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Abstract. Problem definition: Because of the emergence and development of e-commerce,
customers demand faster and cheaper delivery services. However, many retailers find it
challenging to efficiently provide fast and on-time delivery services to their customers.
Academic/practical relevance: Amazon and Walmart are among the retailers that are rely-
ing on independent crowd drivers to cope with on-demand delivery expectations.Method-
ology: We propose a novel robust crowdsourcing optimization model to study labor planning
and pricing for crowdsourced last-mile delivery systems that are utilized for satisfying on-de-
mand orders with guaranteed delivery time windows. We develop our model by combining
crowdsourcing, robust queueing, and robust routing theories. We show the value of the robust
optimization approach by analytically studying how to provide fast and guaranteed delivery
services utilizing independent crowd drivers under uncertainties in customer demands, crowd
availability, service times, and traffic patterns; we also allow for trend and seasonality in these
uncertainties. Results: For a given delivery time window and an on-time delivery guarantee
level, our model allows us to analytically derive the optimal delivery assignments to available
independent crowd drivers and their optimal hourly wage. Our results show that crowdsourc-
ing can help firms decrease their delivery costs significantly while keeping the promise of on-
time delivery to their customers.Managerial implications:Weprovide extensivemanagerial in-
sights and guidelines for how such a system should be implemented in practice.
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1. Introduction
Be it for a large business, such as Amazon or Walmart,
or a smaller retailer, such as a local grocery store, last-
mile deliveries are one of the most expensive aspects of
delivery logistics for orders placed online, and manag-
ing them is becoming increasingly important as cus-
tomers demand faster and cheaper delivery services.
Implementing last-mile deliveries for fast orders can be
challenging, especially during peak demand. According
to Insider Intelligence (2017), 25% of customers do not
proceed with their online orders if same-day delivery is
not available. Nevertheless, only 20% of retailers offer
same-day delivery, which is indicative of the challenges
that are inherent in providing on-demand delivery
services. To overcome these challenges, an increasing
number of retailers, including Amazon and Walmart,
are considering crowdsourcing last-mile deliveries.

Amazon is using independent crowdsourced drivers
under a program called Amazon Flex (flex.amazon.com)
and pays the drivers an hourly wage of $18–$25. In add-
ition to its warehouses, Amazon is using vacant lands,
such as outdoor parking lots, as delivery stations and is
using crowdsourced drivers via the Flex program for

making its Amazon Now and Amazon Fresh deliveries
(Phillips 2018). Walmart similarly offers fast deliveries
in all of its major markets and product categories under
the crowdsourced Spark delivery program (www.
drive4spark.com).

In this paper, we study last-mile deliveries via inde-
pendent crowd drivers who decide whether to work
and when to work. Specifically, we study crowdsourced
last-mile delivery systems for on-demand orders, with
guaranteed delivery time windows, where the time be-
tween placing an order and receiving it ranges from two
hours to same day. According to Taylor (2018), crowd
drivers’ independence and customer delay sensitivity
are integral to crowdsourced on-demand service plat-
forms. Firms should intelligently decide on the crowd
compensation and labor planning to have enough
crowd drivers willing to participate, such that they are
not too busy, to ensure on-time deliveries, nor too idle,
where their effective earning rate is too low for partici-
pation. It is challenging for retailers to make pricing and
labor planning decisions because there is uncertainty in
customer demands (when and where will a customer
place an order), crowd availability (whether and when
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independent crowd drivers are available for delivery
services), and customer delivery service times (deliver-
ing to a house differs from delivering to a gated commu-
nity), as well as varying road traffic conditions.

1.1. Literature Review
Our paper is related to three streams of research:
crowdsourcing last-mile deliveries, the sharing econ-
omy and on-demand platforms, and queueing and
routing via robust optimization. In particular, we are
not aware of any paper that combines aspects of all
three streams, as we do in our paper.

