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a b s t r a c t

We introduce and study the range contract, which allows a buyer to procure from a supplier at a prescribed

price any amount within a specified range. In return, the supplier is compensated up front for the width of the

range with a range fee. This fee can be viewed as the buyer trading monetary value for reduced uncertainty. The

range contract generalizes and unifies many common contracts, such as fixed-price, JIT, option, and quantity-

flexibility contracts. The parameters that maximize the expected profit of the centralized supply chain are

derived here and are shown to crucially depend on production flexibility. We also study here the buyer’s

expected profit-maximizing range endpoints as a function of the pricing parameters of the contract. Using

the buyer’s optimal range, we demonstrate how the supplier can set the contract’s pricing parameters so as

to maximize the supplier’s expected profit for a uniform distribution of demand. We provide computational

evidence, for uniformly distributed demand, that the range contract allows the optimal decentralized supply

chain to attain significant reductions in standard deviation of profit in exchange for moderate reductions

in expected value of profit. We further demonstrate computationally that both the buyer and supplier can

benefit simultaneously, attaining higher risk-adjusted profits than the centralized supply chain.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

We introduce the range contract, which allows a buyer and sup-

plier to share demand risk in a new way. In a range contract a range

is available to the buyer who can order any quantity in the range, but

pays in advance for the flexibility offered, as measured by the width

of the range interval. The width of the range and the payment for it

compensates the supplier for her flexibility. Many common contracts,

such as fixed-price, just-in-time, option, quantity-flexibility as well

as combinations of contracts (e.g., pairing of fixed-price and option

contracts) can be cast as range contracts. However, the range contract

has properties that are not apparent in the other contracts.

A unique characteristic of the range contract is that, despite risk-

neutral firm decision making, risk reduction properties are achieved.

We provide computational evidence, for uniformly distributed de-

mand, that the range contract allows the optimal decentralized supply

chain to attain significant reductions in standard deviation of profit

in exchange for moderate reductions in expected value of profit. For

example, a decentralized supply chain can attain 94.5 percent of the

centralized supply chain’s expected profit, yet only 80 percent of its

standard deviation of profit. We utilize the notion of an optimal risk-
∗ Corresponding author. Tel.: +1 6172566232.

E-mail addresses: hochbaum@ieor.berkeley.edu (D. S. Hochbaum),
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djusted profit, which is the maximized expected profit of a firm di-

ided by its corresponding standard deviation. We demonstrate that

he range contract makes it possible that both the supplier and buyer

ave higher optimal risk-adjusted profits than the centralized sup-

ly chain. Therefore, the range contract allows a “win-win” situation

here both firms benefit from decentralization. Since the centralized

upply chain can always mimic a decentralized supply chain, a man-

gerial implication of this computational evidence is that the range

ontract can be used by those centralized supply chains where the

eduction of risk is a priority.

The form of the range contract proposed here is motivated by a

revalent high-tech market environment characterized by inflexible

roduction and short-lifecycle products. Due to the short lifecycles,

emand learning is difficult, resulting in poor quality forecasts with

ubstantial variability. Inflexible production diminishes a manufac-

urer’s (buyer’s) ability to respond to demand surprises, resulting in

ost sales and loss of any first mover advantage.

Range contracts are especially relevant to the semiconductor in-

ustry, where capacity is expensive and excess capacity is a luxury.

he range contract is a generalization of an option contract, and op-

ion contracts have been applied successfully in the semiconductor

ndustry. For example, a recent Bloomberg Businessweek article, King

2012) reported that Intel has saved $125 million during 2008–2012

ue to option contracts. As another example, according to executives

t AMD’s Memory Group, “supply agreements are important to chip

akers because they guarantee that the billions of dollars invested

http://dx.doi.org/10.1016/j.ejor.2014.12.042
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n new production facilities will actually be used.” (Associated Press

001). Range contracts can be interpreted as the next generation of

ption contracts in this industry. Therefore, the motivation to apply

ange contracts is already present at supplier and buyer firms in high

echnology industries.

Related industries, where capacity is expensive and limited, can

lso benefit from the range contract, especially in the context of new

roducts with volatile demand. For example, Apple experienced a

hortage of screens for the iPod Touch shortly after launching the

roduct in autumn 2007. In this case, the manufacturer did not antic-

pate the enthusiastic response to the product and did not contract for

sufficient quantity of touch-screens. To make matters worse, there

ere no alternative suppliers that had production capacity and could

rovide the additional units, regardless of the price. Consequently,

pple experienced substantial backlogs, likely loss of goodwill, and

oss of sales (although made up since then). In this case, the manu-

acturer absorbed the total risk of the demand variability, with severe

epercussions. In February 2010 it appeared that for its new iPad, Ap-

le had contracted for all the available supplies of 9.7 inch screens,

reating a shortage of such screens in the market for its competitors,

s reported by another Bloomberg Businessweek article (Guglielmo

Hesseldahl, 2010).

The range contract studied here originated in the first author’s con-

ulting project for a large server manufacturer in Silicon Valley. That

anufacturer (buyer) procured supplies from semiconductor manu-

acturers for products with short lifecycles and a high obsolescence

ate. This manufacturer historically utilized fixed-price contracts, on

quarterly basis, which resulted in component shortages and lost

ales. For products that turned out to be successful, these shortages

esulted in a loss of momentum in the product introduction, result-

ng in a loss of any first-mover advantage. In many of these cases,

ontractual reservation of extra capacity compensating suppliers for

heir flexibility, would have resulted in the suppliers providing the

dditional components required to meet the extra demand.

.1. Comparison to contracts in related literature

There have been many extensions of the basic price-only con-

ract, which include: multiple selling seasons (Anupindi & Bassok,

998), effort-dependent demand (Corbett & DeCroix, 2001), demand

pdating (Cachon & Lariviere, 2005), and competing manufacturers

Cachon & Kok, 2010), to name just a few. What we are proposing

s a different generalization of the price-only contract, in which the

emand support is split between the buyer and supplier. The issue of

he risk associated with price-only contracts has been noted and ad-

ressed in research on contracts. Tsay, Nahmias, and Agrawal (1999)

nd Cachon (2003) provide good reviews of the literature on supply

hain coordination with contracts.

