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Abstract. Problem definition: We analyze a new model of crowdfunding recently intro-
duced by Bolstr, Localstake, and Startwise. A platform acts as a matchmaker between a firm
needing funds and a crowd of investors willing to provide capital. After the firm is funded, it
pays back the investors using revenue-sharing contracts, with a prespecified investment
multiple (investors will receive M≥ 1 dollars for every dollar invested) and a revenue-
sharing proportion, over an investment horizon of uncertain duration. Academic/practical
relevance: We analyze the revenue-sharing contract approach to crowdfunding, and we
assist the firm to determine its optimal contract parameters to maximize its expected net
present value (NPV) subject to investor participation constraints and platform fees. Meth-
odology : A natural multiperiod formulation for the firm’s problem results in an intractable
stochastic optimization model, which we approximate using a deterministic model. In the
approximation model, we use a cash buffer for dealing with cash flow uncertainties; we are
able to solve the approximation model analytically. Results: Parametrized on real data from
Bolstr campaigns, our approximation solutions give an NPV in the stochastic problem that is
within 0.2% of the simulation-based optimal NPV for all levels of cash flow uncertainty. We
compare revenue-sharing contracts with equity crowdfunding and observe that the former
result in higher NPVs and comparable bankruptcy probabilities. We also compare revenue-
sharing contracts with fixed rate loans and find that, for most cases considered, revenue-
sharing contracts provide a higher NPV and a lower probability of bankruptcy than a fixed
rate loan.We also show that these benefits aremore significant for firmswith higher levels of
cash flow uncertainty. Managerial implications: Revenue-sharing contracts are a novel
approach to crowdfunding, and we show that are superior to other financing models.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2018.0729.
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1. Introduction
Crowdfunding is a relatively new approach for firms to
raise capital from a crowd of individuals rather than
traditional sources of capital (e.g., banks, venture capi-
talists, etc.). The crowdfunding industry is already large
and growing fast. In 2013, the industry was estimated to
have raised over $5.1 billion worldwide (Noyes 2014).
Looking to the future, PricewaterhouseCoopers (2015)
has approximated that, by 2025, crowdfunding will be
a $150 billion industry. A recentWall Street Journal article
(Karabell 2015) provides some insight for this growth: (1)
an individual crowdfunding investment can be risky,
offering high returns; (2) lenders can diversify their risk
by spreading their investments over different crowd-
funding campaigns; and (3) because of recent financial
crises, investors have decreased trust in traditional
financial investments (e.g., banks, stocks, etc.), and
therefore, nontraditional lending markets have increased
appeal. A recent regulatory change has also reduced the
barriers to entry: starting fromMay 2016, ordinary people
are permitted to invest in small firms (U.S. Securities and

Exchange Commission 2016); before May 2016, only
accredited investors (i.e., those with an annual income of
at least $200,000 or a networth of at least $1million) could
invest (Cowley 2016). This new crowdfunding regula-
tion, which allows firms to raise up to $1 million over
a 12-month period, provides a great opportunity forfirms
to raise their investment targets more easily.
A number of different firms have become rather well

known: Kickstarter, Indiegogo, GoFundMe, Kiva, Pros-
per, and Lending Club. These firms have vastly different
crowdfunding models driving their businesses. For ex-
ample, Kickstarter and Indiegogo, perhaps themostwell-
known crowdfunding firms, essentially solicit donations
for individuals andfirms needing capital. Kiva dealswith
microloans, targeting low-income entrepreneurs world-
wide, that must be repaid to the lender. Prosper and
Lending Club operate in the peer-to-peer lending mar-
ketplace, where loans have fixed repayment terms. The
peer-to-peer lending market was the most dominant
alternative finance market in 2015 in the United States,
with approximately $25.7 billion raised (Alois 2016).
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Our paper is motivated by an emergent model of
crowdfunding pioneered by Bolstr (www.bolstr.com),
Localstake (www.localstake.com), and Startwise
(www.startwise.com), which targets small- andmedium-
sized firms needing capital; however, this model is not
intrinsically limited by firm size and could be applied to
any sized firm. These platforms match a firm needing
funding with investors from the crowd, and the firm
pays back the investors via revenue-sharing contracts. This
more flexible repayment agreement is linked with the
financial performance of the firm, allowing variable
payments and investment horizons and thus, reducing
financial stress on the borrower. In contrast, if business
goes well, the borrower is obligated to increase the
payments, thus reducing the investment horizon, which
results in a higher effective interest rate for the investors.
Therefore, revenue-sharing contracts intuitively align a
firm’s and investors’ incentives in a way not possible
with traditional fixed rate loans. Notably, many of the
loans administered by, for example, Bolstr are repaid
well before their estimated investment horizon:
according to the Bolstr website, the estimated invest-
ment horizons usually range from 2 to 5 years for loan
sizes of $25,000–$500,000, but JP Morgan Chase
Company (2015) reports on the example of a lobster
roll restaurant in Chicago that paid back its loan of $70,000
in 7 months. Furthermore, in 2016, Bolstr announced
that, “An investor who participated at the minimum
investment level in every deal would have a portfolio
tracking to a 19.18% net Internal Rate of Return.”

The speed of funding in crowdfunding can be very
fast with respect to traditional funding sources. Tra-
ditional loans, such as from banks and the U.S. Small
Business Administration (SBA), have low approval
rates and typically take 2–3 months to fund. However,
revenue-sharing contracts can fund very fast in prac-
tice. The following quotes are real subject lines from
marketing emails from Bolstr:

“PaddyWagon Raised $20,000 in Less than 10Minutes,”

“Dubina Brewing Co. Raised $30,000 in 20 minutes,”

“The Bacon Jams Raised $40,000 in Less than 30 Min-
utes,” and

“Underground Butcher Raised $75,000 in Less Than 1
Hour.”

Firms can alternatively raise investments from other
online lenders, such as Lending Club, Prosper, and
Kabbage, but according to the Bolstr website, loans
from these lenders have annual percentage rates as
high as 80%, whereas revenue-sharing loans have an-
nual percentage rates of 8%–25%. Therefore, revenue-
sharing contracts have advantages over traditional and
alternative funding sources, such as having flexible
payments, fast funding time, and lower equivalent
interest rates. In our paper, we show that the firm’s net

present value (NPV) under a revenue-sharing contract
is larger than that of equity crowdfunding and that the
firm’s probabilities of bankruptcy are comparable.
Additionally, in most cases considered, a firm’s NPV
under a revenue-sharing contract is larger than the
NPV of a fixed rate loan, even when the latter has low
annual interest rates. Similarly, a firm’s probability of
bankruptcy is lower under a revenue-sharing contract
than under a fixed rate loan. These benefits stem from
the flexible nature of the revenue-sharing contract.
The proposed revenue-sharing contract bears some

superficial similarity to performance-sensitive debt
(e.g., step-up bonds and performance-pricing loans)
studied by Manso et al. (2010), where the debt pay-
ments depend on the borrower’s performance: the
borrower pays higher interest rates during low per-
formance and lower interest rates during high per-
formance. However, this approach has the opposite
behavior of our proposed revenue-sharing contract,
because under the latter, a high-performing firm will
have high debt payments andwill pay off the fixed loan
amount early, resulting in a higher effective interest
rate. Performance-sensitive debt has been shown to
harm both the borrower and the investors via earlier
borrower default (Manso et al. 2010), whereas our new
model can result in positive outcomes for all parties.
In this paper, we provide an analysis of the firm’s

multiperiod problem of maximizing its expected NPV,
subject to platform fees and investor participation
constraints, for stochastic revenues and costs. The firm
decides how much investment Y≥ 0 is needed, an in-
vestment multiple M≥ 1 (where investors are guaran-
teed to be paid back M times their initial investment),
and a revenue-sharing proportion γ≥ 0 (in each period,
the firm pays all investors a proportion γ of its reve-
nues). These variables induce a stochastic investment
horizon T and a stochastic bankruptcy time B (possibly
infinite). The platform fees consist of an origination
percentage α ∈ [0, 1] (where the firm pays a fee αY to the
platform at time 0) and a servicing percentage β∈ [0, 1]
(where in each period, the firm pays a β percent of all
investor revenue payments to the platform). We design
a stochastic programming formulation of the firm’s
problem, which is a rather intractable model.
Because the stochasticmodel is difficult to analyze,we

derive a deterministic approximation model for it, in
which we use a cash buffer to cope with uncertainties.
We then solve the approximation problem analytically,
which provides generalizable insights.We also solve our
stochastic model numerically using Monte Carlo sim-
ulation and a grid-based optimization framework for
serially correlated random cash flows that are param-
eterized using real data from Bolstr. We then compare
the NPVs of the approximate and optimal solutions in
the true stochastic model. We conclude that our ap-
proximation provides high-quality solutions: the worst
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case average error of the approximation solution’s NPV
over all feasible Bolstr campaigns for all levels of cash
flow uncertainty is approximately 0.2%.

Finally, we compare the performance of the proposed
revenue-sharing contract with equity crowdfunding
and fixed rate loans, and we identify which type of
financing results in a higher NPV or a lower chance
of bankruptcy for a firm; we find that the revenue-
sharing contract is superior in most cases. We next pro-
vide a literature review to appropriately position our
paper’s contributions.

1.1. Literature Review
There are many papers that study other crowdfunding
models and papers that study various aspects of the in-
terface of operations andfinance aswell as a vast literature
on revenue-sharing contracts, primarily in the areas of
supply chain management and educational financing. In
this section, we survey the most relevant results in these
three streams. However, to the best of our knowledge,
there are no studies investigating crowdfunding via
revenue-sharing contracts, except Fatehi and Wagner
(2017), which is a book chapter summary of a prelimi-
nary version of this research. Thus, our research is uni-
quely at the intersection of these two literature streams.