1.1.1. Crowdsourcing Last-Mile Deliveries. In this
stream, Li et al. (2016) develop a heuristic algorithm for
a problemwhere a set of taxi drivers is serving both peo-
ple and parcels. Arslan et al. (2019) develop algorithms
for the problem of crowdsourcing deliveries using a roll-
ing horizon approach, which repeatedly matches drivers
and deliveries every time a driver or a delivery arrives.
Cao et al. (2018) study the use of ride-sharing platforms
such as Uber and Lyft, along with an in-house van deliv-
ery system, for making last-mile deliveries and derive
exact and asymptotic results for the expected number of
packages that can be delivered during a time horizon.
However, these papers focus on algorithmic solutions,
whereas we focus on deriving analytical pricing and la-
bor planning policies for on-demand crowdsourced de-
livery systems with guaranteed delivery time windows.
The paper most relevant to ours is Qi et al. (2018), which
studies crowdsourcing deliveries. One major difference
between our study and the study by Qi et al. (2018) is
that in our paper, packages must be delivered to custom-
ers within guaranteed delivery time windows, whereas
Qi et al. (2018) do not consider such a constraint.

1.1.2. The Sharing Economy and On-Demand Plat-
forms. There are a number of related papers that study
peer-to-peer sharing. He et al. (2017) develop a distribu-
tionally robust optimization model for studying service
region design for electric vehicle-sharing providers that
offer one-way trips to customers. Benjaafar et al. (2019)
characterize the equilibrium of peer-to-peer product
sharing where owners rent their assets to nonowner
consumers on an as needed basis to generate income
from renting. There are also several papers studying the
operation and pricing of on-demand service platforms.
Gurvich et al. (2016) analyze an on-demand service pro-
vider that is using self-scheduling agents and wants to
maximize its profit; they show that under self-schedul-
ing, the firm offers lower service levels to its customers,
which lower the firm’s profit and are costly to custom-
ers. Cachon et al. (2017) show that the use of surge pric-
ing on service platforms with self-scheduling providers
benefits customers, providers, and the platform. Taylor
(2018) examines pricing in on-demand service platforms

where agents are independent and customers are delay
sensitive and shows that uncertainties in agent opportun-
ity costs and customer valuations impact the platform’s
per service price. Similarly, Bai et al. (2019) study the
optimal price and wage rate on on-demand service
platforms with price- and time-sensitive customers and
earning-sensitive service providers. Benjaafar et al. (2018)
analyze labor welfare in on-demand service platforms
with independent workers. In contrast to these papers, in
our work crowd drivers are utilized to deliver packages
to customers within guaranteed delivery time windows.

1.1.3. Queueing and Routing via Robust Optimization.
In this stream, Bandi et al. (2015) study theworst-case per-
formances of single-server and multiserver queueing sys-
tems using robust optimization. Sungur et al. (2008) is
one of the first papers that studies the capacitated vehicle
routing problem with demand uncertainty using a robust
optimization approach. Similarly, Gounaris et al. (2013)
consider the capacitated vehicle routing problem under
the case where demand is uncertain and belongs to a
polyhedron uncertainty set, and the objective is to minim-
ize total routing costs. Carlsson and Delage (2013) utilize
a robust optimization framework to develop branch-and-
bound algorithms for the stochastic multiple-vehicle rout-
ing problem, where the location of demand points and
their distribution are unknown; their objective is to min-
imize theworst-casework load over all subregions, where
each subregion is served by a single vehicle. Liu et al.
(2020) utilize robust optimization for order assignments
in last-mile delivery faced by food service providers.
However, these papers apply robust optimization to clas-
sic routing problems; in contrast, we apply robust opti-
mization to a novel application of on-demand deliveries
via crowd drivers. Furthermore, no paper has combined
robust queueing with robust routing, as we do.

1.2. Contributions
Our paper makes the following contributions.

1. This paper is the first, to our knowledge, that analyt-
ically studies crowdsourcing last-mile deliveries, with
guaranteed delivery time windows (e.g., same-day or
two-hour deliveries), under nonstationary uncertainties.
We develop our optimization model by combining
crowdsourcing, robust queueing, and robust routing the-
ory. We derive closed form expressions for the delivery
cost and system times of all customers in the crowd deliv-
ery system, which allows us to carefully analyze crowd
compensation and labor planning. Our results can help
firms in designing crowdsourced delivery systems, for
their on-demand orders with guaranteed delivery times,
to minimize their last-mile delivery costs. Additionally,
our results help firms to decide on the on-time delivery
guarantee level depending on their customers’ sensitiv-
ities to delay and crowd drivers’ opportunity costs.
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2. Our results show that crowdsourcing can help firms
significantly decrease their delivery costs while keeping
the promise of fast on-time deliveries to customers. Our
analysis shows that, under low levels of uncertainty or
for low on-time guarantee levels, firms should assign
fewer packages in each crowd delivery tour to create a
stream of available delivery work, which encourages
crowd drivers’ participation, without having to offer
them highwages. In contrast, under high levels of uncer-
tainty or for high on-time guarantee levels, firms should
assign more packages in each delivery tour but at the
same time, offer higher hourly wages.