The paper most relevant to ours is Cachon and Lariviere (2001),

hich studies a similar contract, which consists of a combination

f firm order commitments and options for subsequent orders. How-

ver, they consider an environment with capacitated production with

single unit cost, whereas we allow cheap and expensive modes of

roduction. Furthermore, the focus of Cachon and Lariviere (2001)

s heavily on compliance, whereas we focus on quantifying the risk

eduction properties of our contract (despite the firms taking a risk-

eutral perspective). A study of option contracts in the semiconduc-

or industry can be found in Brown and Lee (1997), and an analysis

f a spot market’s influence on option contracts can be found in Wu,

leindorfer, and Zhang (2002). Recall that option contracts are a spe-

ial case of range contracts (see Section 1.3).

Tsay (1999) studies a quantity flexibility contract, generalized by

he range contract, where the buyer’s final order quantity must be

ithin a given percentage of an initial forecast. Bassok and Anupindi

1997) consider a different generalization of the quantity flexibility

ontract that specifies that cumulative orders placed over multiple
eriods by a buyer be at least as large as a given contracted quantity;

n return for the commitment by the buyer, the supplier discounts the

nit purchase price and this discount applies to all units purchased,

ith no upper bound on the order quantity. More complex variations

n quantity flexibility contracts are considered by Tsay and Lovejoy

1999) and by Plambeck and Taylor (2007).

There are only a few other models that present some form of

isk sharing. In addition to the basic quantity flexible contract, there

re the buy-back contract and the revenue-sharing contract. In a buy-

ack contract, the supplier charges the buyer a fixed amount per unit

urchased, but makes a (lower) per-unit payment to the buyer for

ach unit remaining at the end of the season; if the supplier’s net

alvage value is less than the buyer’s net salvage value, the buyer sal-

ages the units and the supplier credits the buyer for those units. See

asternack (1985) and Cachon (2003) for further details. In a revenue-

haring contract, the supplier charges a fixed amount per unit pur-

hased by the buyer, but the buyer gives the supplier a percentage

f his revenue; see Cachon and Lariviere (2005) for further details.

achon (2003) points out that, in their basic form, revenue-sharing

ontracts are essentially equivalent to buy-back contracts. In these

ontracts, the supplier ends up producing a fixed amount, and then

onetary compensation substitutes for risk sharing. In contrast, un-

er the generic range contracts proposed here, the supplier is required

o face actual demand variability.

The range contract that we propose, like the quantity-flexibility

ontract, has the feature that the supplier is compensated for her in-

reased exposure to demand risk. Tsay et al. (1999) point out that

ith (other types of) quantity flexible contracts, “this exercise of flex-

bility implies reconsideration of a prior decision, even the simplest

odel requires at least two decisions on the part of the buyer for each

urchase: there is an initial inventory decision, and then revisions

onditional on whatever new information about demand becomes

vailable.” In contrast, an additional novelty about the range contract

s that it does not require a reconsideration of the decision—the buyer

nd supplier make a decision only once.

Other authors have considered contracts over multiple periods.

assok and Anupindi (2008) study the problem of procurement us-

ng a flexible contract in a rolling horizon model. They formulate the

roblem and propose two heuristic policies, derive a lower bound,

nd demonstrate the performance of these heuristics numerically.

oss and Zhu (2008) study the procurement policy for a non-storable

roduct (e.g. electricity) using a flexible contract in which the pur-

hase quantity in each period must be within some predefined range.

hey formulate the objective value as the total of gains and losses be-

ween the contract price and the spot price. The structure of a swing

ontract’s optimal value is then studied. A contract form between a

uyer and a supplier with a total order quantity commitment over a

ultiple-period horizon is studied in Chen and Krass (2001). Under

he contract the buyer agrees to procure a certain total quantity over

he predetermined period of time. Extra quantity could be purchased

t a different price. Dynamic considerations and inventory issues are

eyond the scope of our paper and could form the basis of an exten-

ion study of the range contract.

.2. The structure of the range contract

We model the demand D as a continuous random variable with

istribution F, with mean and standard deviation equal to μ and σ ,

espectively. We assume that the support of the demand distribution

s [�, u], where 0 ≤ � ≤ u. The interaction between the supplier and

uyer follows a Stackelberg game, a common modeling technique

n the contracting literature (see, for example, the large variety of

ontract analyses in the survey of Cachon, 2003). Indeed, most con-

racts, including fixed-price, buy-back, quantity-flexibility, quantity-

iscount, and sales-rebate, have the supplier proposing the contract’s

ricing parameters and the buyer choosing the order quantities.



958 D. S. Hochbaum, M. R. Wagner / European Journal of Operational Research 243 (2015) 956–963

(

s

t

g

r

c

u

w

o

i

i

a

t

t

d

1

h

f

s

u

v

t

l

t

c

2

d

fi

p

m

w

b

i

t

In the range contract, the supplier first announces the per-unit

range fee α and the per-unit wholesale price c. The buyer responds

with the range [x1, x2], by which the buyer commits to buy a minimum

of x1 units, for a total of q units, for q in the interval [x1, x2]. If the

demand realized exceeds x2, then excess demand is not covered by

the supplier. If demand is less than x1, the buyer incurs overage costs

of c times the difference between x1 and the realized demand. For

quantities q not exceeding x2, the buyer pays the supplier cq + α(x2 −
x1). That is, the supplier gets, in addition to the wholesale value of

the quantity purchased, also a bonus in the form of the range fee, that

grows with the length of the range α(x2 − x1).
A non-trivial range contract is one where x1 < x2 and [x1, x2] ⊂

[�, u]. We show that a variety of contractual pricing and firm interac-

tions are possible for a range contract, and demonstrate how many

existing contracts fall within our framework.

