand in price-only contracts 193

Using a change of variable that is the inverse of the
buyer’s optimal order quantity

w(q) = r (1 − F(q(w))),

we can equivalently consider the supplier’s problem a profit
maximization over q:

max
q

r (1 − F(q))q − P(q).

To solve the supplier’s problem under a general produc-
tion cost function, we utilize the concepts of a distribution’s
generalized failure rate, and an IGFR.

Definition 1. g(q) = q f (q)/(1 − F(q)) is the generalized fail-
ure rate of a distribution F .

Definition 2. F has an IGFR if g(q) is increasing in q.

In what follows, we assume that the demand distribution
F has an IGFR, which is a mild assumption, as many com-
mon distributions satisfy it (e.g., uniform, gamma, Pareto).
This assumption is popular in the academic literature on
contracting and pricing, as it usually results in an objective
function being unimodal, which gives a unique optimum.
Further details on IGFR distributions, including a more
complete list of IGFR distributions, can be found in Ban-
ciu and Mirchandani (2013). From the practical point of
view, Lariviere and Porteus (2001) showed that the IGFR
g(q) is the reciprocal of the price elasticity of the demand,
defined as the percent decrease in the purchase quantity
q per 1% increase in the price w; therefore, an IGFR is
equivalent to a decreasing price elasticity.

We also introduce the new concept of production elas-
ticity, which is similar to the price elasticity.

Definition 3. The production elasticity is

w

p(q(w))
dp(q(w))

dw
.

For simplicity, we shall also write the production elastic-
ity without the arguments as w/p dp/dw. Note that, in our
context, the buyer’s purchase quantity equals the supplier’s
production quantity. The standard economic definition of
price elasticity, discussed above, can therefore be stated as
the percent decrease in the production quantity q for a 1%
increase in the price w. The production elasticity similarly
measures the impact of a price change, except with respect
to marginal production costs, rather than production quan-
tities; more precisely, the production elasticity is defined
as the percentage increase in the marginal production cost
p(q) per 1% increase in price w. In other words, production
elasticity looks at the impact on production costs, rather
than production quantities, when wholesale prices change.
A critical assumption of most of our results is that the
production elasticity is less than one; this simply implies
that marginal production costs grow slower than wholesale
prices.

Theorem 1. Suppose that F has an IGFR, with a finite
mean and support [ℓ, u] and that production elasticity w/p
dp/dw < 1. Then

1. The supplier’s first-order optimality condition may be
written as

(1 − F(q))(1 − g(q)) = p(q)/r. (1)

2. The supplier’s profit function is unimodal on [0, ∞). If a
solution q∗ to Equation (1) exists, it is unique, must lie in
the interval [ℓ, u], and maximizes the supplier’s profit. If
no solution exists, the supplier’s profit-maximizing sales
quantity is ℓ.

Proof. The supplier’s profit, as a function of q, is $s(q) =
r (1 − F(q))q − P(q); the derivative is

$′
s(q) = r (1 − F(q)) − rq f (q) − p(q).

The first-order condition can be written as
q f (q) + p(q)/r

1 − F(q)
= 1. (2)

We let a = q f (q), b = 1 − F(q), and c = p(q)/r . We know
that a/b = g(q) is increasing since F has an IGFR; taking
derivatives with respect to q, this is equivalent to ba′ ≥ ab′.
We next show that (a + c)/b is strictly increasing, which
implies that if a solution to the first-order condition exists,
it is unique. Taking the derivative, we see that we must
only prove that b(a′ + c′) > b′(a + c); since ba′ ≥ ab′, it is
sufficient to show that bc′ > cb′, which can be written as

(1 − F(q))p′(q) > −p(q) f (q)

⇔ 1
p

dp
dq

> −r f (q)
1

r (1 − F(q))

⇔ 1
p

dp
dq

>
dw

dq
1
w

⇔ w

p

dp
dq
dw
dq

< 1
(

since
dw

dq
< 0

)

⇔ w

p
dp
dw

< 1.

Therefore, if the first-order condition has a solution q∗, it
is unique. Noting that $′

s(u) < 0 and $′
s(q) > 0 for q < ℓ,

we conclude that the profit function is unimodal and the
solution q∗ maximizes the profit.

If (a + c)/b|q=ℓ = ℓf (ℓ) + p(ℓ)/r is greater than one, no
solution to the first-order condition exists, and the deriva-
tive is negative everywhere on [ℓ, u] and positive on [0, ℓ).
Consequently, in this case, the profit function is again uni-
modal and q = ℓ maximizes the profit. !

2.1. Linear and convex production cost functions

We next demonstrate that convex production cost functions
satisfy the production elasticity condition and therefore
Theorem 1 applies to any of these production functions.
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194 Hochbaum and Wagner

Lemma 1. All convex production cost functions have produc-
tion elasticity w/p dp/dw < 1.

Proof. Due to convexity, p′(q) ≥ 0, the production elastic-
ity is

w

p
dp
dw

= w

p
dp/dq
dw/dq

= r (1 − F(q))
p(q)

× p′(q)
−r f (q)

≤ 0,

which is less than one. !