3. We design realistic numerical experiments that
cover 17 Seattle ZIP codes that are served by an Ama-
zon Flex depot, using real travel distances on road net-
works. Our experimental results show that the perform-
ance of our proposed robust solution, which is faster
and easier to implement, performs significantly better
than two benchmarks, a stochastic counterpart and a
nonrandomized heuristic, in terms of the firm’s cost
savings and the number of on-time deliveries for cus-
tomers’ on-demand orders. Furthermore, our results
show that a crowd delivery system, if designed optimal-
ly, is significantly cheaper than the exclusive use of a
third-party logistics (3PL) firm, especially for custom-
ers’ fast same-day and two-hour delivery orders.

2. A Robust Crowdsourcing Model
Challenges in crowdsourced delivery platforms come
from uncertainties in both the supply of crowd drivers
and the demand of customers. In these systems, the
availability of independent crowd drivers is not guaran-
teed, as each driver has their own individual uncertain
opportunity cost, which results in an uncertain supply of
crowd drivers that depends on the offered wage rate. On
the other hand, customer orders must be delivered with-
in guaranteed delivery time windows, under uncertainty
in the timing of customer orders, on-location service
times, and delivery locations, possibly with trend and
seasonality. These uncertainties make it challenging to
deliver customer orders on time for a given service-level
guarantee. We study how a firm should design an effi-
cient crowdsourced last-mile delivery system, to ensure
participation of a sufficient number of crowd drivers, for
on-time delivery of all customer orders while still mini-
mizing delivery costs.

In our paper, we develop our main model utilizing ro-
bust optimization, a modern approach to decision mak-
ing under uncertainty, where uncertainty is captured us-
ing deterministic set membership (whose structures are
motivated by various limit theorems of probability), ra-
ther than stochastic distributions. There are advantages
in using robust optimization in studying crowdsourcing
last-mile deliveries with guaranteed delivery time win-
dows. First, unlike stochastic optimization, robust models

revolve around worst-case scenarios, or in other words,
they “under-promise but over-deliver” (Kuhn et al.
2019). This is important for our application because cus-
tomers are sensitive to delay, and hence, firms need to
make guaranteed on-time package deliveries; robust op-
timization allows a firm to promise on-time deliveries
with high probability. Furthermore, the robust approach
allows us to capture trend and seasonality in customer
arrivals, service times, and traffic patterns, as well as het-
erogeneity in crowd drivers, over multiple service subre-
gions with varying areas and populations; it is typically
difficult to analytically capture all these patterns in a sto-
chastic modeling approach (although simulation can be
used, it generally does not provide analytical insights).

2.1. Problem Definition
In crowdsourced delivery platforms, as the firm
should make sure a sufficient number of crowd drivers
are available at the distribution center/pickup location
for on-time delivery of customers’ fast (one-hour, two-
hour, or same-day) delivery orders, the firm asks for
availability of crowd drivers beforehand. In particular,
the firm announces the delivery work that it needs,
along with associated details, including the start date
and time. Each crowd driver who sees this announce-
ment can choose to sign up for it and provide the re-
quested delivery services or not, depending on what
compensation the firm has offered compared with
their opportunity costs. Hence, in our problem, the
firm aims to make labor planning and crowd compen-
sation decisions for a time horizon (e.g., half a day or a
day) in advance of demand realization.