Babich et al. (2017) provided a detailed study on how
crowdfunding impacts the financing decisions of en-
trepreneurs, banks, and venture capital investors. Chen
et al. (2017) considered fundraising success in crowd-
funding and studied the optimal referring policies by
entrepreneurs empirically and analytically. Chakraborty
and Swinney (2016) studied how entrepreneurs can
signal their product’s quality to contributors via cam-
paign design in reward-based crowdfunding. Zhang and
Liu (2012) studied a data set from Prosper, focusing on
a study of herding behavior in microloan markets. Lin
andViswanathan (2015) also analyzed data fromProsper
and studied the “home bias” in crowdfunding markets.
Iyer et al. (2015) studied a data set from Prosper and
showed that lenders use standard information along
with nonstandard, or soft, information to evaluate
borrower creditworthiness. Belleflamme et al. (2014)
compared two forms of crowdfunding, profit sharing
and preordering of products, and showed that, if the
firm’s investment goal is relatively high with respect
to the market size, the firm prefers profit-sharing
crowdfunding. Finally,Wei and Lin (2016) study, both
theoretically and empirically, the difference between
auctions and posted prices on Prosper.com.

Our paper is also relevant to the literature on the
interface of operations and finance. In particular, our
research is relevant to operational financing. There can
bemany sources offinancing, including traditional bank
financing, as well as more novel arrangements that have
been attracting attention in the operations management
literature, such as buyer financing (Deng et al. 2018),

supplier trade credits (Lee et al. 2017), or both (Kouvelis
and Zhao 2017). We identify crowdfunding as an ad-
ditional source of financing, and although we focus on
revenue-sharing crowdfunding, we also consider equity
crowdfunding.
The structure of our crowdfunding contracts, reve-

nue sharing, has also been extensively studied in the
supply chain management literature. However, the
combination with financial aspects is limited. Kouvelis
and Zhao (2015) studied contract design for a supply
chain with one supplier and one retailer in the presence
of financial constraints and bankruptcy costs, and they
show that a revenue-sharing contract can still co-
ordinate the supply chain. Kouvelis et al. (2017)
showed that revenue-sharing contracts can achieve
high efficiency in the presence of cost uncertainty and
working capital constraints. Similarly, we show that
a firm can benefit significantly from revenue-sharing
contracts under stochastic cash flows.
Revenue-sharing contracts have also appeared in the

education field as a novel approach to funding students.
Nerlove (1975) studied an income-contingent loan pro-
gram for the financing of education, which was originally
proposed by Friedman and Kuznets (1945) for pro-
fessional education and by Friedman (1955) for vocational
education.One example of such a loan program is theYale
Tuition Postponement Option, which started in 1971 but
was discontinued in 1978 (Ladine 2001). Another example
is the Pay-It-Forward plan in Oregon: in 2013, state leg-
islators proposed a program in which students could at-
tend public colleges without paying tuition and in return,
would pay 3% of their future income to the state for
several years after graduation (Palacios and Kelly 2014).
Similarly, the Back-a-Boiler programat PurdueUniversity,
which started in the fall of 2016 and has already raised
$2.2 million, provides funds to undergraduate students
to finance their education through an Income Share
Agreement, in which students agree to pay a percentage
of their future income over a standard payment term
(Purdue 2016). The results and insights of our paper can
also be applied to these student loan agreements.

1.2. Contributions
The contributions of our paper are as follows.

1. We are the first, to our knowledge, to study a new
emergent model of crowdfunding pioneered by Bolstr,
Localstake, and Startwise. Furthermore, our models are
parameterized using real data from 56 Bolstr campaigns.

2. We study a firm’s expected NPV maximization
problem under a revenue-sharing contract, which is an
intractable stochastic model. To overcome the technical
difficulties, we design a tractable deterministic ap-
proximation model, in which we use a cash buffer to
cope with cash flow uncertainties. We solve the ap-
proximation model analytically, which provides quali-
tative insights. Numerical experiments, calibrated on
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real Bolstr data, indicate that the approximation solu-
tions, when inserted into the true stochastic model, re-
sult in an expected NPV that is within 0.2% of the
true optimal NPV on average. Furthermore, the ap-
proximation solutions result in almost the same bank-
ruptcy probabilities as the optimal stochastic solutions.

3. Our results provide managerial guidelines for the
firm.

(a) A firm can attain a higher NPV and a com-
parable probability of bankruptcy under a revenue-
sharing contract than under equity crowdfunding. We
show that the NPV benefit of revenue sharing increases
as the firm’s cash flow volatility increases.

(b) A firm can attain a higher NPV and a lower
probability of bankruptcy under a revenue-sharing
contract than under a more traditional fixed rate loan.
We also show that these benefits are more significant
for firms with higher levels of cash flow uncertainty.
Intuitively, these benefits are because of the more
flexible nature of the revenue-sharing contract.

( c) As cash flowuncertainty increases, the optimal
investment amount increases, and the revenue-sharing
percentage decreases, resulting in a stochastically
larger investment horizon (e.g., larger mean and var-
iance). However, the firm’s maximized NPV is rather
insensitive to cash flow uncertainty. Thus, although the
details of the optimal revenue-sharing contract can
change considerably with cash flow uncertainty, the
bottom line NPV is rather robust to this uncertainty.

2. Stochastic Model of Firm
In this section, we detail our basic stochastic model of
a firm with revenue and cost in time period t, Rt ≥ 0
and Ct ≥ 0, that are random variables; we model these
cash flows using random walks with drift, which are
explained in detail in Section 2.2. Many firms on Bolstr,
Localstake, and Starwise have raised money to upgrade
their existing stores, build a store in a new location, buy
new equipment, and create/upgrade their websites.
Because of this expansion, the firm has cash flow
shortages for a limited time and therefore, needs to raise
capital in the amount of Y≥ 0 (e.g., dollars) via an in-
termediary platform that pairs interested individual
investors that are willing to invest. Therefore, the in-
vestment Y is a buffer to avoid a negative cash flow.

The investors do not receive equity in the firm but are
paid back, with interest, via a revenue-sharing contract:
at the end of each time period t, the firm is contractually
obligated to pay out to all investors a proportion γ≥ 0
of its revenues for that time period. These payments
continue until each investor receives a multipleM≥ 1 of
his/her initial investment, which occurs at time t " T
(for all investors); this definition of M is motivated by
practical implementations (e.g., Bolstr, Localstake, and
Startwise). Note that the investment payments are not
fixed, because they depend on firm revenues, which can

vary. The contract’s duration is, therefore, the stochastic
stopping time

T " min T̂≥ 1 :
∑T̂

t"1
γRt ≥MY

}
,

{
(1)

which captures the firm’s contractual obligation to
pay γ percent of its revenue to investors until a total
nominal amount of MY has been paid. Time period
t " 0 is the initialization of the revenue-sharing contract
when the firm receives total investment Y. The firm
must also pay the platform (1) an origination fee of
α∈ [0, 1] percent of the total amount raised Y at time
t " 0 and (2) a servicing fee of β∈ [0, 1] percent of all
revenue payments made to investors at times t> 0.
We next discuss cash flows, and for simplicity, we

assume that the risk-free interest rate is zero (i.e., cash
does not earn interest). If, in period t, Rt − Ct < 0, there is
a cash shortfall; however, this can potentially be ad-
dressed using an excess of cash from previous periods.
Thus, we focus on cumulative cash flows. If there exists
τ≥ 1, such that ∑τ

t"1(Rt − Ct)< 0, then the firm needs
cash in month τ. The firm’s cumulative cash flow at the
end of month τ " 1, . . . ,T, during the revenue-sharing
contract, is ∑τ

t"1(Rt − Ct) + (1 − α)Y − (β + 1)γ∑τ
t"1 Rt;

if τ>T, after the completion of the contract, the
cumulative cash flow is ∑τ

t"1(Rt − Ct) + (1 − α)Y−
(β + 1)γ∑T

t"1 Rt. These two scenarios can be combined
into one expression for the cash flow in period τ≥ 1:
∑τ

t"1(Rt − Ct) + (1 − α)Y − (β + 1)γ∑min{τ,T}
t"1 Rt.

Because of the stochasticity of the firm’s cash flows,
the firm can potentially go bankrupt for any combi-
nation of contractual parameters (Y,M,γ). Babich and
Tang (2016) and Uhrig-Homburg (2005) model bank-
ruptcy as occurring during the first period when the
firm is cash flow negative; we adopt this approach.
Letting B denote the time period when the firm goes
bankrupt, we model B as a stochastic stopping time
(that depends on the stochastic stopping time T):

B " min B̂≥ 1 :
∑B̂

t"1
(Rt − Ct) + (1 − α)Y

{

− (β + 1)γ
∑min{B̂,T}

t"1
Rt < 0

}
. (2)

The platform and investors receive their payments
at the end of each month if the borrower is not bank-
rupt; thus, the revenue-sharing contract is in effect
for τ " 1, . . . ,min{B,T}. Because costs and revenues are
stochastic, a risk-neutral firm wants to maximize the
firm’s expected NPV:

E
∑B

t"1

Rt − Ct

(1 + rt)t

[ ]
− (β + 1)γE

∑min{B,T}

t"1

Rt

(1 + rt)t

[ ]
+ (1 − α)Y,

(3)
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where γE
∑min{B,T}

t"1
Rt

(1+rt)t
[ ]

is the expected NPV of all pay-
ments made to investors, βγE ∑min{B,T}

t"1
Rt

(1+rt)t
[ ]

is the ex-
pected NPV of all servicing fees paid to the platform, αY is
the origination fee paid to the platform at time t " 0, and in
period t, risk is quantified via imputed discount rates rt
(ArrowandLind1978).Weassume that thesediscount rates
are known.According toPratt et al. (2014), small-sizedfirms
can estimate their NPV by using the cost of capital as the
discount rate. Alternatively,Wei andLin (2016) assume that
firms determine their discount rate according to the lowest
interest rate offered to them fromotherfinancial institutions.