Corollary 1. Suppose that F has an IGFR, with a finite mean
and support [ℓ, u], and that the production cost function is
convex. Then

1. The supplier’s first-order condition may be written as

(1 − F(q))(1 − g(q)) = p(q)/r. (3)

2. The supplier’s profit function is unimodal on [0, ∞). If a
solution q∗ to Equation (3) exists, it is unique, must lie in
the interval [ℓ, u], and maximizes the supplier’s profit. If
no solution exists, the supplier’s profit-maximizing sales
quantity is ℓ.

Since linear production cost functions are a special case
of the general functions we consider, Corollary 1 demon-
strates that the result in Lariviere and Porteus (2001), which
considers only linear production cost functions, is a special
case of our results.

2.2. Concave production cost functions

Considering concave production cost functions with
p′(q) ≤ 0, the production elasticity is

w

p
dp
dw

= w

p
dp/dq
dw/dq

= (1 − F(q))
p(q)

× |p′(q)|
f (q)

,

which may or may not be greater than one. It is not surpris-
ing that the elasticity condition in Theorem 1 does not hold
in general, as a concave production function contributes a
convex expression (cost is subtracted from revenues) to a
maximization problem. However, we next show that for
specific concave production functions, relatively mild con-
ditions on the demand distribution F can be derived to
ensure a unique solution q∗.

Example 1. Consider a concave production cost function
that is logarithmic in form, P(q) = c + p0 ln(q + 1) and
p(q) = p0/(q + 1), for some positive constants c and p0.
The production elasticity of P(q) is

w

p
dp
dw

= w

p
dp/dq
dw/dq

= (1 − F(q))
f (q)(q + 1)

<
1

g(q)
.

Therefore, g(q) ≥ 1 is a sufficient condition to enforce
w/p dp/dw ≤ 1. Since F has an IGFR, g(q) is increasing,
and it is sufficient to have g(ℓ) = ℓf (ℓ) ≥ 1. We next con-
sider some sample demand distributions associated with
the logarithmic production cost function:

1. If F is a uniform distribution, then ℓf (ℓ) ≥ 1 is equiva-
lent to ℓ > u/2.

2. Let F be a pareto distribution with distribution F(q) =
1 − (q0/q)α and f (q) = αqα

0 /qα+1, for q ≥ q0. Note that
a finite mean only exists if α > 1, which we assume to
be true so that we can apply Theorem 1. The gener-
alized failure rate g(q) = α > 1. Therefore, all Pareto
distributions with a finite mean satisfy the production
elasticity condition for a logarithmic production cost
function.

"
Example 2. Consider a concave production cost function
whose concavity has a square root form, P(q) = c + p0

√
q

and p(q) = p0/(2
√

q), for some positive constants c and
p0. The production elasticity of P(q) is

w

p
dp
dw

= w

p
dp/dq
dw/dq

= 1
2g(q)

.

Therefore, g(q) ≥ 1/2 is a sufficient condition to ensure that
a unique profit-maximizing solution exists. Continuing the
discussion of the uniform and Pareto distributions from
Example 1, now associated with the square-root production
cost function, a uniform distribution will allow a unique
solution q∗ if ℓ > u/3 and all Pareto distributions with
finite means will result in a unique solution q∗. "

Therefore, although our results cannot accommodate
any concave production cost function, for specific con-
cave production cost functions, we can derive conditions
on the demand distribution F that allow a unique profit-
maximizing wholesale price to exist.

3. Efficiency and its impact on supply chain behavior

For the following, we assume that the demand distribution
F and the production cost function P(q) fall within the
confines of Theorem 1. In particular:

Assumption 1. The distribution F has a finite mean and an
IGFR.

Assumption 2. The combination of the distribution F and
production cost function P(q) induce a production elastic-
ity less than one.

The idea of relative efficiency of two production func-
tions is a new, yet intuitive, concept that measures a
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Production and demand in price-only contracts 195

supplier’s ability to monetize production efficiency. In com-
paring the marginal production cost rates of two functions,
the function with the smaller marginal cost rate is deemed
more efficient. Note that the relative efficiency comparison
of production cost functions does not require the functions
to be either convex or concave.

Definition 4. A production function P1(q) = c1 +∫ q
0 p1(x)dx is said to be more efficient than production

function P2(q) = c2 +
∫ q

0 p2(x)dx if p1(q) < p2(q) for all
q ∈ [ℓ, u], regardless of the values of c1 and c2.

3.1. The impact of efficiency on wholesale prices and order
quantities

This section provides an analysis of the supplier’s optimal
wholesale price and the buyer’s optimal order quantity’s
dependence on the production efficiency. The next theorem
demonstrates the rather intuitive result that as the produc-
tion process becomes more efficient, the supplier desires
a higher optimal buyer order quantity q and hence offers
a lower wholesale price. Consequently, as the production
process becomes more efficient, the supplier benefits as well
as the buyer. The theorem holds for any pair of production
cost functions that satisfy the production elasticity con-
dition in Assumption 2 and a demand distribution that
satisfies the IGFR of Assumption 1.