In our study, a firm has two options for last-mile de-
livery: The firm can (1) outsource all deliveries to a 3PL
firm, such as Deliv or FedEx, or (2) assign all packages to
crowd drivers to deliver. The main monetary difference
between using 3PL companies for delivery and utilizing
crowd drivers is the payment structure: 3PL companies
typically charge firms per package delivery, whereas the
crowd is paid hourly wages for value-added time. In
our model, we also allow for hybrid solutions, where
both a 3PL firm and the crowd are utilized, to add a
layer of flexibility to a firm’s delivery system. Hybrid
solutions are motivated by practice: Amazon, in addition
to using crowdsourced delivery services under the Flex
program out of its warehouse stations and vacant lots
(Phillips 2018), utilizes the 3PL companies UPS and Fe-
dEx for making its fast same-day deliveries (Kim 2019,
Levy 2019). Similarly, Walmart has started using a
crowd delivery program (Spark) while still using 3PL
firms (such as FedEx). Finally, Cao et al. (2018) study a
hybrid solution where the firm can use ride-sharing plat-
forms such as Uber and Lyft along with in-house van
delivery systems for making last-mile deliveries. How-
ever, this approach has not been successful for all firms:
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Walmart recently retracted from using ride-sharing plat-
forms (Reuters 2018).

3PL firms typically charge a fee per package for deliv-
ery, which is a function of the distance between the ori-
gin and the destination and the delivery time window;
we let cT denote this per package cost (the distance and
delivery time window dependence is implicit), where
the T subscript indicates a (delivery) truck. In contrast,
in crowdsourced delivery applications drivers are typic-
ally paid an hourly wage w. As is the case in practice,
we assume the driver is paid only for travel and servic-
ing time (i.e., value-adding time) but not idle time.

Firms typically offer customers guarantees on delivery
times. For instance, Amazon offers next-day, same-day,
and even two-hour guaranteed delivery windows. We
let α denote the desired delivery duration requested by
the customer, and we assume that all customers have the
same target delivery duration. We also refer to α as the
service level that all customers are guaranteed to receive.

As a firm needs to make crowd compensation and la-
bor planning decisions before demand is realized, with-
out using the package characteristics (e.g., location) of
the realized demand, we develop a static optimization
model that allows us to derive generic optimal policies
for the crowdsourced last-mile delivery system. We
adopt a simple randomized allocation policy, where a
P ∈ [0, 1] proportion of deliveries is randomly assigned
to be delivered by the crowd, and the remaining (1−P)
proportion is delivered using a 3PL firm. This random-
ized allocation policy allows us to derive generic analyt-
ical results and managerial insights under demand and
supply uncertainties, without using the package charac-
teristic of the realized demand. In Section 4, we propose
a dynamic benchmark model that uses package charac-
teristics (e.g., location) to determine which packages
should be crowdsourced and which should be assigned
to the 3PL firm, and we compare its performance with
the randomized allocation policy.

In the next section, we develop a robust optimiza-
tion model of crowdsourcing last-mile deliveries for
on-demand orders with guaranteed delivery time win-
dows. We aim to derive optimal policies for crowd-
sourced last-mile deliveries under supply and demand
uncertainties and under the service-level guarantee
that the firm offers its customers.

2.2. Models of Uncertainty
In this section, we detail our uncertainty sets. Note that
the support of an uncertainty set does not need to coin-
cide with the support of the associated random param-
eter; indeed, the discussion on pages 32–33 of Ben-Tal
et al. (2009) shows that this disconnect can result in im-
proved performance.

2.2.1. Customer Interarrival Times. Let the interarrival
time of customer i be Ai, with mean and standard

deviation of µa
i and σai , respectively. If customers arrive

according to a Poisson process with rate λ, the random
allocation policy splits this process into a Poisson pro-
cess served by the crowd, of rate Pλ, and another Pois-
son process of rate (1−P)λ that is served by a 3PL
firm; in this analysis, we assume that p > 0. This obser-
vation motivates us to redefine the mean and standard
deviation of the interarrival time of customer i, who is
served by the crowd, to be µa

i =P and σai =P, respectively,
because the mean interarrival time for a Poisson pro-
cess is 1=λ. Similar to the approaches in Bandi et al.
(2015, 2018), we define the interarrival times uncer-
tainty set for these customers to be

UA(P)#

(A1, : : : ,An)≥0 :