Finally, we consider the investors. We assume that
there is a large pool of investors and that the target
investment is raised by n investors, where investor
i invests an amount yi ∈ (0, Y] and ∑n

i"1 yi " Y. We
model the investor participation constraints as

E
∑min{B,T}

t"1

yi
Y

γRt

(1 + δt)t
− yi

[ ]
≥Ai, i " 1, . . . ,n, (4)

where yi
Y is the fraction of the total payment γRt

that investor i receives in period t, δt is the discount rate
of investors in period t, the left-hand side is the in-
vestor’s expected NPV, and Ai ≥ 0 is the target rate of
return, in NPV terms, for investor i. In other words, Ai
captures investor i’s opportunity cost of alternative in-
vestments. We simplify the constraints in Expression (4)
to the following single constraint:

E
∑min{B,T}

t"1

γ

Y
Rt

(1 + δt)t

[ ]
≥max

1≤i≤n
Ai

yi

{ }
+ 1. (5)

The firm is able to select the investment amount Y,
the multiple M, and the revenue-sharing proportion γ
to maximize its expected NPV. The above analysis
results in the firm’s problem:

zF " max
Y,M,γ

E
∑B

t"1

Rt − Ct

(1 + rt)t

[ ]
− (β + 1)γE

∑min{B,T}

t"1

Rt

(1 + rt)t

[ ]

+ (1 − α)Y

subject to (s.t.) T " min T̂≥ 1 :
∑T̂

t"1
γRt ≥MY

}{

(contractual obligation)

B " min B̂≥ 1 :
∑B̂

t"1
(Rt − Ct) + (1 − α)Y

{

− (β + 1)γ
∑min{B̂,T}

t"1
Rt < 0

}

(bankruptcy definition)

E
∑min{B,T}

t"1

γ

Y
Rt

(1 + δt)t

[ ]
≥max

1≤i≤n
Ai

yi

{ }
+ 1

Y, γ≥ 0, M≥ 1.
(investor participation)

(6)

2.1. Model Parameterization Using Data
from Bolstr.com
We have collected cost and revenue projections from 56
campaigns on the Bolstr platform and performed re-
gression analyses on them. The R2 values for the cost
regressions ranged from 0.595 to 0.995, with a mean of
0.905 and a standard deviation of 0.079. The R2 values
for the revenue regressions ranged from 0.725 to 0.995,
with a mean of 0.922 and a standard deviation of 0.065.
Therefore, the Bolstr data suggest that linear models
of cost and revenue projections, in expectation, are
reasonable assumptions.
We denote a and b as the intercept and slope of

a generic revenue regression line, respectively; simi-
larly, we denote c and d as the intercept and slope of
an arbitrary cost regression line, respectively. Letting
E[Rt] and E[Ct] denote the expected revenue and cost
in period t, respectively, we assign

E[Rt] " a + bt and E[Ct] " c + dt. (7)

Many, but not all, of our results will utilize the linearity
of cash flows.

2.2. Modeling Cash Flows
Motivated by the cash flow models in Dechow et al.
(1998), we generate revenues (R1,R2, . . .) and costs
(C1,C2, . . .) using random walk processes:

Rt " Rt−1 + Zr
t and Ct " Ct−1 + Zc

t , t≥ 1, (8)

where R0 " a and C0 " c are given in Equation (7). Zr
t

are independent normal random variables with com-
monmean µr " b, where b is given by Equation (7), and
standard deviation σr " µr/k, where k is a tunable
parameter. Similarly, Zc

t are independent normal ran-
dom variables with common mean µc " d, where d is
given by Equation (7), and standard deviation
σc " µc/k. The means can be easily calculated: E[Rt] "
a + bt and E[Ct] " c + dt, in agreement with Equation (7).
Furthermore, the random walk model exhibits serial
correlation: it is straightforward to show that, for s< t,
cov(Rs,Rt) " s(σr)2 and cov(Cs,Ct) " s(σc)2. Note that
Brownian motion is a limit of a randomwalk process
(Kac 1947). Therefore, our proposed random walk
models for revenues and costs can be considered as
approximate Brownian motion processes with drifts
µr and µc and volatilities σr and σc, respectively (Ross
1996, Sigman 2006).

2.3. Analysis Roadmap
We found an analytical solution to Problem (6) to be
intractable. In the next section, we derive an approxi-
mation for the stochastic problem. The approximation
problem is a deterministic relaxation where σr " σc " 0,
but we add a cash flow buffer to the bankruptcy
definition to deal with cash flow uncertainties in the
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stochastic model; in this case, we are able to derive
analytical solutions that provide generalizable insights.
These results are provided in Section 3. To evaluate the
quality of our approximation, we also solve Problem (6)
for real Bolstr data using Monte Carlo simulation to
determine the stochastic stopping times (B,T) and
expectations combinedwith numerical optimization on
a fine grid of (Y,M,γ) space. We utilize random walks
with drift for the cash flows, where σr " µr/k and σc "
µc/k for various values of k; this analysis can be found
in Section 4. Finally, in Sections 5 and 6, we show that
the revenue-sharing contract compares favorably
with equity crowdfunding and fixed rate loans,
respectively.

3. Deterministic Approximation to
Stochastic Model

In this section, we consider a deterministic approxi-
mation to Problem (6), where the cash flows Rt and Ct
are known exactly. This simplification results in the
conversion of the bankruptcy time B and investment
duration T into parameters rather than random vari-
ables. We assume that, given that cash flows are known
exactly, the firm desires to avoid bankruptcy. Thus,
reversing the condition for bankruptcy in Equation (2),
we introduce constraints that require the firm to be cash
flow positive above θ≥ 0 for all time periods τ≥ 1,
where θ is a cash buffer to account for cash flow un-
certainties in the stochastic problem:

∑τ

t"1
(Rt − Ct) + (1 − α)Y − (β + 1)γ

∑min{τ,T}

t"1
Rt ≥θ, τ≥ 1.

(9)

Similarly, in project management, Long and Ohsato
(2008) developed a deterministic schedule and used
a project buffer for dealing with resource uncertainty.
They determined the size of the buffer numerically;
similarly, in Section 4.2, we determine the size of the
cash buffer θ numerically as a function of problem
data. We show that, as the uncertainty of revenues
and costs increases, θ should increase to make the
deterministic approximation solution feasible for the
stochastic problem and provide a high-quality approx-
imation for the stochastic problem.

These constraints imply that B " ∞, because the firm
will never go bankrupt. In Section 4, we show, via
computational experiments, that the optimal solution
to the stochastic model in Problem (6) induces a low
probability of firm bankruptcy over feasible Bolstr
campaigns, which suggests that the constraints in (9)
are unlikely to eliminate the optimal solution to the
stochastic model; in Section 4.2, we evaluate the ap-
proximation quality of the deterministic model developed
in this section for Problem (6), with very encouraging
results.

Next, because the variables Y, M, and γ are contin-
uous, we assume that the definition of T in Equation (1)
holds exactly and deterministically:

∑T

t"1
γRt " MY. (10)

These simplifications result in a deterministic approxi-
mation to Problem (6) parameterized by the investment
duration T:

ẑ F(T) " max
Y,M,γ

∑∞

t"1

Rt − Ct

(1 + rt)t
− (β + 1)γ

∑T

t"1

Rt

(1 + rt)t

+ (1 − α)Y

s.t.
∑T

t"1
γRt " MY (contractual obligation)

∑τ

t"1
(Rt − Ct) + (1 − α)Y

− (β + 1)γ
∑min{τ,T}

t"1
Rt ≥θ, τ≥ 1

(cashflow constraints)
∑T

t"1

γ

Y
Rt

(1 + δt)t
≥max

1≤i≤n
Ai

yi

{ }
+ 1

(investor participation)
Y, γ≥ 0, M≥ 1.

(11)

3.1. Analysis for Fixed T ∈N
In this subsection, we solveModel (11) for a fixed T ∈N.
To begin our analysis, we point out some simplifica-
tions. First, we let Â " max1≤i≤n Ai

yi

{ }
to simplify the

exposition. Second, the contractual obligation con-
straint can be used to solve for γ " MY∑T

t"1Rt
, and γ is

eliminated as a variable. In the subsequent analysis, it
will be convenient to define the set.

X≜

{
τ∈N :

∑τ

t"1
(Rt − Ct)<θ

}
, (12)

which indexes all of the time periods where the firm,
without any investment, has cash flow below θ. It is
also convenient to define the parameters Zτ(T), which
depend only on firm problem data and T:

Zτ(T)≜ (Â + 1)(β + 1)
∑min{τ,T}

t"1 Rt∑T
t"1

Rt
(1+ δt)t

− (1 − α). (13)

The resulting model has the following solution.