Theorem 2. For a given distribution of demand F, and a pair
of production cost functions P1(q) and P2(q), with P1(q) more
efficient than P2(q):

1. The optimal ordering quantity for P1(q) is higher than the
optimal ordering quantity for P2(q).

2. The optimal wholesale price for P1(q) is lower than the
optimal wholesale price for P2(q).

Proof.
Part 1: The left-hand side of the first-order condi-
tion (2) for a generic production function P(q) is
(q f (q) + p(q)/r )/(1 − F(q)). This expression is increasing
faster in q for P2(q) than for P1(q), by the definition of effi-
ciency. Therefore, the optimal solution q∗

1 will be found at
a larger q for P1(q) than the optimal solution q∗

2 for P2(q).
Part 2: Since w = r (1 − F(q)), the optimal value of the
wholesale price w∗

1 for P1(q) is lower than w∗
2, the optimal

wholesale price for P2(q). !
Note that only marginal costs affect terms of trade be-

tween the supplier and buyer and that fixed costs do not
play a role. This result is relevant in practice as it demon-
strates that only production efficiency, and not fixed costs,
is relevant for the supplier’s pricing and the buyer’s order-
ing decisions (although we later see that fixed costs impact
the supplier’s profit). The intuition is that fixed costs are
sunk and do not influence any operational decisions. Note

that our theorems are based on a number of assumptions:
namely, (i) IGFR demand distribution; (ii) production elas-
ticity w/p dp/dw < 1; (iii) unlimited production capacity;
and (iv) the supplier is required to produce.

Note that Theorem 2 only depends on the relative ef-
ficiency of two production cost functions and not their
absolute values. Therefore, it is possible that P1 is more effi-
cient than P2, but P1(q) > P2(q) for all q ∈ [ℓ, u]. Therefore,
production efficiency and production costs are drastically
different concepts, especially in terms of how they affect
the supplier’s optimal wholesale price and buyer’s optimal
order quantity. Indeed, efficiency alone affects the deter-
mination of these values. In the next two subsections, we
study how production efficiency and total costs affect the
profits of the buyer and supplier.

3.2. The impact of production efficiency on the buyer’s profit

We investigate here the impact of increased supplier’s pro-
duction efficiency on the buyer’s profit and show that his
profits always increase.

Theorem 3. Increased production efficiency always increases
the buyer’s optimal profit.

Proof. Let D be the random variable representing demand
and f (x) its density. Let the buyer’s maximized profit, as
a function of the wholesale price w and the optimal order
quantity q(w) = F−1(1 − w/r ), be

$(w) = r E[min{q(w), D}] − wq(w)

= r

(∫ q(w)

0
xf (x)dx +

∫ ∞

q(w)
q(w) f (x)dx

)

− wq(w).

Using the Leibniz integral rule, the derivative of the
buyer’s optimal profit is

∂$(w)
∂w

= r
(

∂q(w)
∂w

q(w) f (q(w)) − ∂q(w)
∂w

q(w) f (q(w))

+
∫ ∞

q(w)

∂q(w)
∂w

f (x)dx
)

− w
∂q(w)
∂w

− q(w)

= r
∂q(w)
∂w

(1 − F(q(w))) − w
∂q(w)
∂w

− q(w).

Substituting F(q(w)) = 1 − w/r , leads to

∂$(w)
∂w

= w
∂q(w)
∂w

− w
∂q(w)
∂w

− q(w) = −q(w) < 0.

Since, from Theorem 2, increased production effi-
ciency drives down the optimal wholesale price w, and
∂$(w)/∂w < 0, the buyer’s optimal profit increases with
increased efficiency. Note that the increased production ef-
ficiency drives down the optimal wholesale price irrespec-
tive of the fixed production costs (Corollary 1); therefore,
the buyer’s increase in profit is independent of the fixed
production costs. !
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196 Hochbaum and Wagner

An important managerial implication of Theorem 3 is
that a buyer is motivated to seek out more-efficient sup-
pliers, as the dynamics of their interaction always allow
the buyer to benefit monetarily from increased supplier’s
production efficiency.

3.3. The impact of production efficiency on the supplier’s
profit

In this section we study how the supplier’s profit is affected
by increasing production efficiency. We again utilize the
following notation for two production cost functions:

P1(q) = c1 +
∫ q

0
p1(x)dx and

P2(q) = c2 +
∫ q

0
p2(x)dx,

where p1(q) < p2(q) for all q ∈ [ℓ, u]; in other words, P1(q)
is more efficient than P2(q). The fixed costs c1 and c2 can
take any values, allowing us to differentiate between the
effect of production efficiency and total costs. The next
theorems show how the supplier’s profit depends on these
characteristics.

Theorem 4. If c1 = c2, then increased supplier production
efficiency increases the supplier’s optimal profit.