1.3. How range contracts generalize existing contracts

The range contract is a strict generalization of fixed-price, JIT,

option, and quantity-flexibility contracts:

• For [x1, x2] = [�, u] and α = 0, the range contract is a JIT contract.
• For x1 = x2, the contract is a fixed-price contract.
• In a quantity-flexibility contract, a buyer provides an initial fore-

cast q and is obligated to order at least (1 − γ )q for some γ ∈ [0, 1],

at a unit wholesale price of c, and the supplier is obligated to pro-

vide capacity up to (1 + γ )q. This quantity-flexibility contract is a

range contract with x1 = (1 − γ )q, x2 = (1 + γ )q, and α = 0.
• A range contract with x1 = 0 is equivalent to an option contract

with reserved capacity of x2, unit reservation price α and unit

exercise price c.

The range contract can also be viewed as a combination of two

contracts: a price-only contract with fulfillment level x1 and unit

wholesale price c, and an option contract with reservation price α,

exercise price c, and reserved capacity x2 − x1.

1.4. Supplier production costs and flexibility

In contrast to much of the contracting literature, we study the

impact of varying production costs on firm and supply chain perfor-

mance. The supplier’s unit-production cost is typically not fixed. The

supplier who is given a fixed order quantity can usually streamline

her production operations so as to achieve an efficient production line

with low unit-production costs. But a supplier facing uncertainty, as

in a JIT context, would not be able (in general) to produce at the min-

imum possible unit-production cost. We study these two modes of

production and let the most efficient unit production cost be p and

the less efficient unit production cost under uncertainty be p1 > p.

The supplier faces demand uncertainty on [x1, x2], but is required

to meet demand, as dictated by the contractual terms. The supplier

will determine a production quantity Q ∈ [x1, x2] in advance, where

p is the unit production cost for these first Q units. Then, if realized

demand exceeds this initial production amount, the supplier must

produce again to meet demand, where p1 is the unit production cost

for quantities that exceed Q in the range [x1, x2]. The Newsvendor

model is applied to find the appropriate value of Q .

We quantify the supplier’s flexibility as the ratio of the unit produc-

tion cost under a guaranteed order quantity p to the unit production

cost under uncertainty p1 > p: The supplier’s flexibility is defined as

p/p1 ∈ [0, 1]. The closer the ratio is to 1, the higher the flexibility of

the supplier since she is able to operate under uncertainty at a cost

that is close to that under no uncertainty. We will show that the sup-

plier’s flexibility plays an important role under the range contract, as

a key factor in determining the supplier’s optimal choice of per-unit

range fee.
We also show in Section 4 that the solution of a centralized

vertically integrated) supply chain can be viewed as having a range

tructure influenced by the supplier’s flexibility. The centralized sys-

em faces uncertain demand. It can streamline its production for a

uaranteed amount at a cheaper unit production cost p. If demand

ealized exceeds the amount produced, then additional production

an take place at the higher unit production cost p1 > p, up to an

pper bound. The solution to this system has a range interpretation,

here the guaranteed production amount is x1 and the upper bound

n production is x2.

We show that the optimal lower bound x1 depends on the flex-

bility of the firm p/p1. For a fully flexible firm (p1 = p), x1 = �. This

mplies that the less flexibility a firm has, the higher the value of guar-

nteed minimum production x1, and the overage cost is larger. As for

he upper end of the interval x2, we show that x2 = u. This means

hat in a vertically integrated supply chain, the optimal range has all

emands satisfied internally.

.5. Contributions

The main contributions here are:

• Introducing the range contract, and showing it generalizes and

unifies fixed-price, JIT, option, and quantity-flexibility contracts.
• Solving for the buyer’s optimal range [x∗

1, x∗
2] that maximizes his

profits for a given c and α, spot price s, and unit revenue r. We also

provide an extension for a convex range fee function.
• Solving for the supplier’s optimal per-unit range fee α∗ and unit

wholesale price c∗ that maximize her profit, as a function of the

buyer’s optimal range [x∗
1, x∗

2], for uniformly distributed demand.
• Providing insights on how the selection of the supplier’s optimal

per-unit range fee α∗ depends on her production costs p and p1,

and the spot price s.
• Deriving the structure of the optimal range in a vertically inte-

grated supply chain, and showing that the minimum production

quantity grows as the firm’s production flexibility increases.
• Showing computationally for a uniform distribution that the range

contract allows the optimal decentralized supply chain to attain

significant reductions in standard deviation of profit in exchange

for moderate reductions in expected value of profit.
• Showing computationally for a uniform distribution that the range

contract allows both firms to obtain larger risk-adjusted profits

than the centralized supply chain, a “win-win” situation.

Paper outline: In Section 2 we study the range contract and show

ow the range is determined by the buyer given values of α and c

or a general distribution of demand. Section 3 describes the analy-

is of how the supplier chooses her optimal per-unit range fee and

nit wholesale price, for a uniform distribution of demand, and pro-

ides a sensitivity analysis for different parameters. Section 4 gives

he optimal range for the vertically integrated system. Section 5 ana-

yzes and contrasts the mean-standard deviation profit tradeoffs for

he individual firms and centralized supply chain. Section 6 provides

oncluding remarks.

. The range maximizing the buyer’s expected profit:

etermining x∗
1 and x∗

2

In the next two sections we consider the range contract, where

rm interactions are modeled as a Stackelberg game where the sup-

lier is the leader. Therefore, we model the case where each firm

aximizes their expected profit. While this approach is risk neutral

ith respect to the variability of profit, the contractual interaction

etween firms creates a variability reduction effect. We discuss this

n full detail in Section 5.

Under our range contract, c is the unit wholesale price and α is

he per-unit range fee, assumed given in this subsection; the next
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ubsection analyzes how the supplier chooses this per-unit range fee

nd wholesale price optimally. The buyer, facing uncertain demand

, sells to the final customer at a unit revenue of r. For D < x1, the

uyer must pay the supplier for x1 units, but only receives revenue

n D units. For D ∈ [x1, x2], the buyer receives a unit profit of (r − c)
n all D units. For D > x2, the buyer is able to purchase additional

nits in the spot market, at a unit cost of s, where c < s < r. Regard-

ess of the demand realized, the buyer must pay the supplier the

ange fee α(x2 − x1). Therefore, the buyer’s profit random variable

s

B(x1, x2, α) = −α(x2 − x1)

+

⎧⎪⎨
⎪⎩

rD − cx1, D < x1

(r − c)D, x1 ≤ D ≤ x2

rD − cx2 − s(D − x2), D > x2.