Proposition 1. Problem (11), with T ∈N fixed and X≠ ∅,
is feasible if and only if Zτ(T)< 0, ∀τ∈X and
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maxτ∈X
∑τ

t"1(Rt−Ct)−θ
Zτ(T)

{ }
≤ min τ∉X

Zτ (T)>0

∑τ
t"1(Rt−Ct)−θ

Zτ(T)

{ }
, and it has

the optimal solutionM∗(T) " (Â+1)∑T
t"1Rt∑T

t"1
Rt

(1+δt)t
and γ∗(T) " (Â+1)Y∗(T)∑T

t"1
Rt

(1+δt)t
,

where
• if (β + 1)(Â + 1)

∑T
t"1

Rt
(1+rt)t∑T

t"1
Rt

(1+δt )t
− (1 − α)≥ 0, then Y∗(T) "

maxτ∈X
∑τ

t"1(Rt−Ct)−θ
Zτ(T)

{ }
; alternatively, if X " ∅, then Y∗ " 0,

γ∗ " 0, and M∗ " 1 for all T ∈N.
• if (β + 1)(Â + 1)

∑T
t"1

Rt
(1+rt)t∑T

t"1
Rt

(1+δt)t
− (1 − α)< 0, then Y∗(T) "

min τ∉X
Zτ (T)>0

∑τ
t"1(Rt−Ct)−θ

Zτ(T)

{ }
; alternatively, if X " ∅, then

Y∗(T) " min τ∈N
Zτ(T)> 0

∑τ
t"1(Rt−Ct)−θ

Zτ(T)

{ }
for all T ∈N.

The maximized NPV is ẑ F(T) " ∑∞
t"1

Rt−Ct
(1+rt)t

−

( β + 1)(Â + 1)
∑T

t"1
Rt

(1+rt)t∑T
t"1

Rt
(1+δt)t

− (1 − α)
( )

Y∗(T).

Note that Proposition 1 only requires that the cash
flows Rt and Ct be deterministic but does not re-
quire them to be linear. The feasibility constraints in
Proposition 1 can be interpreted as financial conditions,
where the firm can eventually survive on its own; as an
example, where this is not possible, consider the case
where Ct >Rt for all t. In particular, Zτ(T)< 0,∀τ∈X
ensures that the firm is cash flow positive for all
periods τ∈X because of the investment Y∗(T), and the

condition Y∗(T) ≤ min τ∉X
Zτ (T)>0

∑τ
t"1(Rt−Ct)−θ

Zτ(T)

{ }
ensures that the

firm can afford to pay backM∗(T)Y∗(T) to investors and
βM∗(T)Y∗(T) to the platform.

If the firm’s discount rates rt are not too large
relative to the investors’ discount rates δt and

(β + 1)(Â + 1)
∑T

t"1
Rt

(1+rt)t∑T
t"1

Rt
(1+δt)t

− (1 − α)≥ 0 holds, then we see

that, intuitively, if X " ∅, then the firm does not need
any investment, and Y∗(T) " 0. Alternatively, if X≠ ∅
and the feasibility conditions are satisfied, then

(β + 1)(Â + 1)
∑T

t"1
Rt

(1+rt)t∑T
t"1

Rt
(1+δt)t

− (1 − α)
( )

Y∗(T) can be inter-

preted as the firm’s cost for avoiding bankruptcy.

Alternatively, if (β + 1)(Â + 1)
∑T

t"1
Rt

(1+rt )t∑T
t"1

Rt
(1+δt)t

− (1 − α)< 0,

then the firm’s discount rates rt are relatively larger
than the investors’ discount rates δt. Therefore, the
firm’s gain from the (1 − α)Y investment at time 0 is
greater than the firm’s NPV of future payments to the
investors and the platform. As a result, the firm benefits
by raising a larger investment.

In Figure 1, we plot the average of the objective
function value ẑF(T) and the average of the optimal
variables (Y∗(T), M∗(T), γ∗(T)) from Proposition 1 as

a function of T over feasible Bolstr campaigns for the
following parameter set. For each campaign, we let linear
revenues Rt " E[Rt] and costs Ct " E[Ct], where E[Rt]
and E[Ct] are given in Equation (7), and only use the
given campaign’s data, θ " 0, α " 0.05 and β " 0.01 (per
a Bolstr memorandum), Â " 0.1 (i.e., a 10% NPV return
for investors), and rt " δt " 0.01,∀t (the discount rate per
period, typically a month). These results are useful in the
sequel for interpreting the results for the stochastic
problem where the level of variability in costs and rev-
enues is small.
The plot in the upper left of Figure 1 suggests that

ẑF(T) converges rather quickly to an asymptote. In the
next section, for linear cash flows, we derive conditions
for which max

T
ẑF(T) is attainedwhen T→∞. However,

our numerical results suggest that relatively small
values of T, say T ∈ {18, . . . , 30}, suffice to attain almost
all of the potential value of max

T
ẑF(T). In the upper right

plot of Figure 1, we observe that Y∗(T) decreases rather
quickly to an asymptote as well. In the lower left plot of
Figure 1, we see that M∗(T) is increasing in T, and in
the lower right plot of Figure 1, we see that γ∗(T) is
decreasing in T, which intuitively aligns with the in-
creased investment duration T. We point out that our
model was only feasible for T≥ 12 for all feasible
campaigns for θ " 0; in the next section, for linear cash
flows, we provide a rigorous proof that Problem (11)
can only be feasible for large-enough T.

3.2. The Optimal Investment Horizon T ∗

In the previous section,wefixedT ∈N and solvedProblem
(11); we provided closed form expressions in Proposition 1
for γ∗(T), M∗(T), and Y∗(T) for feasible problems. In
this section, we find the optimal investment horizon T∗.
Proposition 1 indicates that Model (11) becomes

ẑF(T) " max
T∈N

∑∞

t"1

Rt − Ct

(1 + rt)t

− (β + 1)(Â + 1)
∑T

t"1
Rt

(1+rt)t∑T
t"1

Rt
(1+δt)t

− (1 − α)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠Y∗(T)

s.t. Zτ(T)< 0, τ∈X

max
τ∈X

∑τ
t"1(Rt − Ct) − θ

Zτ(T)

{ }

≤ min
τ∉X

Zτ (T)>0

∑τ
t"1(Rt − Ct) − θ

Zτ(T)

{ }
,

(14)

where Y∗(T) is defined in Proposition 1. It is convenient
to define the term R∞ ≜

∑∞
t"1

Rt
(1+δt)t

, which we assume is
finite, to present the next set of results, which are valid for
large T and characterize the structure of Problem (14).
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Lemma 1. If (Â + 1)(β + 1)∑τ
t"1Rt/R∞ < (1−α) for all τ∈X,

then Zτ(T)< 0 for all τ∈X.

Lemma 2. For τ∈X and Zτ(T)< 0, maxτ∈X
∑τ

t"1(Rt −Ct)−θ
Zτ(T)

{ }

is strictly decreasing in T.

Lemma 3. For τ∉X andZτ(T)>0,min τ∉X
Zτ (T)>0

∑τ
t"1(Rt−Ct)−θ

Zτ(T)

{ }

is strictly increasing in T.
The next lemma builds on Lemmas 2 and 3 to

characterize the objective function of Problem (14).

Lemma 4. If rt " r≥ δ " δt,∀t or rt " δt,∀t, then the
objective function of Problem (14) is increasing in T for
large T.

Lemmas 2 and 3 suggest that maxτ∈X
∑τ

t"1(Rt−Ct)−θ
Zτ(T)

{ }
≤

min τ∉X
Zτ (T)>0

∑τ
t"1(Rt−Ct)−θ

Zτ(T)

{ }
is attained asymptotically. However,

this is not always possible. Consider the following
example.

Example 1. Let the revenues Rt " 10 for t≥ 1; the costs
are C1 " 15, C2 " 5, and Ct " 10 for t≥ 3, and θ " 0.
The set X " {1}, and for feasible values of (Â,α, β, δt),
maxτ∈X

∑τ
t"1(Rt −Ct)−θ

Zτ(T)

{ }
> 0 for all feasible T. In contrast,

∑τ
t"1(Rt − Ct) " 0 for all τ∉X, implying that

min τ∉X
Zτ(T)>0

∑τ
t"1(Rt −Ct)−θ

Zτ(T)

{ }
" 0.

In the next subsection, we see that an assumption of
linear cash flows resolves the issue encountered in the
above counterexample, and Problem (14) is solvable
analytically. Recall that the linearity of revenues and
costs is supported by real data from Bolstr as explained
in Section 2.1.

Figure 1. (Color online) Illustration of Proposition 1 for Feasible Bolstr Campaigns with Linear Costs and Revenues
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Linear Firm Costs and Revenues. Next, we consider
Problem (14) when the costs and revenues are linear:
Rt " a + bt and Ct " c + dt. We could, for instance, pa-
rameterize (a, b, c, d) using the regression analysis onBolstr
data. The setX, for linear costs and revenues, simplifies to

X " τ ∈N : (a − c)τ + (b − d) τ(τ + 1)
2

<θ

{ }
. (15)

The following function is useful for the subsequent
analysis and results:

f (τ)≜
∑τ
t"1
(Rt − Ct) − θ

Zτ(T)
" (a − c)τ + (b − d) τ(τ+1)2 − θ

η(T) aτ + b τ(τ+1)
2

( )
− (1 − α)

,

(16)

where η(T)≜ (Â+1)( β+1)∑T
t"1

Rt
(1+δt)t

> 0. This function allows us to

write maxτ∈X
∑τ

t"1(Rt−Ct)−θ
Zτ(T)

{ }
" maxτ∈X f (τ) and min τ∉X

Zτ (T)>0∑τ
t"1(Rt−Ct)−θ

Zτ(T)

{ }
"min τ∉X

Zτ (T)>0
f (τ), where maxτ∈X f (τ) is a

lower bound on Y∗(T) to allow cash flow positivity at or
above θ andmin τ∉X

Zτ (T)>0
f (τ) is an upper bound on Y∗(T) to

ensure that the firm can afford to pay back M∗(T)Y∗(T)
to investors and βM∗(T)Y∗(T) to the platform (Figure 2).
Our next two results characterize the cases where the
setX is unbounded or empty, which results in infeasible
and trivial firm optimization problems, respectively.