Proof. Let P1(q) = c +
∫ q

0 p1(x)dx and P2(q) = c +∫ q
0 p2(x)dx be two production cost functions with identical

fixed costs (c1 = c2 = c), where the former is more efficient;
i.e., p1(q) < p2(q). Consequently, P1(q) < P2(q), for all
q. Let $1(q) = w(q)q − P1(q) and $2(q) = w(q)q − P2(q)
denote the supplier’s profit functions under the first and
second cost functions, respectively. Clearly, $1(q) > $2(q),
for all q. Let q∗

1 and q∗
2 denote the optimal ordering quan-

tities under each production function, respectively; from
Theorem 2, we know that q∗

1 > q∗
2 . Therefore, we have that

$2(q∗
2 ) < $1(q∗

2 )
< $1(q∗

1 ), (since q∗
1 maximizes $1(q))

which shows that the supplier’s profit strictly increases with
higher production efficiency, assuming zero fixed produc-
tion costs. !

For convenience in analyzing the case with differing fixed
costs, we provide the following definition, where $1(q∗

1 ) and
$2(q∗

2 ) are defined in the proof of Theorem 4.

Definition 5. Let ' = $1(q∗
1 ) − $2(q∗

2 ) > 0 denote the
profit increment, due to higher efficiency, under the identi-
cal fixed cost case of Theorem 4.

Theorem 5.

1. If c1 ≤ c2, then increased supplier production efficiency
increases the supplier’s optimal profit.

2. Otherwise,

(i) If c1 − c2 < ', then increased supplier production ef-
ficiency increases the supplier’s profit.

(ii) If c1 − c2 > ', then increased supplier production ef-
ficiency decreases the supplier’s profit.

(iii) If c1 − c2 = ', then increased supplier production ef-
ficiency maintains the supplier’s profit.

Proof. Consider the production cost functions with posi-
tive fixed costs c1 and c2, namely, P1(q) = c1 +

∫ q
0 p1(x)dx

and P2(q) = c2 +
∫ q

0 p2(x)dx. Improved efficiency—i.e.,
p1(q) < p2(q), ∀q—increases the supplier’s profit if and
only if

w(q∗
1 )q∗

1 − c1 −
∫ q∗

1

0
p1(x)dx >w(q∗

2 )q∗
2 − c2 −

∫ q∗
2

0
p2(x)dx.

Since q∗
1 , q∗

2 and ' do not depend on c1 and c2 (cf.
Theorem 2), it follows that this is equivalent to c1 − c2 < '.
If increased efficiency requires a higher fixed cost, c1 > c2,
then there is a finite bound ' on the increase c1 − c2 that
allows an improvement in the supplier’s profit. !

Theorems 4 and 5 show that an improved production
efficiency increases the supplier’s profit, except for the
case where an increased efficiency is associated with high
fixed costs. These theorems allow a supplier to determine
whether an investment (increased fixed cost) in increased
efficiency (reduced marginal cost) is justifiable, by looking
at the resulting change in profit.

Since the buyer always benefits from increased supplier
efficiency, this makes the more-efficient suppliers in the
market more competitive compared with the less-efficient
suppliers. Furthermore, Theorems 3 and 5 show that, as
long as the increased efficiency is associated with a limited
increase in fixed production costs, both firms will benefit
from increased supplier efficiency.

3.4. The impact of production efficiency on the supply chain
profit

In this section we show that the decentralized supply chain’s
profit is increasing in the supplier’s production efficiency.

Theorem 6. The decentralized supply chain’s optimal profit is
increasing in the supplier’s production efficiency.

Proof. Let $SC(q) = r min{q, D} − P(q) = r (
∫ q

0 xf (x)
dx +

∫∞
q q f (x)dx) − P(q) denote the supply chain’s

expected profit. The derivative:

∂$SC(q)
∂q

= r
(

q f (q) − q f (q) +
∫ ∞

q
q f (x)dx

)

− p(q) = r (1 − F(q)) − p(q).

From the first-order optimality condition (2) in the
proof of Theorem 1, we have that r (1 − F(q)) = rq f (q) +
p(q), which implies that ∂$SC(q)/∂q = rq f (q) > 0. Since
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Production and demand in price-only contracts 197

Theorem 2 showed that increased production efficiency re-
sults in a higher order quantity, we conclude that higher
efficiency results in higher supply chain profits. !

Theorem 6 shows that, regardless of how the individual
firm profits behave, the total supply chain profit always in-
creases when the supplier’s production efficiency increases.
However, Theorem 5, which shows that fixed production
costs can reduce the supplier’s profit despite increased ef-
ficiency (case 2, part ii), implies that a supplier might not
be willing to invest in more-efficient production. Theorem
6 shows that a “win-win” scenario can still be achieved.
For instance, a two-part tariff, where the buyer provides
the supplier with a lump sum payment, in addition to the
revenues from the price-only contract, can motivate the
supplier to invest in a higher production efficiency, thus in-
creasing the entire supply chain profit and increasing both
firms’ profits.

4. Demand uncertainty and its impact on supply chain
behavior

In this section, we study the effect of demand uncertainty
on the firm’s optimal decisions and resulting profits, in
the presence of general production cost functions. We first
partially characterize the effect of uncertainty on the opti-
mal supplier and buyer’s profits. We then demonstrate that
increasing demand uncertainty induces a higher optimal
ordering quantity from the buyer, which generalizes the
variability results of Lariviere and Porteus (2001). To prove
our results, we define a class of demand random variables
Di that normalize to a given canonical random variable Z.