(1)

The decisions available to the buyer are to dictate the range limits

1 and x2. The buyer determines his optimal range by maximizing his

xpected profit:

ax
x1,x2

E[πB(x1, x2, α)]

s.t. � ≤ x1 ≤ x2 ≤ u.
(2)

The next theorem characterizes the buyer’s optimal behavior as

he solution to Problem (2), as a function of the pricing parameters c

ndα of the range contract. Subsequently, we provide a generalization

or convex range cost functions.

heorem 1. The buyer’s optimality conditions are

(x∗
1) = α

c
and F(x∗

2) = 1 − α

s − c
.

n addition, for x∗
1 ≤ x∗

2, α ≤ c(1 − c
s ) must hold.

roof. The expected profit can be written as

[πB(x1, x2)] =
∫ x1

�

(rD − cx1)f (D)dD +
∫ x2

x1

(r − c)Df (D)dD

+
∫ u

x2

(rD − cx2 − s(D − x2))f (D)dD − α(x2 − x1).

The derivatives with respect to x1 and x2 are

∂E[πB]

∂x1
= (r − c)x1f (x1)− c

∫ x1

�

f (D)dD − (r − c)x1f (x1)+ α

= α − cF(x1)

nd

∂E[πB]

∂x2
= (r − c)x2f (x2)− (r − c)x2f (x2)+ (s − c)

∫ u

x2

f (D)dD − α

= (s − c)(1 − F(x2))− α,

espectively. The cross derivatives vanish and the second derivatives

re:

∂E[πB]2

∂x2
1

= −cf (x1)

∂E[πB]2

∂x2
2

= −(s − c)f (x2).

hese second derivatives are non-positive as s > c, the profit function

s concave, and the first order conditions maximize the profit. Finally,

(x1) ≤ F(x2) implies the necessary condition:

≤ c(1 − c/s).

emark 1. Note that if there is no spot market from which to

urchase additional products, lost sales can be modeled by mod-

fying the third case (D > x2) of Eq. (1) to (r − c)x2. The second

ptimality condition of Theorem 1 would be modified slightly to

(x∗
2) = 1 − α

r−c . Subsequent results hold exactly with the substitution
= r. r
.1. Convex range cost

Suppose now that the cost of the range is not linear in the length

f the contractual range, x2−x1, but rather is a convex function of this

ength. Thus α(·) is a convex function of the range, α(x2−x1), which is

ontinuous and twice differentiable in x1 and x2. Using similar proof

echniques, we have a generalization of Theorem 1.

heorem 2. The buyer’s optimality conditions are

(x∗
1) = α′(x∗

2 − x∗
1)

c
and F(x∗

2) = 1 − α′(x∗
2 − x∗

1)

s − c

n addition, for x∗
1 ≤ x∗

2, α′(x∗
2 − x∗

1) ≤ c(1 − c
s ) must hold.

. Maximizing the supplier’s expected profit: determining α∗
nd c∗

In the range contract, the parameter c is the contractual unit

holesale price, and the supplier determines the per-unit range fee

. We also discuss the two modes of supplier production, and study

heir effect on the performance of the range contract.

.1. Supplier production modes

The supplier, knowing she will face demand in the interval [x1, x2],

here the endpoints satisfy the optimality conditions of Theorem 1,

ill use a Newsvendor model to determine a production quantity

∈ [x1, x2], for which she will streamline production and achieve

ost per unit p. If demand D is below Q , the supplier incurs costs on

− D unsold units. In the presence of salvage values v per unit, this

ost will be p − v per unsold unit, where we assume v < p. Recalling

hat the supplier must meet demand in the interval [x1, x2], if demand

ealized D is above Q , the supplier must produce D − Q units at the

igher unit production cost p1. This results in additional per-unit costs

n the extra units of p1 − p. Under the range contract, the supplier

ffectively receives an order quantity of x1 if D < x1, an order quantity

f D if D ∈ [x1, x2], and an order quantity of x2 if D > x2. Therefore, the

upplier’s distribution of orders is

[̃x1,x2](D) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ x1

�

f (x)dx, D = x1

F(D), D ∈ [x1, x2]∫ u

x2

f (x)dx, D = x2,

(3)

nd the supplier’s optimal Newsvendor quantity Q satisfies

[̃x1,x2](Q) = (p1 − p)

(p1 − p)+ (p − v)
= 1 − p − v

p1 − v
. (4)

Note that this result suggests that, in the presence of positive sal-

age values, the definition of production flexibility should be modified

o (p − v)/(p1 − v). In other words, having the opportunity to salvage

improves” production flexibility. For simplicity, in the sequel we let

he salvage value v = 0. Consequently, since Q ∈ [x1, x2] and applying

qs. (3) and (4) with v = 0, the Newsvendor quantity Q must satisfy:

= max

{
x1, min

{
x2, F−1

(
1 − p

p1

)}}

.2. The supplier’s profit random variable

We next formulate the supplier’s profit random variable, which

ombines the revenues from the buyer and the supplier’s internal

roduction costs. For demand D < Q , the supplier incurs production

osts of pQ , whereas for demand D > Q , the incurred production costs

re pQ + p1(D − Q). For D < x1, the supplier receives a unit revenue

f c from the buyer on x1 units. For D ∈ [x1, x2], the supplier receives

evenue on D units, and for D > x2, the supplier only receives revenue
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on the first x2 units. Under all demand scenarios, the supplier receives

the range fee premium of α(x2 − x1). The supplier’s profit random

variable is

πS(x1, x2, α) = α(x2 − x1)

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cx1 − pQ, D < x1

cD − pQ, x1 ≤ D ≤ Q

cD − pQ − p1(D − Q), Q ≤ D ≤ x2

cx2 − pQ − p1(x2 − Q), D > x2.

(5)

To formulate the profit-maximization problem, recall that the sup-

plier correctly anticipates that the buyer will choose x1 = F−1(α/c)
and x2 = F−1(1 − α/(s − c)), the buyer’s profit maximizing range from

Theorem 1. Consequently, the supplier will select α to maximize her

own profit:

max
α

E[πS(x1, x2, α)]

s.t. α ≤ c
(

1 − c

s

)
F(x1) = α/c

F(x2) = 1 − α/(s − c)

F̃[x1,x2](Q) = 1 − p

p1
.