Lemma 5. If (1) b< d or (2) b " d and a< c + θ, then
Problem (14) is infeasible.

Under the conditions of Lemma 5, the firm will even-
tually go bankrupt for all values of (Y,M,γ).
Lemma 6. If (1) b> d, (b − d)≥ (c − a) + θ, and (β + 1)

(Â + 1)
∑T

t"1
Rt

(1+rt)t∑T
t"1

Rt
(1+δt)t

− (1 − α)≥ 0 or (2) b " d and a≥ c + θ,

then Y∗(T) " 0 for all T ∈N in Problem (11).

Under either of the conditions of Lemma 6, the firm
does not need any outside funding and is cash flow
positive at or above θ for all periods τ≥ 1.
Another set of conditions where the firm is cash

flow positive at or above θ for all periods τ≥ 1 is b> d,

b− d≥ (c− a) +θ, and (β+1)(Â+1)
∑T

t"1
Rt

(1+rt)t∑T
t"1

Rt
(1+δt)t

− (1−α) <0.

In the next lemma,we show that, under these conditions,
if feasible, the firm borrows money from investors,
although it is already cash flow positive at or above θ.
The reason is that, under these conditions, the firm’s
gain from raising an investment at time t" 0 is larger
than the NPV of its future monthly payments to the
investors and the platform because of its high discount
rates.

Lemma 7. If b> d, b − d≥ (c − a) + θ, and ( β + 1)(Â + 1)∑T
t"1

Rt
(1+rt)t∑T

t"1
Rt

(1+δt)t
− (1 − α)< 0, then for θ≤θL(T), where θL(T) is

a function of T and problem parameters, we have for all
T ∈N:
if cb − da≥ 0, then Y∗(T) " min{ f (⌊τ∗∗⌋), f (⌈τ∗∗⌉)}, where

τ∗∗ is real and equal to

τ∗∗ " [(1 − α)(b − d) − η(T)θb
+ [((1 − α)(b − d) − η(T)θb)2
‒ η(T)(cb − da)((2(c − a) − (b − d))(1 − α)
+ η(T)θ(2a + b))]1/2]/[(cb − da)η(T)].

if cb − da< 0, then Y∗(T) " (b − d)/η(T)b.
We have characterized all combinations of (a, b, c, d),

except the case where b> d and b − d< (c − a) + θ. We
break this case into two subcases: (1) b> d, b − d<
(c − a) + θ, and cb> da, and (2) b> d, b − d< (c − a) + θ,
and cb≤ da. These cases result in Problem (14) being
feasible with a nontrivial solution. In particular, Case 1
includes firms that have cash flow shortages for a
limited time but expectations of positive cash flows in
the future. Case 2 includes firms that have positive cash
flows, but they are below θ, and the firm receives in-
vestment to increase its cash flow to at least θ. Recall
that θ is a cash buffer in the deterministic approxi-
mation problem to account for cash flow uncertainties
in the stochastic problem. We begin by characterizing
the set X for both of these cases.

Lemma 8. If b> d and b − d< (c − a) + θ, then X "

τ∈N : 1≤ τ<
c−a−b−d

2

( ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c−a− b−d

2

( )2+ 2θ(b − d)
√

b − d

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

From the set X, it is clear that, as θ increases, the
number of periods where the firm has a cash flow
below θ increases. The following lemma indicates that
the problem is not feasible for θ larger than a threshold.

Figure 2. (Color online) The Form of the Function f (τ)
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Lemma 9. The first constraint in Problem (14), Zτ(T)< 0
for all τ∈X, is equivalent to the conditions θ≤ θ̂(T) and

(ad − bc) + (b − d)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + b/2)2 + 2(1 − α)b/η(T)

√
≥ 0, where

θ̂(T) is a function of T and problem parameters.

Note that the left-hand side of the second
condition in Lemma 9, (ad − bc) + (b − d)
·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + b/2)2 + 2(1 − α)b/η(T)

√
≥ 0, is increasing in T,

albeit asymptotically, because of η(T). Therefore, if it is
possible for the first constraint of Problem (14) to hold, it
will be feasible for a large-enough T and a small-enough θ.
We next analyzeCases 1 and 2, building on the condition in
Lemma 9, to address the second constraint in Problem (14).

Case 1. b> d, b − d< (c − a) + θ, and cb> da. The next
three lemmas characterize the second constraint in
Problem (14) for Case 1: b> d, b − d< (c − a) + θ, and
cb> da, assuming that the feasibility conditions of the
first constraint in Lemma 9 hold.

Lemma 10. If b> d, cb> da, and (ad − bc) + (b − d)
·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + b/2)2 + 2(1 − α)b/η(T)

√
≥ 0, then for θ≤ θ̃(T) and

b − d< (c − a) + θ, where θ̃(T) is a function of T and
problem parameters:

If θ≥ ((b−d)−2(c−a))(1−α)
η(T)(2a+b) , then maxτ∈X f (τ)"max{ f (⌊τ∗⌋),

f (⌈τ∗⌉)}, where τ∗ is real and equal to

τ∗ " [(1 − α)(b − d) − η(T)θb
− [((1 − α)(b − d) − η(T)θb)2
− η(T)(cb − da)((2(c − a) − (b − d))(1 − α)
+ η(T)θ(2a + b))]1/2]/[(cb − da)η(T)].

Otherwise, maxτ∈X f (τ) " a+b−c−d−θ
η(T)(a+b)−(1−α).

Lemma 11. If b> d, cb> da, and (ad − bc) + (b − d)
·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + b/2)2 + 2(1 − α)b/η(T)

√
≥ 0, then for θ≤ θ̃(T) and

b − d< (c − a) + θ, where θ̃(T) is a function of T and

problem parameters, we havemin τ∉X
Zτ (T)>0

{ f (τ)}"min{ f (⌊τ∗∗⌋),
f (⌈τ∗∗⌉)}, where τ∗∗ is real and equal to

τ∗∗ " [(1 − α)(b − d) − η(T)θb
+ [((1 − α)(b − d) − η(T)θb)2
− η(T)(cb − da)((2(c − a) − (b − d))(1 − α)
+ η(T)θ(2a + b))]1/2]/[(cb − da)η(T)].

Lemma 12. If b> d, cb> da, and (ad − bc) + (b − d)
·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + b/2)2 + 2(1 − α)b/η(T)

√
≥ 0, then ∃ θ̄(T), such that,

for θ≤ θ̄(T) and b − d< (c − a) + θ, where θ̄(T) is a func-
tion of T and problem parameters, the inequality
maxτ∈X{ f (τ)}≤min τ∉X

Zτ(T)>0
{ f (τ)} holds for T large enough.

Lemmas 10–12 prove that, for linear cash flows and
Case 1, if θ is small enough and T is large enough,
Problem (14) is feasible. We next accomplish the same
task for Case 2.

Case 2. b> d, b − d< (c − a) + θ, and cb≤ da. The next
three lemmas characterize the second constraint in
Problem (14) for Case 2: b> d, b − d< (c − a) + θ, and
cb≤ da, assuming that the feasibility conditions of the
first constraint in Lemma 9 hold.

Lemma 13. If b> d, cb≤ da, and (ad − bc) + (b − d)
·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + b/2)2 + 2(1 − α)b/η(T)

√
≥ 0, then for θ≤ θ̃(T) and

b − d< (c − a) + θ, where θ̃(T) is a function of T and
problem parameters, we have maxτ∈X f (τ) " a+ b− c− d−θ

η(T)(a+b)− (1−α).

Lemma 14. If b> d, cb≤ da, and (ad − bc) + (b − d)
·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + b/2)2 + 2(1 − α)b/η(T)

√
≥ 0, then for θ≤ θ̃(T) and

b − d< (c − a) + θ, where θ̃(T) is a function of T and

problem parameters, we havemin τ∉X
Zτ(T)>0

{ f (τ)}"(b−d)/η(T)b.
Note that, from b> d and cb≤ da, we conclude that

a≥ c. Conditions b> d and a≥ c represent a firm that has
higher revenues than costs in all periods, with the
revenue growth larger than that of cost; however, the
firm’s cash flow is not above θ in all periods, which
drives the need for investment.

Lemma 15. If b> d, cb≤ da, and (ad − bc) + (b − d)
·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + b/2)2 + 2(1 − α)b/η(T)

√
≥ 0, then ∃ θ̄(T), such that,

for θ≤ θ̄(T) and b − d< (c − a) + θ, where θ̄(T) is a func-
tion of T and problem parameters, the inequality
maxτ∈X{ f (τ)}≤min τ∉X

Zτ (T)>0
{ f (τ)} holds.

The conclusion of Lemmas 12 and 15,maxτ∈X{ f (τ)}≤
min τ∉X

Zτ(T)>0
{ f (τ)}, guarantees that the firm is cash flow

positive at or above θ in all months for Cases 1 and 2,
respectively, which is only possible if θ is small enough.
Lemmas 2 and 3 prove that the inequalitymaxτ∈X{ f (τ)}≤
min τ∉X

Zτ (T)>0
{ f (τ)}, if feasible, is feasible for T large enough.