Definition 6. A random variable Z is said to be canonical if
its mean µZ = 0 and its standard deviation σZ = 1.

Definition 7. The class of demand random variables gener-
ated by Z with distribution H(z) and density h(z), DZ =
{Di : i = 1, 2, . . .}, is the collection of all random vari-
ables Di with mean µi ∈ R, standard deviation σi > 0,
and distribution Fi such that (Di − µi )/σi = Zand Fi (x) =
H(x − µi )/σi for all i .

Example 3. For Z ∼ N(0, 1), a standard normal random
variable, with mean equal to zero and standard deviation
equal to one, all normal random variables are the class
generated by Z. "

4.1. The impact of demand uncertainty on the supplier’s
profit

Recall that the supplier’s profit can be written as a func-
tion of the order quantity q, since the buyer applies
the Newsvendor solution q(w) = F−1(1 − w/r ) ⇔ w(q) =
r (1 − F(q)):

$s(q) = w(q)q − P(q) = r (1 − F(q))q − P(q).

The following theorem may be viewed as a standard
Newsvendor result. However, it is new in the sense that
it focuses on the profit function, rather than the optimal
order quantities.

Theorem 7. For a given production cost function P(q), canon-
ical random variable Z generating DZ, D ∈ DZ, and optimal
ordering quantity q∗ = F−1(1 − w∗/r ), then

1. The supplier’s profit $s(q∗) is increasing in the mean de-
mand µ.

2. If q∗ > µ, the supplier’s profit $s(q∗) is increasing in the
standard deviation of demand σ .

3. If q∗ < µ, the supplier’s profit $s(q∗) is decreasing in the
standard deviation of demand σ .

This theorem complements the well-known Newsvendor
result that states that the order quantity increases with the
variance when the critical ratio is greater than 0.5 and oth-
erwise decreases with the variance (for distributions having
the mean equal to the mode).

Proof. We use the change of variable z = (q∗ − µ)/σ and,
noting that F(q∗) = H((q∗ − µ)/σ ), deduce that q∗ = µ +
σ H−1(1 − w∗/r ), since q∗ = F−1(1 − w∗/r ). The supplier’s
profit function can now be written as

$s(q∗) = w(q∗)q∗ − P(q∗)
= r (1 − F(q∗))q∗ − P(q∗)

= r
(

1 − H
(

q∗ − µ

σ

))
q∗ − P(q∗).

Fixing σ and taking the derivative of $s(q∗) with respect
to µ, we obtain

∂$s(q∗)
∂µ

= rq∗

σ
h
(

q∗ − µ

σ

)
> 0.

Similarly, fixing µ and taking the derivative of $s(q∗) with
respect to σ , we obtain

∂$s(q∗)
∂σ

= rh
(

q∗ − µ

σ

)(
q∗ − µ

σ 2

)
q∗.

This completes the proof. !

Theorem 7 allows us to partially characterize the depen-
dence of the supplier’s profit on the coefficient of variation
ρ. For example, for any q, fixing σ and increasing µ (i.e., de-
creasing ρ) will move the profit function up, which implies
that the optimal profit also increases. Similarly, fixing µ and
increasing σ (i.e., increasing ρ) will move the profit function
down for all q < µ and will move the profit function up for
q > µ. If the optimal order quantity q(w) = F−1(1 − w/r )
is greater than µ, the optimal profit increases. However,
if q(w) < µ, then we are unable to ascertain whether the
optimal profit increases or decreases.
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198 Hochbaum and Wagner

4.2. The impact of demand uncertainty on the buyer’s profit

We next show that the buyer’s optimal profit usually de-
creases when the coefficient of variation increases; similar
results for linear production costs were shown in Lariv-
iere and Porteus (2001). We include it here to complement
Theorem 7 on the effect of uncertainty on the supplier’s
profit.

Theorem 8. For a given production cost function P(q) and
canonical random variable Z generating DZ, if D1, D2 ∈ DZ,
then

1. If µ1 = µ2 and σ1 < σ2, then the buyer’s expected profit
is greater under D1.

2. If σ1 = σ2 and µ1 < µ2, then the buyer’s expected profit
is greater under D2.

Proof. Let D ∈ DZ be the random variable representing
demand and f (x) its density. Let the buyer’s maximized
expected profit, as a function of the optimal order quantity
q∗ and the optimal wholesale price w(q∗) = r (1 − F(q∗)),
be

$b(q∗) = r E[min{q∗, D}] − w(q∗)q∗.

Using the definition of an expectation, we get

$b(q∗)

= r
(∫ q∗

−∞
xf (x)dx +

∫ ∞

q∗
q∗ f (x)dx

)
− w(q∗)q∗

= r
(∫ q∗

−∞
xf (x)dx +

∫ ∞

q∗
q∗ f (x)dx − (1 − F(q∗))q∗

)

= r
(∫ q∗

−∞
xf (x)dx

)
,

where the second equality is from w(q∗) = r (1 − F(q∗)).
We next use the change of variable z = (x − µ)/σ and,

noting that F(q∗) = H((q∗ − µ)/σ ), deduce that q∗ = µ +
σ H−1(1 − w/r ), since q∗ = F−1(1 − w/r ). The buyer’s op-
timal profit can now be written as

$b(q∗) = r
∫ (q∗−µ)/σ

−∞
(µ + σ z)h(z)dz

= r
∫ H−1(1−w/r )

−∞
(µ + σ z)h(z)dz.