(6)

The first constraint is to enforce x1 ≤ x2, as required by the range

contract definition, which follows from Theorem 1. The last three

constraints represent the buyer’s optimal behavior and the supplier’s

Newsvendor production quantity.

In the remainder of this section we analytically solve Problem (6)

for demand that is uniformly distributed on [�, u]. In particular, we

study the supplier’s optimal per-unit range fee, taking into account

the buyer’s optimal behavior. We also investigate the sensitivity of

the supplier’s optimal per-unit range fee to production costs, and the

market spot price. Although the results are presented for a uniform

demand distribution, we conjecture that similar structural relation-

ships hold for other distributions as well; Taylor (2002) takes a similar

approach of analyzing uniformly distributed demand, and conjectur-

ing behavior for general demand distributions. Furthermore, our anal-

ysis techniques can be applied to a given distribution (e.g., poisson,

gamma, etc.), as long as the density is positive on [�, u]. Unfortunately,

we found a general analysis in terms of a generic distribution F to be

intractable.

3.3. The supplier’s optimal choice of α for D ∼ U[�, u]

Here we study the supplier’s selection of the optimal per-unit

range fee α. We then study how this behavior depends on production

costs, and the spot market price. We begin with a structural result

that allows us to easily solve for the profit-maximizing per-unit range

fee α.

Theorem 3. The supplier’s profit function is strictly concave in α.

Proof. Note that
∂x1
∂α

= 1
cf (x1)

and
∂x2
∂α

= − 1
(s−c)f (x2)

, which are derived

using the derivative of the inverse of a function. Also, ∂Q
∂α

= 0. The

expected value of the supplier’s profit can be written as

E[πS(α)] =
∫ x1

l

(cx1 − pQ)f (D)dD +
∫ Q

x1

(cD − pQ)f (D)dD

+
∫ x2

Q

(cD − pQ − p1(D − Q))f (D)dD

+
∫ u

x2

(cx2 − pQ − p1(x2 − Q))f (D)dD + α(x2 − x1). (7)

Using the Leibniz integral rule, the derivative of the supplier’s

profit function (7) with respect to α is
∂E[πS(c, α)]

∂α
= c

∂x1

∂α
F(x1)+ (c − p1)

∂x2

∂α
(1 − F(x2))

+α

(
∂x2

∂α
− ∂x1

∂α

)
+ (x2 − x1)

= α

cf (x1)
− α(c − p1)

(s − c)2f (x2)

−α

(
1

(s − c)f (x2)
+ 1

cf (x1)

)
+ (x2 − x1).

When demand is uniformly distributed, we note that x1 = � + (u −
)α

c , x2 = � + (u − �)(1 − α
s−c ), and f (x1) = f (x2) = 1/(u − �). In this

ase, the derivative of the profit becomes

∂E[πS](c, α)

∂α
= −(u − �)

(
α

(
(c − p1)

(s − c)2
+ 2

s − c
+ 1

c

)
− 1

)
. (8)

Taking the second derivative, we get

∂2E[πS](c, α)

∂α2
= −(u − �)

(
(c − p1)

(s − c)2
+ 2

s − c
+ 1

c

)
,

hich allows us to conclude that the profit function is strictly

oncave.

Theorem 3 shows that the first order condition is sufficient for

nding the maximizing value of α, and the next theorem determines

he optimal value of the per-unit range fee. Let α∗ denote the value

∗ = c(s − c)2

s2 − cp1
. (9)

heorem 4. The supplier’s profit-maximizing value of α is α∗.

roof. By Theorem 3, the profit function is strictly concave, and we

et the profit derivative (8) to zero for uniformly distributed demand

o find the optimal per-unit range fee α∗, which is equal to

∗ = c(s − c)2

s2 − cp1
.

ote that algebraic manipulations show that α∗ < c(1 − c/s) (cf.,

he constraints of the supplier’s problem), which proves that α∗ is

easible.

Theorem 4 provides the profit-maximizing value of α, as given

n Eq. (9), which solves the supplier’s profit-maximization problem.

he structure of α∗ provides insight into how the different problem

arameters affect the optimal range fee. The next results focus on the

ffect of production flexibility, and how it affects the optimal per-unit

ange fee.

Note that α∗ is increasing in p1, which shows that diminished

bility to respond to realized uncertain demand (i.e., a higher p1)

nduces the supplier to require higher compensation for involvement

n the contract. We can also use this observation to make a statement

bout production flexibility, which is measured by the ratio p/p1. As

he ratio increases, production flexibility increases, since the supplier

s able to operate under uncertainty at a cost that is close to that

nder no uncertainty. Therefore, for fixed p, as flexibility increases (p1

ecreases), α∗ decreases. Therefore, more flexible production allows

supplier to charge the buyer a lower per-unit range fee.

We also characterize α∗’s dependence on the spot market price s.

he derivative ∂α∗
∂s

= 2c2(s−c)(s−p1)
(cp1−s2)2 > 0, which shows α∗ is increasing

n s. This shows that, holding all other parameters constant, increasing

he spot price of the product allows the supplier to charge a higher

er-unit range fee premium, since the attractiveness of the spot mar-

et for the buyer is decreased.

Finally, we characterize α∗’s dependence on the wholesale price c.

he derivative ∂α∗
∂c

= (s−c)
(

s2(s−c)−2c(s2−cp1)
)

(s2−cp1)2 . Unsurprisingly, the sign

f the derivative depends on the parameters, and we are unable to

ake general statements regarding the relationship of α∗ and c.
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.4. The supplier’s optimal choice of c for D ∼ U[�, u]

We next study how the supplier would choose the per-unit

holesale price c. While analytically intractable, even for uni-

ormly distributed demand, we are able to show numerically that
∂E[πS(x

∗
1
,x∗

2
,α∗)

∂c
> 0, for a large variety of parameter values. In other

ords, the supplier’s expected profit is increasing in c, and the sup-

lier prefers to increase it to its maximum value of c∗ = s. If this were

ossible, then α∗ = 0, x∗
1 = � and x∗

2 = u, and the range contract sim-

lifies to a JIT contract.