Thus, Problem (14), under linear cash flows and Cases 1
and 2, is feasible for T large enough and θ small enough.
The results in Lemmas 7, 10, and 13 provide closed form
solutions for Y∗(T) under all nontrivial cases, and
Proposition 1 provides closed form solutions forM∗(T)
and γ∗(T) as a function of Y∗(T). We found that T"120
worked well to generate high-quality approxima-
tions for problems parameterized by real Bolstr data.
These optimal variables for Problem (14) are used as
approximate solutions for the stochastic model in
Problem (6), with quality that we explore in the next
section.
To complete the analysis of the deterministic problem,

we now collect all of these results to solve Problem
(14) for the cases where rt " r≥ δ " δt,∀t or rt " δt,∀t.
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Proposition 1 and Lemmas 7, 10, and 13 for linear cash
flows provide closed form solutions for the optimal
γ∗(T),M∗(T), and Y∗(T), assuming model feasibility and
a fixed T ∈N. Lemma 4 indicates that the objective of
Problem (14) is strictly increasing in T. Lemmas 1–3
prove that Problem (14), if feasible, is feasible for large-

enough T. We also note that lim
T→∞

η(T) " lim
T→∞

(Â+1)( β+1)∑T
t"1

(a+bt)
(1+δt)t

"
(Â + 1)( β + 1)/R∞. Lemmas 11, 12, 14, and 15 prove, for
Cases 1 and 2, respectively, that, for linear cash flows
and large-enough T, the model is feasible. Together,
these results solve Problem (14) for linear costs and
revenues, whichwe summarize in the next propositions.
Specifically, in Proposition 2, we characterize the opti-

mal solutions for (β + 1)(Â + 1)
∑T

t"1
Rt

(1+rt )t∑T
t"1

Rt
(1+δt)t

− (1 − α)≥ 0,

and in Proposition 3, we do the same for (β + 1)

· (Â + 1)
∑T

t"1
Rt

(1+rt )t∑T
t"1

Rt
(1+δt)t

− (1 − α)< 0.

Proposition 2. For (β + 1)(Â + 1)
∑T

t"1
Rt

(1+rt )t∑T
t"1

Rt
(1+δt)t

− (1 − α)≥ 0

and either rt " r≥ δ " δt,∀t or rt " δt,∀t, if b> d,
b − d< (c − a) + θ, θ≤ lim

T→∞
θ̄(T), and (ad − bc) + (b − d)

·
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + b/2)2 + 2(1 − α)b R∞

(Â+1)(β+1)

√
≥ 0, then

if cb> da and θ≥ ((b−d)−2(c−a))(1−α)(Â+1)(β+1)
R∞(2a+b) , then T∗ " ∞,

M∗ " ∞, and Y∗ " max{ f (⌊τ∗⌋), f (⌈τ∗⌉)},γ∗ " (Â+1)Y∗

R∞ ,
where

τ∗ " [(1 − α)(b − d) − θb(Â + 1)(β + 1)/R∞]

/[(cb − da)(Â + 1)(β + 1)/R∞]

− [[((1 − α)(b − d) − θb(Â + 1)(β + 1)/R∞)2

− (Â + 1)(β + 1)/R∞(cb − da)((2(c − a)
− (b − d))(1 − α) + (Â + 1)(β + 1)

/R∞θ(2a + b))]1/2]/[(cb − da)(Â + 1)(β + 1)/R∞].

Otherwise, T∗ " ∞,M∗ " ∞, Y∗ " a+b−c−d−θ
(Â+1)(β+1)(a+b)/R∞−(1−α),

and γ∗ " (Â+1) a+b−c−d−θ
η(T)(a+b)−(1−α)
R∞ .

The firm’s maximized NPV is ẑF " ∑∞
t"1

a−c+(b−d)t
(1+rt)t

−
(
(β + 1)

(Â + 1)
∑T

t"1
Rt

(1+rt)t∑T
t"1

Rt
(1+δt)t

− (1 − α)
)
Y∗.

Proposition 3. For (β + 1)(Â + 1)
∑T

t"1
Rt

(1+rt )t∑T
t"1

Rt
(1+δt)t

− (1 − α)< 0

and rt " r≥ δ " δt,∀t, if b> d, b − d≥ (c − a) + θ, and

θ≤ lim
T→∞

θL(T) or if b> d, b − d< (c − a) + θ, θ≤ lim
T→∞

θ̄(T),

and (ad − bc) + (b − d)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + b/2)2 + 2(1 − α)b R∞

(Â+1)(β+1)

√

≥ 0, then

if cb − da≥ 0, then Y∗(T) " min{ f (⌊τ∗∗⌋), f (⌈τ∗∗⌉)},
if cb − da< 0, then Y∗(T) " (b − d)/η(T)b,

where τ∗∗ is real and equal to

τ∗∗ " [(1 − α)(b − d) − θb(Â + 1)(β + 1)/R∞]
/
[(cb − da)(Â + 1)(β + 1)/R∞]

+ [[((1 − α)(b − d) − θb(Â + 1)(β + 1)/R∞)2

− (Â + 1)(β + 1)/R∞(cb − da)((2(c − a)
− (b − d))(1 − α) + (Â + 1)(β + 1)

/R∞θ(2a + b))]1/2]/[(cb − da)(Â + 1)(β + 1)/R∞] ,

andT∗ "∞,M∗ "∞,γ∗ " (Â+1)Y∗

R∞ .Thefirm’smaximizedNPV is

ẑF "∑∞
t"1

a−c+(b−d)t
(1+rt)t

−
(
(β+1)(Â+1)

∑T
t"1

Rt
(1+rt)t∑T

t"1
Rt

(1+δt)t
− (1−α)

)
Y∗.

From Propositions 2 and 3, we see that, if rt " r≥ δ "
δt,∀t or rt " δt,∀t, then Y∗ and γ∗ are finite, butM∗ and
T∗ are infinite. This solution corresponds to a financial
perpetuity (an annuity with no termination) with
nonfixed payments that are a function of firm reve-
nues. Note that perpetuities are common in modern
business (e.g., anyone can purchase a perpetuity
through Bank of America’s Merrill Edge brokerage).
More prominent examples include LeBron James, a
four-time NBA MVP (National Basketball Association
Most Valuable Player), and soccer star David Beckham
having lifetime contracts with Nike and Adidas, re-
spectively (Novy-Williams 2015). Furthermore,
Gerber et al. (2012) provide a study of three crowd-
funding platforms and showed that many individuals
and firms use crowdfunding to make direct and long-
term connections with investors; a perpetuity precisely
achieves a long-term connection.
Our perpetuity solution can also be interpreted as

a pseudotype of equity crowdfunding. Ross et al. (2002)
explain that the present value of stock is equivalent to
the discounted present value of all future dividends,
which are typically a share of profits (O’Sullivan and
Sheffrin 2007, p. 198). If we replace profits with reve-
nues, we obtain our perpetuity contract. In Section 5,
we formally study the difference between our model
and an equity crowdfunding model that shares profits
rather than revenues, and we show that the revenue-
sharing contract is superior.

4. Analysis of Stochastic Model
4.1. Simulation-Based Numerical Optimization of
Stochastic Model
To solve Problem (6), we let revenues Rt and costs Ct of
each of the 56 Bolstr campaigns follow the random
walk processes in (8). We set the highest allowable
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values of σr and σc as µr/3 and µc/3, respectively, so
that revenues and costs are nonnegative with high
probability. More specifically, we consider σr " µr/k
and σc " µc/k for k ∈ {3, 4, 5, 6, 7, 8, 9, 10, 15} along with
the additional deterministic case of k→∞.

In our base parameter set, we let rt " δt " 0.01 for all
t, α " 0.05, β " 0.01, and Â " 0.1 (i.e., a 10%NPV return
for investors); note that r is the discount rate per period,
which is typically a month, and that the choice of α "
0.05 and β " 0.01 is supported by a Bolstr memoran-
dum. Many online platforms, such as Bolstr, Lending
Club, andProsper, charge a 1% servicing fee for collecting
and processing payments. These online lenders usually
charge borrowers origination fees of typically 1% − 8%.

We approximate an infinite horizon by considering
t∈ {1, . . . ,N}, where N " 1,000; we selected this value
of N, so that N >max{B,T} holds with high proba-
bility. Furthermore, there is no evidence that revenue-
sharing contracts at Bolstr and Localstake last longer
than 1,000 months, and as pointed out earlier, most
Bolstr campaigns last 2–5 years. For analyzing Prob-
lem (6) numerically, we discretized the (Y,M,γ) space.
In particular, we considered values of Y∈ {0,∆Y,
2∆Y, . . . , Ȳ}, M∈ {1, 1 + ∆M, 1 + 2∆M, . . . , M̄}, and γ∈
{0,∆γ, 2∆γ, . . . , γ̄}, where (∆Y,∆M,∆γ, Ȳ , M̄ , γ̄) "
(5,000, 0.25, 0.01, 2,000,000, 3, 1) were chosen to bal-
ance computational time and solution quality.

For each campaign, we used Monte Carlo simulation
to generate m " 1,000 realizations of the (R1, . . . ,RN)
and (C1, . . . ,CN) vectors, which allowed us to generate
m realizations of the T and B random variables for each
(Y,M,γ) tuple in the discretized set. Then, for each
variable tuple, averaging over the m trials, we estimate
E

∑B
t"1

Rt−Ct
(1+r)t

( )
, E

∑min{B,T}
t"1

Rt
(1+r)t

( )
, and E

∑min{B,T}
t"1

Rt
(1+δ)t

( )
,

which allowed us to evaluate the feasibility of the
variable tuple. Finally, we evaluated the objective
function for each feasible (Y,M,γ) tuple and chose the
one that maximizes the objective function as the op-
timal solution. Depending on the standard deviations,
90%–95% of the 56 Bolstr campaigns were feasible.