Finally, applying the Leibniz integral rule, we can calculate
the derivatives

∂$b(q∗)
∂µ

= r
∫ H−1(1−w/r )

−∞
h(z)dz > 0,

and

∂$b(q∗)
∂σ

= r
∫ H−1(1−w/r )

−∞
zh(z)dz

= r
∫ H−1(1−w/r )

0
zh(z)dz + r

∫ 0

−∞
zh(z)dz

= r
∫ H−1(1−w/r )

0
zh(z)dz − r

∫ ∞

0
zh(z)dz

< 0.

Therefore, fixing σ and decreasing µ (i.e., increasing ρ)
results in a decrease in the buyer’s optimal profit. Alter-
natively, fixing µ and increasing σ (i.e., increasing ρ) also
results in an decrease in the optimal profit. !

4.3. The effect of demand uncertainty on the supplier’s
behavior

Here, we study the effect of demand uncertainty, quanti-
fied via the coefficient of variation of the demand distribu-
tion ρ = σ/µ, on the optimal order quantity and wholesale
price in Theorem 1. We require the following definition of
stochastic ordering.

Definition 8. The random variable D2 with distribution F2
is stochastically larger than random variable D1 with dis-
tribution F1 if F2(q) ≤ F1(q), for all q.

The next theorem proves that, as the buyer’s demand un-
certainty increases, the supplier induces a higher ordering
quantity from the buyer.

Theorem 9. For a given production cost function P(q) and
canonical random variable Z generating DZ, if D1, D2 ∈ DZ
with D2 stochastically larger than D1 and ρ2 > ρ1, then

1. If p(q) is increasing or decreasing slower than marginal
revenues, then q∗

2 > q∗
1 .

2. If p(q) is decreasing faster than marginal revenues, then
q∗

2 < q∗
1 .

Proof. We adopt and expand on the proof of Theorem
3 in Lariviere and Porteus (2001). Let Fi , i = 1, 2 be the
distributions of Di with means µi , standard deviations σi ,
and densities fi , where ρ2 > ρ1. Let S(q) = F−1

2 (F1(q))/q.
We claim that the derivative ∂S(q)/∂q is positive; to

see this, we use the identities Fi (q) = H(q − µi )/σi for
q ∈ [ℓ, u] and F−1

i (α) = µi + σi H−1(α) for α ∈ [0, 1], to
write

S(q) =
(

µ2 + σ2 H−1
(

H
(

q − µ1

σ1

)))/
q

= σ2

(
1
σ1

+ 1
q

(
1
ρ2

− 1
ρ1

))
,

which gives

∂S(q)
∂q

= σ2(ρ2 − ρ1)
ρ2ρ1q2 > 0.
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Production and demand in price-only contracts 199

We next express ∂S(q)/∂q differently, by taking the deriva-
tive without referring to the canonical distribution H:

∂S(q)
∂q

=
∂ F−1

2 (F1(q))/q
∂q

=
q f1(q)/ f2(F−1

2 (F1(q))) − F−1
2 (F1(q))

q2 . (4)

Since we had previously determined ∂S(q)/∂q > 0, we
know the numerator of Equation (4) is positive, which can
be rearranged to give

q f1(q) > F−1
2 (F1(q)) f2(F−1

2 (F1(q))). (5)

Dividing both sides of Inequality (5) by 1 − F1(q) = 1 −
F2(F−1

2 (F1(q))), we obtain

q f1(q)
1 − F1(q)

>
F−1

2 (F1(q)) f2(F−1
2 (F1(q)))

1 − F2(F−1
2 (F1(q)))

. (6)

Let α = F1(q); since q ∈ [ℓ, u], α ∈ [0, 1]. Inequality (6)
can then be rewritten as

g1
(
F−1

1 (α)
)

> g2
(
F−1

2 (α)
)
, ∀α ∈ [0, 1]. (7)

Since D2 is stochastically larger than D1 (i.e., F2(q) ≤
F1(q) ∀q ∈ [ℓ, u]), then F−1

1 (α) ≤ F−1
2 (α) ∀α ∈ [0, 1]. Due

to the assumption of IGFR, g2 is increasing and
g2(F−1

1 (α)) ≤ g2(F−1
2 (α)), which, combined with Inequal-

ity (7) gives g1(F−1
1 (α)) > g2(F−1

1 (α)). Substituting q =
F−1

1 (α) gives g1(q) > g2(q) for all q ∈ [ℓ, u]. Since F1(q) ≥
F2(q) for all q ∈ [ℓ, u], we obtain the inequality

(1 − F1(q))(1 − g1(q)) < (1 − F2(q))(1 − g2(q)),
∀q ∈ [ℓ, u]. (8)