However, in many cases the wholesale price is set by the market-

lace (e.g., commodities) or as the result of firm negotiations. There-

ore, in Section 5, we present computational results as a function of c,

o that we can identify what value the range contract will have for a

iven wholesale price.

. Maximizing the centralized supply chain expected profit

The concept of a range [x1, x2] is not only relevant in the context of

ontracts, but is also meaningful for the vertically integrated supply

hain, where the buyer and supplier are part of a single firm. In this

ontext, we identify an optimal range that maximizes the expected

entralized supply chain profit. The centralized profit is defined by

he summation of the buyer and supplier’s profit random variables,

rom (1) and (5), respectively; we let the centralized range be denoted

y [y1, y2] to avoid confusion with the decentralized range [x1, x2]:

SC(y1, y2) = πB + πS

=
⎧⎨
⎩

rD − py1, D < y1

rD − py1 − p1(D − y1), y1 ≤ D ≤ y2

rD − py1 − p1(y2 − y1)− s(D − y2), D > y2.

(10)

The interpretation of the lower bound of this range is that the

entralized supply chain will commit to and produce the amount y1

egardless of the demand realization, at the cheaper unit production

ost p. Here, for the centralized system, y1 is analogous to Q , the

ptimal supplier Newsvendor quantity discussed in Section 3.1. The

ystem will then produce in a JIT manner, up to the upper bound of

he interval y2, at the higher production cost p1. For demand beyond

he upper production limit of y2, the system can procure extra units

n the spot market with spot price s. The centralized supply chain

ptimal range solves the following problem:

max
≤y1≤y2≤u

E[πSC(y1, y2)] (11)

The next theorem characterizes the centralized supply chain’s op-

imal range as the solution to Problem (11).

heorem 5. The centralized supply chain’s optimality conditions are

(y∗
1) = 1 − p

p1
and F(y∗

2) = 1.

roof. Let πSC = πB + πS be the system’s profit. Then, the expected

rofit can be written as

[πSC] =
∫ x1

�

(rD − px1)f (D)dD

+
∫ x2

x1

(rD − px1 − p1(D − x1))f (D)dD

+
∫ u

x2

(rD − px1 − p1(x2 − x1)− s(D − x2))f (D)dD

Here the partial derivatives are:

∂E[πSC] = (p1 − p)− p1F(x1), and (12)

∂x1
∂E[πSC]

∂x2
= (s − p1)(1 − F(x2)). (13)

The cross derivatives both vanish and the second derivatives are

oth nonnegative:

∂2E[πSC]

∂x2
1

= −p1f (x1) < 0, and (14)

∂2E[πSC]

∂x2
2

= −(s − p1)f (x2) < 0. (15)

Therefore the function E[πSC](x1, x2) is convex. Setting both first

erivatives to 0 we complete the proof.

Recall that the production flexibility is p/p1. This ratio is always

ess than or equal to 1, and the closer the ratio to 1, the higher the

exibility since the firm is able to operate under uncertainty at a cost

hat is close to that under no uncertainty. The optimal value of y∗
1

n the vertically integrated system is affected by this flexibility. The

ore flexible the firm is, the lower is the value of y∗
1. For a fully flexi-

le firm (p1 = p), y∗
1 = � and the supply chain can afford to operate as

JIT system. For less flexible firms, the value of y∗
1 is greater than �,

hich means, in terms of the supply chain, that it is optimal to pos-

ibly overproduce at the cheaper unit production cost p, and risk the

oss of unsold units, in order to capitalize on the efficient production

ange. Therefore, there are consequences to supply chains with less

exible production. As for the upper bound of the interval y∗
2, it is

lways equal to the maximum possible demand u. This is so unless

he production flexibility is so low as to have the value of p1 exceed-

ng the unit revenue r, in which case there will be no production at

he unit production cost p1. Instead, there will be production of a

xed quantity y∗
1 = y∗

2, which is guaranteed in advance and there is

o production under uncertainty.

. Trading off mean profit reductions for higher standard

eviation of profit reductions: computational results

In this section, we demonstrate some unique characteristics of the

ange contract: Despite risk-neutral firm decision making, risk reduc-

ion properties are achieved, both at the (decentralized) supply chain

evel as well as at the individual firm level. In particular, we contrast

he mean and standard deviation of the optimal decentralized supply

hain profits with those of the optimal centralized supply chain. We

tilize computational experiments for uniformly distributed demand

∼ U[�, u].

The firms’ optimal profit random variables are determined using

he solutions to Problems (2) and (6), where the buyer and supplier

aximize their respective expected profits. The solutions to Problem

2) for uniformly distributed demand are

∗
1 = F−1

(α

c

)
= � +

(α

c

)
(u − �),

nd

∗
2 = F−1

(
1 − α

s − c

)
= � +

(
1 − α

s − c

)
(u − �),

hich we derive from Theorem 1. The solution to Problem (6) for

niformly distributed demand is

∗ = c(s − c)2

s2 − cp1
,

s given in Theorem 4. We denote the optimal buyer profit by π ∗
B =

B(x
∗
1, x∗

2, α∗) and the optimal supplier profit as π ∗
S = πS(x

∗
1, x∗

2, α∗),
here πB(x1, x2, α) and πS(x1, x2, α) are defined in Eqs. (1) and (5),

espectively. We let the optimal decentralized supply chain profit be

enoted as

∗ = π ∗
B + π ∗

S . (16)
dSC



962 D. S. Hochbaum, M. R. Wagner / European Journal of Operational Research 243 (2015) 956–963

Fig. 1. Tradeoff curve of Rμ = E[π ∗
dSC

]

E[π ∗
SC ]

versus Rσ = SD[π ∗
dSC

]

SD[π ∗
SC ]

for D ∼ U[10, 100], p = 10,

s = 90, r = 100, p1 ∈ {10, 30, 50, 90} and c ∈ [10, 90].
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The centralized supply chain profit will be evaluated using the

optimal range (y∗
1, y∗

2) that maximizes the expected profit in Problem

(11):

y∗
1 = F−1

(
1 − p

p1

)
= � +

(
1 − p

p1

)
(u − �)

and

y∗
2 = F−1(1) = u,

as shown in Theorem 5. We denote the optimal centralized supply chain

profit as

π ∗
SC = πSC

(
y∗

1, y∗
2

)
, (17)

where πSC(y1, y2) is defined in Eq. (10).