4.2. Evaluation of Deterministic Approximation
in Section 3
In this subsection, we evaluate the value of the ap-
proximate Problem (14) with respect to that of the
stochastic Problem (6) for T large enough. For the nu-
merical results presented below, we consider T " 120,
although the performance is insensitive for larger T. In
Section 4.3, we show that, if we use the approximation
solutions in the true stochastic model, the expected in-
vestment horizon T is close to the choice of T " 120. The
main parameters that we vary for each campaign are the
standard deviations σr and σc; all other problem pa-
rameters are listed above. As mentioned previously, we
consider σr ∈ [0,µr/3] and σc ∈ [0,µc/3], so that revenues
and costs are nonnegative with high probability.
For each level of variability, we find the optimal

θ∈ [0, 2M], which makes the approximation solutions
(Y∗(θ),M∗(θ),γ∗(θ)) feasible for Problem (6) and results
in the minimum approximation error for the sto-
chastic problem. We denote this value of θ by θ∗ in the
sequel. In the left panel of Figure 3, we show that, as
cash flow variability increases, θ∗ increases to pro-
vide a larger cash buffer to absorb the additional
variability.
The right panel of Figure 3 shows the percentage of

feasible campaigns for Problem (6) that are also feasible
for Problem (11) for θ∗ and that can, therefore, be
approximated via the approximation Problem (14). As

Figure 3. (Color online) (Left) The Average of θ∗ over Feasible Campaigns; (Right) the Percentage of Feasible Campaigns for
Problem (6) That Are Feasible for Problem (14)
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the level of cash flow uncertainty decreases, the ap-
proximation Problem (14) provides an approximate
solution for Problem (6) for almost all campaigns.

For evaluating the quality of the approximation, we
input the approximation solutions (Y(θ∗),M(θ∗),γ(θ∗))
into Model (6) and compare the firm’s expected NPV
under this solutionwith the true optimal expectedNPV
z F calculated numerically. In the left panel of Figure 4,
we present the average error over all feasible Bolstr
campaigns as a function of the standard deviations σr
and σc. The length of each bar above and below the
average value is equal to the standard deviation of
the error over feasible campaigns. We observe that,
for the highest level of variability, σr " µr/3 and σc "
µc/3, the average error is 0.2% with a standard de-
viation of 0.4%. As variability decreases, the mean and
standard deviation of the errors decrease, such that, for
k→∞, the mean and standard deviation of the errors
are 0.003% and 0.01%, respectively. For k " 6 (σr " µr/6
and σc " µc/6), the average error is within 0.03%. Con-
sequently, we expect that the approximation quality
is acceptable for reasonable levels of variability en-
countered in practice, and we conclude that the approx-
imation problem provides tractable solutions for the
intractable stochastic problem.

Finally, the average values of zF as a function of cash
flow variability are shown in the right panel of Figure 4.
As variability decreases, zF is increasing rather signif-
icantly for higher values of cash flow variability and
very slowly for smaller values of variability. In other
words, firms can increase their maximized expected
NPV significantly by slightly decreasing their cash flow
uncertainty in very uncertain environments. However,
when cash flow uncertainty is not significant, the
maximized expected NPV is slowly decreasing in the
standard deviations σr and σc, and it is rather robust to
their precise values.

4.3. Estimations of the T and B Distributions
In this subsection, we analyze the distributions of B, the
firm’s stochastic bankruptcy time, and T, the stochastic
duration of the contract, for feasible campaigns under
both the stochastic and approximation solutions. We
present results for two qualitatively different campaigns
that are feasible for all k≥ 3. One campaign, Campaign 1,
has a relatively high bankruptcy probability for k " 3 (as
representative of a risky firm), and the other campaign,
Campaign 2, has a zero bankruptcy probability for k " 3
(as representative of a risk-less firm). The estimated
probabilities P(B<∞) are given in Table 1 for the

Figure 4. (Color online) (Left) Evaluation of the Approximation Quality of Problem (14) for Stochastic Problem (6); (Right)
zF over Feasible Campaigns

Table 1. Estimated Probabilities P(B<∞)

k(σr " µr/k and
σc " µc/k)

P(B<∞) for Campaign 1
for (Y∗,M∗,γ∗)

P(B<∞) for Campaign 2
for (Y∗,M∗,γ∗)

P(B<∞) for Campaign 1 for
(Y(θ∗),M(θ∗),γ(θ∗))

P(B<∞) for Campaign 2 for
(Y(θ∗),M(θ∗),γ(θ∗))

3 0.061 0 0.059 0
4 0.008 0 0.005 0
5 0.001 0 0.002 0
6 0.001 0 0.001 0
∞ 0 0 0 0
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optimal and approximate solutions, respectively, as a
function of k. We also evaluated the estimated proba-
bilities P(B<T), and they are identical to those in Table 1.
We see that, as cash flow variability decreases, the firm’s
bankruptcy probability decreases for Campaign 1 (and
Campaign 2’s probability remains at zero) for both op-
timal and approximate variables; furthermore, for a given
k, the probabilities aremostly identical across the two sets
of variables, providing further evidence of the quality of
the approximation.

Figure 5 shows the average of P(B<∞) over fea-
sible Bolstr campaigns under both stochastic and ap-
proximation solutions. The approximation solutions re-
sult in almost the same bankruptcy probabilities as the

stochastic optimal solutions for feasible Bolstr cam-
paigns over different levels of cash flow variability.
In the left plots of Figures 6 and 7, we provide the

estimated distributions of T for k ∈ {3, 4, 5,∞} for
Campaigns 1 and 2, respectively, for Problem (6) under
the stochastic optimal solutions. Visually, we see that
the mean and the standard deviation of T for the
stochastic optimal solutions are decreasing in k (we
confirmed this numerically). In other words, as k in-
creases, the cash flow standard deviations σr and σc

decrease, resulting in a problem with less uncertainty,
which requires less investment Y∗ and can be paid back
earlier with more certainty about the investment du-
ration. Furthermore, when k→∞, resulting in σr "
σc " 0, our stochastic model returns a deterministic
investment duration.
In the right plots of Figures 6 and 7, we see the es-

timated distributions of T for k ∈ {3, 4, 5,∞} for Cam-
paigns 1 and 2, respectively, for Problem (6) under the
approximation solutions. Similar to the left plots of
Figures 6 and 7, the standard deviation of T is de-
creasing in k. However, the mean of the investment
horizon is approximately the same for different levels
of variability and close to T " 120, which we set earlier
for the approximation problem. Therefore, if we use the
approximation solution for setting the contract terms
(Y,M,γ), for T large enough, then the expected in-
vestment horizon is close to T for all firms with dif-
ferent levels of variability.
Finally, because we observed that the firm can

complete the repayment of the revenue-sharing con-
tract within our horizon ofN " 1,000months, this value
of N is unlikely a limiting factor of our numerical
analysis. We also expect that it is unlikely that the firm
will go bankrupt at some time t>N under the less

Figure 5. (Color online) The Average of P(B<∞) over
Feasible Campaigns

Figure 6. (Color online) Estimated Distributions of T in the Stochastic Problem for (Left) (Y∗,M∗,γ∗) and (Right)
(Y(θ∗),M(θ∗),γ(θ∗)), for Campaign 1
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restrictive financial conditions because of the absence
of repayment requirements, and we believe that our
estimates of the probability of firm bankruptcy are not
limited by the value of N " 1,000.

4.4. Sensitivity Analysis for Investors’
Opportunity Cost
In this subsection, we perform sensitivity analysis for
Problem (6) with respect to investors’ opportunity cost
Â . Figure 8 shows the average of zF over the feasible
Bolstr campaigns for different values of Â as a function
of k. In this subsection, we are analyzing the firm’s
problem for the cases where investors’ opportunity
cost is high, and specifically, we are analyzing the
optimal solutions under a revenue-sharing contract
with Â ∈ {0.1, 0.2, 0.3, 0.4}.

As shown in Figure 8, as investors’ opportunity cost
increases, the firm’s maximized NPV decreases. How-
ever, the firm’s maximized NPV is rather robust with
respect to Â under a flexible revenue-sharing contract.
Therefore, firms can benefit from flexible revenue-
sharing contracts even with investors with moderately
high opportunity costs, and the benefit increases as
cash flow variability decreases.

5. Equity Crowdfunding
In this section, we analyze an equity crowdfunding
investment and compare it with our revenue-sharing
contract. According to Bradford (2012), pp. 33–34, in-
vestors purchase equity from the firm and receive
returns in the form of profit sharing. Similarly, Ross
et al. (2002) explain that the present value of equity is
equal to the discounted present value of all future div-
idends, which are typically shares of profit (O’Sullivan
and Sheffrin 2007).
As in the analyses of previous sections, we assume

that the firm raises Y from n investors, such that
Y " ∑n

i"1yi. Investors, in exchange for their equity in-
vestments, collectively receive η percent of the firm’s
monthly profit indefinitely divided among the investors
proportional to their individual investment amounts.
As in our previous analyses, the investors’ discount

rate in period t is δt, and investor i’s expected NPV is
given by E

∑B
t"1

yi
Y

ηmax{Rt−Ct, 0}
(1+δt)t

[ ]
, where max{Rt − Ct, 0}

captures profit sharing. Thus, the investors’ participa-

tion constraints are E
∑B

t"1
yi
Y

ηmax{Rt−Ct, 0}
(1+δt)t

[ ]
− yi ≥Ai,

i " 1, . . . ,n⇔ E
∑B

t"1
η
Y

max{Rt−Ct, 0}
(1+δt)t

[ ]
≥ Â + 1. As in our

previous analyses, we assume that the platform charges
an origination fee α and a servicing fee β. The firm’s
discount rate in period t is again rt. The expected NPV

Figure 7. (Color online) Estimated Distributions of T in the Stochastic Problem for (Left) (Y∗,M∗,γ∗) and (Right)
(Y(θ∗),M(θ∗),γ(θ∗)), for Campaign 2

Figure 8. (Color online) The Average of zF over Feasible
Campaigns
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of the firm after the crowdfunding investment (from
the firm’s perspective) is V≜ E

∑B
t"1

Rt−Ct
(1+rt)t

[ ]
+ (1 − α)Y−

(β + 1)ηE ∑B
t"1

max{Rt−Ct, 0}
(1+rt)t

[ ]
. As a result of their invest-

ment, investors collectively own a Y
V proportion of the

company’s value, and the remaining 1 − Y
V

( )
proportion

belongs to the firm. The expected NPV of the firm’s re-
maining ownership is given by 1 − Y

V

( )
V, which results

in the firm’s maximization problem being defined as

zE "max
Y,η

E
∑B

t"1

Rt − Ct

(1 + rt)t

[ ]
− αY

− (β + 1)ηE
∑B

t"1

max{Rt − Ct, 0}
(1 + rt)t

[ ]

s.t. B " min B̂≥ 1 :
∑B̂

t"1
(Rt − Ct) + (1 − α)Y

{

− (β + 1)η
∑B̂

t"1
max{Rt − Ct, 0}< 0

}

E
∑B

t"1

η

Y
max{Rt − Ct, 0}

(1 + δt)t

[ ]
≥ Â + 1

Y, η≥ 0; (17)

for simplicity, we assume that investors never sell their
equity and only benefit from the dividends of profit
sharing.