We can write the optimality condition of Theorem 1,
namely, Equation (1), as

(1 − F(q))(1 − g(q))︸ ︷︷ ︸
LHS(q)

= p(q)/r︸ ︷︷ ︸
RHS(q)

. (9)

We have shown in Equation (8) that for ρ2 > ρ1 and all
q ∈ [ℓ, u], LHS(q, ρ1) < LHS(q, ρ2). Therefore, the func-
tion LHS(q, ρ) is increasing in ρ for all q ∈ [ℓ, u] and
is decreasing in q for a given ρ. In contrast, RHS(q)
is independent of F and therefore independent of ρ.
Let q∗

i be the optimal solution when Di is the demand
random variable: LHS(q∗

i , ρi ) = RHS(q∗
i ). Consequently,

LHS(q∗
1 , ρ2) > LHS(q∗

1 , ρ1) = RHS(q∗
1 ). If RHS(q) is in-

creasing, then q∗
2 > q∗

1 . If RHS(q) is decreasing, but more
slowly than LHS(q), then q∗

2 > q∗
1 . Finally, if RHS(q) is

decreasing faster than LHS(q), then q∗
2 < q∗

1 . Figure 1
demonstrates this argument graphically, for the special case
where the functions LHS(q, ρ) and RHS(q) are linear, and
RHS(q) increasing. !

Fig. 1. Illustration of proof of Theorem 9 for ρ2 > ρ1.

5. The interaction of production efficiency and demand
uncertainty

We consider here the interaction of production efficiency
and demand uncertainty. It is demonstrated here that as
efficiency increases, the agility of the supplier’s response
increases, as reflected in more-pronounced changes in the
production quantities. In order to formalize this, we intro-
duce a new concept of agility. Let q∗(ρ, P(q)) denote the
optimal order quantity for a demand distribution with co-
efficient of variation ρ and production cost function P(q).

Definition 9. For a given production function P(q), a canon-
ical random variable Z, and the class of random variables
DZ generated from Z, the quantity agility of uncertainty is

q∗(ρ2, P(q)) − q∗(ρ1, P(q)),

for D1, D2 ∈ DH with ρ1 < ρ2.

Recall from Definition 4 in Section 3 that increased effi-
ciency is associated with a smaller marginal production cost
function p(q). The next theorem shows that the uncertainty
agility rises as the production efficiency rises. Subsequently,
after the proof of Theorem 10, we argue that this increased
agility is beneficial for the supply chain as it emphasizes the
benefit of increased production efficiency.

Theorem 10. Under the following conditions:

1. D1, D2 ∈ DZ, generated by a canonical random variable
Z;

2. ρ2 > ρ1;
3. densities f2(q) ≤ f1(q) for all q, implying that D2 is

stochastically larger than D1;
4. g1(q) increasing faster than g2(q);
5. increasing concave marginal production cost functions,

as the supplier’s production efficiency increases, the quan-
tity agility of uncertainty also increases; i.e., q∗(ρ2, P(q)) −
q∗(ρ1, P(q)) is non-decreasing in the efficiency of P(q).
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200 Hochbaum and Wagner

Fig. 2. Illustration of the geometry of the proof of Theorem 10.

Proof. Let P2(q) be more efficient than P1(q). Continuing
the logic given in Equation (9), Fig. 2 illustrates the func-
tions LHS(q) for the two coefficients of variation ρ1 < ρ2
and the functions RHS(q) for the two different production
functions P1(q) and P2(q). Let point C be the intersection of
RHS(q, P1(q)) and LHS(q, ρ1) and the value of q at C is q11
(with the first subscript referring to the LHS function and
the second subscript to the RHS function). Similarly, point
D is the intersection of RHS(q, P2(q)) and LHS(q, ρ1)
with q value equal to q12 . Point E is the intersection of
RHS(q, P1(q)) and LHS(q, ρ2), at q = q21, and point A′

is the intersection of RHS(q, P2(q)) and LHS(q, ρ2) with
q = q22.

Let point B = (q11, RHS(q11, P2(q11)) be the pro-
jection of point C onto RHS(q, P2(q)). Let C′ =
(q12, LHS(q12, ρ2)) be the projection of point D onto
LHS(q, ρ2). Let the line segment connecting A′ and B be
denoted by [A′, B]. Point B′ is the projection of D onto this
line segment (for q = q12). Lastly, point A is the projection
of E onto the line segment [A′, B] at q = q21. The statement
of the theorem is equivalent to showing that the horizontal
distance h′ between q22 and q12 is greater than the horizon-
tal distance h between q21 and q11. The line segment [A, F ]
is the height of the triangle ABC of length h and [A′, F ′] is
the height of the triangle A′ B′C′ of length h′.

We display in Fig. 3 the relevant geometry of Fig. 2:
Points A, B, and C are connected with line segments to
create one triangle ABC, and points A′, B′, and C′ are
connected with line segments to create a second triangle
A′ B′C′. Let a = |BC|, b = |AC|, and c = |AB| denote the
lengths of the sides of triangle ABC; a′, b′, and c′ are defined
similarly.