5.1. Small reductions in expected profit lead to large reductions in risk

under the range contract

We present here evidence, based on uniformly distributed demand

on [10, 100], that the range contract induces an attractive tradeoff be-

tween the standard deviation of profit (risk) and expected profit for

the optimal decentralized supply chain, with respect to the optimal

centralized supply chain: For any percentage reduction in expected

profit, the decentralized supply chain obtains a larger percentage re-

duction in the standard deviation of profit. We begin by defining the

ratio of the optimal decentralized expected profit to that of the cen-

tralized supply chain:

Rμ = E[π ∗
dSC

]

E[π ∗
SC]

. (18)

Note that Rμ ≤ 1 precisely measures the degree of double marginal-

ization. We define a similar ratio to measure the relative standard

deviation of profit in the two supply chains. Letting SD[X] denote

the standard deviation of a random variable X, we define the ratio of

the optimal decentralized standard deviation of profit to that of the

centralized supply chain:

Rσ = SD[π ∗
dSC

]

SD[π ∗
SC]

. (19)

If Rσ < 1, then the decentralized supply chain has less variability

in profits than the centralized supply chain, a desired quality if the

expected profits for the two supply chains are identical. We next

present a computational study that provides insight into how Rμ and

Rσ are related, for various parameters.

We consider uniformly distributed demand on [�, u] = [10, 100].

The spot price is s = 90 and the unit revenue is r = 100. The efficient

unit production cost is p = 10 and we consider five unit production

costs under uncertainty, namely p1 ∈ {10, 30, 50, 70, 90}, to model

different degrees of production flexibility. Note that when p1 = 10,

p1 = p, and when p1 = 90, p1 = s; these are the minimum and maxi-

mum possible values for p1. In our computational studies, the result-

ing behavior for p1 = 90 is indistinguishable from that for p1 = 70,

and is omitted. In Fig. 1 we plot Rμ as a function of Rσ , where c is

varied in [10, 90]. Finally, note that (Rσ , Rμ) = (1, 1) when c = s in

all plots, meaning that the expected profits and standard deviations

of profits are identical for the decentralized and centralized supply

chains.

Fig. 1 shows that the range contract introduces a tradeoff between

the standard deviation of profit and the expected profit for the op-

timal decentralized supply chain. Note that for all curves in Fig. 1,

the double marginalization inefficiency is at most 5.5 percent, since

Rμ ≥ 0.945 everywhere. At the same time, the range contract can sig-

nificantly reduce the standard deviation of the decentralized supply

chain profits, with respect to the centralized supply chain. For ex-

ample, when p1 = 30, the ratio Rσ can reach 0.915, while the ratio

Rμ only reaches 0.965; in other words, a reduction of 3.5 percent in
xpected profit is accompanied by a reduction in the standard devi-

tion of profit of 8.5 percent. For other values of p1, the tradeoff can

e even more appealing: For p1 = 70, the standard deviation of the

ecentralized supply chain can be reduced by 20 percent (Rσ = 0.80)

rom the centralized supply chain’s standard deviation, while still

nly sacrificing approximately 5.5 percent of the expected profit. In

ll cases, the plots remain above the diagonal, signifying that any per-

ent reduction in expected profit results in at least as much reduction

n the standard deviation of profit (and usually much more). We also

bserve that as the difference between p1 and p increases, the per-

ormance of the decentralized supply chain improves, with respect to

he centralized supply chain (the curves shift to the left). Therefore,

nder a range contract, the decentralized supply chain benefits from

roduction inefficiencies, from a risk-adjusted point of view. Since

he centralized supply chain can always mimic a decentralized sup-

ly chain, the range contract can be used by those centralized supply

hains where the reduction of risk is a priority.

Of course, if these benefits are attained by sacrificing one firm’s

erformance, the practical appeal of the range contract vanishes.

herefore, we next study the individual firms and show that both

an simultaneously benefit from range contract.

.2. Both supplier and buyer can benefit under the range contract

We define the buyer’s optimal risk-adjusted unit profit as

A
B = E[π ∗

B ]

SD[π ∗
B ]

. (20)

his ratio measures the amount of expected profit that is obtained

er unit of standard deviation of profit, and the higher the ratio, the

etter. Note that this ratio is simply the inverse of the coefficient

f variation of the buyer’s profit. We similarly define the supplier’s

ptimal risk-adjusted unit profit as

A
S = E[π ∗

S ]

SD[π ∗
S ]

(21)

nd the centralized supply chain’s optimal risk-adjusted unit profit as

A
SC = E[π ∗

SC]

SD[π ∗
SC]

(22)

We show that there exists an interval of wholesale prices c where

he buyer and supplier benefit in terms of optimal risk-adjusted unit
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Fig. 2. Optimal risk-adjusted unit profits πA
B , πA

S and πA
SC, for D ∼ U[10, 100], p = 10,

p1 = 50, s = 90, r = 100.
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rofits for D ∼ U[10, 100]. In Fig. 2 we plotπA
B ,πA

S andπA
SC

as a function

f c for the parameters listed above and selecting p1 = 50 (the other

alues of p1 gave very similar results). This figure shows that in the

nterval of approximately c ∈ [70, 90], both firms benefit from the

ange contract, in the form of larger optimal risk-adjusted unit profits

s compared to the centralized supply chain. Therefore, from a risk-

djusted point of view, both firms can benefit from the range contract.

. Conclusions

We introduce a new class of supply chain contracts, called

ange contracts, that generalize fixed-price, JIT, option, and quantity-

exibility contracts. Range contracts enable a buyer, who faces ran-

om demand, and a supplier, with varying modes of production, to

hare the cost of the demand variability in a new way. It is demon-

trated here that any non-trivial range contract will reduce the collec-

ive decentralized supply chain risk. The structure of the range con-

ract that minimizes this risk is characterized here. We also study a

tackelberg game where the optimal strategies for each firm to maxi-

ize their respective expected profits under this contract are derived.

e also study the concept of a range in the context of a vertically in-

egrated system. We introduce the idea of production flexibility and

how that it has a direct impact on the profit-maximizing range in

he vertically integrated supply chain.