Figure 9 presents the results of numerical compari-
sons between revenue-sharing and equity crowd-
funding contracts, where investors’ opportunity cost
Â " 0.1 and rt " δt " 0.01,∀t. The left plot of Figure 9
presents the ratios zE/zF, where zF (zE) is themaximized
NPV of revenue-sharing (equity) crowdfunding aver-
aged over feasible Bolstr campaigns as a function of the
volatility of cash flows. Because these ratios are less
than one, they can be interpreted as the percentages of

the revenue-sharing NPV that are attained by the eq-
uity crowdfunding contract. We conclude that, if
feasible, a firm can attain a higher NPVunder a revenue-
sharing contract than an equity crowdfunding con-
tract. However, we note that four of 56 campaigns
were feasible for high levels of uncertainty under equity
crowdfunding but not under revenue-sharing crowd-
funding. The right plot of Figure 9 presents the firm’s
bankruptcy probabilities for both revenue sharing and
equity crowdfunding, again averaged over feasible
Bolstr campaigns, as a function of the volatility of cash
flows. We observe that the firm’s bankruptcy proba-
bilities under revenue-sharing contracts are within 0.1%
of its bankruptcy probabilities under equity crowd-
funding contracts. Furthermore, for low- and medium-
cash flow volatility levels, revenue-sharing contracts
have lower bankruptcy probabilities. In summary,
similar bankruptcy probabilities and higher NPVs high-
light the superiority of our proposed revenue-sharing
contract over equity crowdfunding contracts.

6. Fixed Rate Loans
In this section, we analyze the performance of a stan-
dard fixed rate loan offered by other traditional and
alternative lenders to serve as a benchmark for the
revenue-sharing contract. We assume that these lenders
offer fixed rate loans with flexible payment terms: the
firm can decide on the investment amount Y (e.g., dol-
lars) and the duration D (e.g., months) for a loan with
a fixed interest rate of s per period (e.g., month). For
simplicity in our analysis, we consider s to be constant
with respect to D, and we show that, even for this
conservative interest rate structure, revenue-sharing
contracts result in higher NPVs for firms.
The loan payment per period is a standard amorti-

zation, and it is equal to sY
1−(1+s)−D (Stoft 2002). We

Figure 9. (Color online) Comparisons of Revenue-Sharing and Equity Contracts
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assume that the lender charges the borrower an orig-
ination fee of w percent of Y. The firm’s maximization
problem can be written as

zL "max
Y,D

E
∑B

t"1

Rt − Ct

(1 + rt)t

[ ]

−E
∑min{B,D}

t"1

sY
(1 − (1 + s)−D)(1 + rt)t

[ ]

+ (1 − w)Y

s.t. B " min B̂≥ 1 :
∑B̂

t"1
(Rt − Ct) + (1 − w)Y

{

−
∑min{B̂,D}

t"1

sY
1 − (1 + s)−D

< 0

}

(bankruptcy definition)
Y,D≥ 0. (18)

Next, we solve the above problem numerically for Y
and D. For this purpose, we need a base parameter
set for the monthly interest rate s. For a conservative
comparison, we consider w " 0. Interest rates and eli-
gibility requirements vary across lenders. Banks usually
have more strict eligibility requirements, but they offer
relatively lower interest rates than some online lenders
who have less stringent eligibility requirements. We
consider monthly interest rates s ∈ {0.03/12, 0.07/12,
0.14/12, 0.21/12} for the numerical analysis.

We performed the numerical analysis for D ∈ [1, 120]
months and Y ∈ [0, 2000000]. We selected the upper
bound of D to be 120 to account for long-term loans
offered by the U.S. SBA and banks that give more
flexibility to firms. The upper bound of Y is chosen so
that it is consistent with the numerical analysis for
Problem (6). Figure 10 presents the firm’s maximized
NPV under loans with monthly fixed rates s∈ {0.03/12,
0.07/12, 0.14/12, 0.21/12} as a ratio to the firm’s maxi-
mized NPV under revenue-sharing contracts, with

investors’ opportunity costs Â ∈ {0.1, 0.2}. The ratios in
Figure 10 are interpreted as percentages of the revenue-
sharing NPV that are attained by the fixed rate loans.
Therefore, a ratio less than one indicates that the firm’s
maximized NPV is higher under a revenue-sharing con-
tract, and a ratio greater than one indicates that the firm’s
maximized NPV is higher under a fixed rate loan.
The firm’s maximized NPV under a revenue-sharing

contract with Â ∈ {0.1, 0.2} is higher than loans with
monthly fixed rates as small as s " 0.07/12. The firm’s
benefit from a flexible revenue-sharing contract is more
significant when cash flow variability is high. For a
revenue-sharing contract with Â " {0.1, 0.2}, the firm
benefits from loanswith amonthlyfixed rate s " 0.03/12
but does not benefit from loans with higher rates, especially
for higher levels of cash flow uncertainty. However, most
loans offered to firms, especially small- to medium-sized
firms, have relatively high interest rates. This underscores
the importance of flexible payments that are possible
under revenue-sharing contracts. Additionally, most
low-rate loans, such as those offered by the SBA, have
a processing time of 2–3 months. In contrast, according
to marketing emails from Bolstr, firms can raise in-
vestments under revenue-sharing contracts within hours.
Figure 11 shows the average bankruptcy probabilities

over feasible Bolstr campaigns under loans with monthly
fixed rates s∈ {0.03/12, 0.07/12, 0.14/12, 0.21/12} and
under revenue-sharing contracts with investors’ oppor-
tunity costs Â ∈ {0.1, 0.2}.
The bankruptcy probability for afirmunder a revenue-

sharing contract with Â ≤ 0.2 is smaller than that of loans
with monthly rates as small as s " 0.14/12. The highest
bankruptcy probability is for a loan with monthly rate
s " 0.21/12, and this again underscores the importance
of flexible revenue-sharing contracts, especially for firms
with higher levels of cash flow variability.
We conclude that firms benefit significantly more

from revenue-sharing contracts than traditional fixed
rate loans if investors’ opportunity costs are not too

Figure 10. (Color online) Comparisons of Maximized NPV Under Revenue-Sharing Contracts and Fixed Rate Loans
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large or if loans have nonnegligible interest rates. These
results are of great importance to small firms, which
usually have higher levels of cash flow uncertainty and
need investment; according to a report by the SBA (U.S.
Small Business Administration 2016), 73% of small
firms used some type of financing in 2015–2016.

7. Conclusion
In this paper, we analyzed an emergent model of
crowdfunding, in which a firm borrows capital and
then pays back investors via revenue-sharing contracts.
Specifically, the firm pays the investors a percentage of
its revenues monthly until a predetermined investment
multiple is paid over an uncertain investment horizon.

This paper is the first, to our knowledge, that studies
this new model of crowdfunding. This model is facili-
tated by a platform (e.g., Bolstr, Localstake, or Startwise)
that matches investors with a firm needing capital. This
new model helps firms in need of investment to survive
and thrive with a flexible contract that has terms that
depend on the firm’s performance. Indeed, when these
contracts are used optimally, we provide evidence that
the likelihood of firm bankruptcy is small, even for
highly variable cash flows, because of the flexible
monthly payments facilitated by the contract. If the
revenue performance of the firm goes well, then the
monthly payments to investors increase, which results
in higher effective interest rates for investors. If revenue
performance is poor, payments are lowered to reduce
financial stress on the firm. We use real data from 56
Bolstr campaigns to motivate and calibrate our analyt-
ical models and to parameterize our numerical studies.

The first part of our paper formulates a stochastic
programming model of the firm’s expected NPV max-
imization problem with the contract parameters as
variables for given values of the platform’s origination

and servicing fees and investors’ opportunity costs;
unfortunately, this model is difficult to analyze. There-
fore, in the second part of our paper, we formulate a
deterministic approximation that we solve analytically.
In the approximation problem, we use a cash buffer for
dealingwith cashflowuncertainties. In the third part,we
evaluate the quality of the approximation solutions for
themain stochasticmodel over feasible Bolstr campaigns
for different levels of cash flow uncertainty. We see that
the worst case average error over the campaigns is ap-
proximately 0.2%. Therefore, we conclude that the ap-
proximation problem provides high-quality solutions for
the intractable stochastic problem.
In the final part of our paper, we compare revenue-

sharing contracts with equity crowdfunding and fixed
rate loans. We find that, for most cases considered,
revenue-sharing contracts provide a higher NPV and
a lower probability of bankruptcy than equity crowd-
funding or a fixed rate loan. We also show that these
benefits are more significant for firms with higher levels
of cash flow uncertainty.
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