Since D2 is stochastically larger than D1, Theorem 9
tells us that LHS(q, ρ2) − LHS(q, ρ1) > 0 for all q ∈ [ℓ, u].
Recall that LHS(q, ρi ) = (1 − Fi (q))(1 − gi (q)), with Fi as

Fig. 3. Detail of the geometry of the proof of Theorem 10.

the distribution of Di . Since g1(q) is increasing faster than
g2(q) and F1(q) is increasing faster than F2(q) (due to the
assumption that f1(q) ≥ f2(q) for all q), we conclude that
LHS(q, ρ1) is decreasing faster than LHS(q, ρ2), which im-
plies that

90◦ ≥ γ ′ > γ . (10)

Note that γ ′ ≤ 90◦ since in the proof of Theorem 9,
LHS(q, ρ) is decreasing in q for any ρ. Since γ < γ ′ and
the line segments [B, C] and [B′, C′] are vertical, it follows
that

α′ < α. (11)

We next argue that a′ > a. Since RHS(q, P1(q)) is increas-
ing faster than RHS(q, P2(q)), due to the greater efficiency
of P2, the difference RHS(q, P1(q)) − RHS(q, P2(q)) is in-
creasing, and we conclude that |C′ D| is larger than |CB|.
Furthermore, since RHS(q, P2(q)) is concave, due to the
concavity of p2(q), |B′C′| is larger than |C′ D|, and we con-
clude that the length of [C, B] is at most that of [C′, B′] and
thus

a < a′. (12)

Note that the triangles AF B and A′F ′ B′ are similar
right triangles with angle α1 = 90◦ − β = α′

1. We prove
next that a1 = |BF | < a′

1 = |B′F ′|. Since the triangles are
similar it will follow that h < h′ as stated. For a contra-
diction, suppose not, and a′

1 ≤ a1; then c′ ≤ c since the
triangles are similar. Applying the Law of Sines to triangle
ABC, we get c/ sin(γ ) = b/ sin(β), or c = bsin(γ )/sin(β).
Similarly, for A′ B′C′, we get c′ = b′sin(γ ′)/sin(β). Since
c′ ≤ c, 1 ≥ c′/c = b′ · sin(γ ′)/b · sin(γ ), and therefore b′ ×
sin(γ ′) ≤ b × sin(γ ). This, with Equation (10), and γ and
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γ ′ are both less than 90◦, implies that

b′

b
≤ sin(γ )

sin(γ ′)
< 1.

From first principles, a2 = b sin(α2) and a′
2 = b′ sin(α′

2).
The fact that α1 = α′

1 and Equation (11) imply that α2 >
α′

2; since triangle ACF is a right triangle, α2 < 90◦ and
sin(α′

2)/sin(α2) < 1. Therefore,

a′
2

a2
= b′

b
×

sin(α′
2)

sin(α2)
< 1.

Therefore, a′
2 < a2 and with the assumption that a′

1 ≤ a1 we
get a′ = a′

1 + a′
2 < a1 + a2 = a, which contradicts Equa-

tion (12). Therefore, a1 < a′
1 and since the triangles AF B

and A′F ′ B′ are similar, it follows that all sides of A′F ′ B′

are larger than the respective sides of AF B. In particular,
h′ > h, as stated. !

Remark 1. Note that the less-efficient supplier, with
marginal production cost function p1(q), is not required
to have p1(q) concave in order for the statement of Theo-
rem 10 to hold. Furthermore, the marginal production cost
functions are not required to be increasing for the theorem
to hold; if they are decreasing, but slower than marginal
revenues, then the theorem still holds (c.f., Theorem 9).

Theorem 10 allows us to conclude that, under the stated
conditions, the effect of decreased uncertainty is more pro-
nounced for efficient production functions than for ineffi-
cient ones. In other words, the inefficient production func-
tions force lower ordering quantities by the buyer, which
are less affected by uncertainty. In contrast, suppliers with
more-efficient production are better able to respond effec-
tively to increased uncertainty in a supply chain.

6. Conclusions

In this article we investigate, for the first time, the effect of
general production cost functions on the behavior of a sup-
plier and a buyer, who interact via a price-only contract. We
show the surprising result that a buyer will always benefit
from increased supplier production efficiency. We demon-
strate that, as long as fixed production costs do not grow
excessively, the supplier benefits from increased efficiency
as well. We analyze the impact of increased demand un-
certainty on order quantities and the profit implications
for the parties involved. The interaction of demand uncer-
tainty and production efficiency is also studied, and it is
shown that increased production efficiency results in the
optimal contract purchasing quantities being more sensi-
tive to risk. This new concept of risk agility allows us to
conclude that increased production efficiency allows a firm
to be more responsive to changes in risk.

Future directions of this work could consider an exten-
sion of our price-only contracts studied here to other sup-

ply chain contracts, such as buy-back and revenue-sharing
contracts, as per the effect of general production cost func-
tions, corresponding efficiency, and uncertainty agility. It
would also be interesting to investigate how general pro-
duction cost functions affect the entire supply chain, in
particular the system inefficiency as represented by double
marginalization.
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