We demonstrate computationally that under the range contract

fractional decrease in expected profit results in a larger fractional

ecrease in the standard deviation of profit. We also show compu-

ationally that, under the range contract, it is possible for both the

upplier and buyer to have larger risk-adjusted unit profits than the

entralized supply chain, creating a “win-win” scenario.
The set up proposed here can be extended under certain circum-

tances. For instance, when the goods procured are non-perishable

nd can be stored in inventory, the supplier may offer quantity

iscounts. This extension of the model would be to allow for quantity

iscounts within the range specified in advance. It would be interest-

ng to study, under this setup, the optimal strategies for the buyer,

upplier and the behavior of the integrated supply chain. In this situ-

tion where goods can be stored in inventory, it is of interest to study

he extension of the range contract to a dynamic setting.

cknowledgments

The research of the first author is supported in part by NSF award

o. CMMI-1200592. We thank the two referees for carefully read-

ng our manuscript and providing many valuable comments and

uggestions.

eferences

nupindi, R., & Bassok, Y. (1998). Supply contracts with quantity commitments and
stochastic demand. In S. Tayur, M. Magazine, & R. Ganeshan (Eds.), Quantitative

models for supply chain management (pp. 197–232). Boston, MA: Kluwer Academic.
assok, Y., & Anupindi, R. (1997). Analysis of supply contracts with total minimum

commitment. IIE Transactions, 29(5), 373–381.
assok, Y., & Anupindi, R. (2008). Analysis of supply contracts with commitments and

flexibility. Naval Research Logistics, 55, 459–477.

rown, A. O., & Lee, H. L. (1997). Optimal pay to delay capacity reservation with applica-
tions to the semiconductor industry (Stanford University Working Paper).

achon, G. P. (2003). Supply chain coordination with contracts. In A. G. de Kok, & S.
C. Graves (Eds.), Handbooks in operations research and management science: Supply

chain management (Vol. 11, pp. 229–340). Amsterdam: Elsevier B.V.
achon, G., & Kok, A. G. (2010). Competing manufacturers in a retail supply chain: On

contractual form and coordination. Management Science, 56(3), 571–589.

achon, G. P., & Lariviere, M. A. (2001). Contracting to assure supply: How to share
demand forecasts in a supply chain. Management Science, 47(5), 629–646.

achon, G. P., & Lariviere, M. A. (2005). Supply chain coordination with revenue-sharing
contracts: Strengths and limitations. Management Science, 51(1), 30–44.

hen, F. Y., & Krass, D. (2001). Analysis of supply contracts with minimum total order
quantity commitments and non-stationary demands. European Journal of Opera-

tional Research, 131(2), 309–323.

orbett, C., & DeCroix, G. (2001). Shared savings contracts in supply chains. Management
Science, 47(7), 966–978.

uglielmo, C., & Hesseldahl, A. (2010, April 19). Apple may have iPad shortages amid
production issues. Bloomberg Businessweek.

ing, S. (2012). Karl Kempf, Intel’s money-saving mathematician. Bloomberg Business-
week.

asternack, B. A. (1985). Optimal pricing and return policies for perishable commodi-

ties. Marketing Science, 4(2), 166–176.
lambeck, E. L., & Taylor, T. A. (2007). Implications of renegotiation for optimal contract

flexibility and investment. Management Science, 53(12), 1859–1871.
oss, S. M., & Zhu, Z. (2008). On the structure of a swing contracts optimal value and

optimal strategy. Journal of Applied Probability, 45, 1–15.
aylor, T. (2002). Supply chain coordination under channel rebates with sales effort

effects. Management Science, 48(8), 992–1007.

say, A. A. (1999). The quantity flexibility contract and supplier-customer incentives.
Management Science, 45(10), 1339–1358.

say, A. A., & Lovejoy, W. S. (1999). Quantity flexibility contracts and supply chain
performance. Manufacturing & Service Operations Management, 1(2), 89–111.

say, A. A., Nahmias, S., & Agrawal, N. (1999). Modeling supply chain contracts: A review.
In S. Tayur, M. Magazine, & R. Ganeshan (Eds.), Quantitative models for supply chain

management (pp. 299–336). Boston, MA: Kluwer Academic.
u, D. J., Kleindorfer, P. R., & Zhang J. E. (2002). Optimal bidding and contracting strate-

gies for capital-intensive goods. European Journal of Operational Research, 137(3),

657–676.

http://dx.doi.org/10.13039/100000001
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib001
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib002
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib003
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib004
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib005
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib006
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib007
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib008
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib009
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib010
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib011
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib012
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib013
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib014
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib015
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib016
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib017
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib018
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib019
http://refhub.elsevier.com/S0377-2217(14)01060-1/bib020

	Range Contracts: Risk Sharing and Beyond
	1 Introduction
	1.1 Comparison to Contracts in Related Literature
	1.2 The Structure of the Range Contract
	1.3 How Range Contracts Generalize Existing Contracts
	1.4 Supplier Production Costs and Flexibility
	1.5 Contributions

	2 The Range Maximizing the Buyer's Expected Profit: Determining x1* and x2*
	2.1 Convex Range Cost

	3 Maximizing the Supplier's Expected Profit: Determining *and c*
	3.1 Supplier Production Modes
	3.2 The Supplier's Profit Random Variable
	3.3 The Supplier's Optimal Choice of  for D U[,u]
	3.4 The Supplier's Optimal Choice of c for D U[,u]

	4 Maximizing the Centralized Supply Chain Expected Profit
	5 Trading Off Mean Profit Reductions for Higher Standard Deviation of Profit Reductions: Computational Results
	5.1 Small Reductions in Expected Profit Lead to Large Reductions in Risk under the Range Contract
	5.2 Both Supplier and Buyer Can Benefit under the Range Contract

	6 Conclusions
	Acknowledgments
	References