∑j
i#k+1 Ai−µa

i =P
( )

$$$$$$$$$$$$$$$$$$$$∑j
i#k+1 σ

a
i =P

( )2
√

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
≤γa,0≤ k< j≤n






,

(1)

which is motivated by the central limit theorem (CLT):

limj→∞ P Rj
i#k+1(Ai−µa

i =P)
Rj
i#k+1 σai =P( )2 ≤ x

( )
# U(x), where U is the stand-

ard normal distribution. The parameter γa can be chos-
en based on the probability with which the firm wants
the interarrival time inequalities to be satisfied, such as
γa ∈ {2, 3}, because if Z is a standard normal random
variable, P(|Z| ≤ 2)≈0:954 and P(|Z| ≤ 3)≈ 0:997. If cus-
tomers’ delay sensitivity is high, then the firm should
choose a higher γa value.

Our approach to modeling interarrival times cap-
tures trend and seasonality in customer arrivals, via
proper selection of the µa

i and σai parameters, and is dif-
ferent from Bandi et al. (2015, 2018), whose approaches
do not consider nonstationary arrivals. Our modeling
of uncertainty sets with nonstationarity is motivated by
Mamani et al. (2016) and Bandi et al. (2019).

2.2.2. Driver Route Durations. We assume there is a
single depot in the service area, and each crowd driv-
er, with capacity Q, serves a set of q customers at a
time, between visits to the depot, where q ∈ {1, : : : ,Q};
these sets are formed and served using a first come,
first served (FCFS) policy. This routing policy is moti-
vated by the current practice of crowd delivery sys-
tems, where crowd drivers are assigned delivery sets
of packages that fit within their vehicle capacity, and is
similar to the G/G/m heavy traffic policy and the tour-
partitioning capacitated heavy traffic policy studied in
Bertsimas and Van Ryzin (1993) with n # q and the q ∈
{1, : : : ,Q} being optimized in our optimization model.
We assume each driver takes an optimal traveling sales-
man problem (TSP) tour through the q customer loca-
tions and not FCFS within a set. This assumption is moti-
vated by observations from industry: The Amazon Flex
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application gives the driver directions for the optimal
tour (logistics.amazon.com); similarly, Walmart also of-
fers the optimal delivery tour to its drivers (Lore 2017).
The sets themselves are served in the FCFS order.

We denote the TSP tour length that visits q city loca-
tions x1, : : : ,xq ∈ R2 as Lq x1, : : : ,xq( ); for simplicity, we
write Lq # Lq x1, : : : ,xq( ). We assume that the number of
crowdsourced customers n is a multiple of q: n # mq,
for some positive integer m ≥ 1; if we consider n to be
large enough, this approximation will not change our
results materially. Therefore, the drivers collectively
serve m sets of size q.

We assume customers are located in M ZIP codes,
each with area Ai and population pi, i # 1, : : : ,M,
where the probability density function that each cus-
tomer is in a given ZIP code is proportional to the ZIP
code’s population, and, given a ZIP code, the custom-
er’s location is conditionally uniformly distributed over
the ZIP code’s area. The probability density function of
a customer’s location x ∈ R2, which is potentially lo-
cated in one of M ZIP codes, each with area Ai and
population pi, i # 1, : : : ,M, is a generalization of a re-
sult in Carlsson and Delage (2013) and is given by

f (x) #
pi∑M

j#1Ajpj
, if x is in ZIP code i, i # 1, : : : ,M

0, otherwise:




(2)
There exists a probabilistic limit theorem for the opti-

mal TSP tour length, which is effectively a law of large
numbers: Originally derived by Bearwood et al. (1959)
and further developed by Steele (1981), there exists a
constant β̃ such that limq→∞

Lq$$q√ # β̃
∫ ∫

R2 f (x)1=2dx, al-
most surely. From this asymptotic result and the prob-
ability density function f(x), we can define

lim
q→∞

Lq$$q√ # β̃
∑M

i#1

∫ ∫

x in ZIPcode i

$$$$$$$$$$$$$
pi∑M

j#1Ajpj

√
dx

# β̃
∑M

i#1

$$$$$$$$$$$$$
pi∑M

j#1Ajpj

√
Ai: (3)

The analysis has not accounted for the depot, where
the driver picks up packages. As motivated by Amazon
Flex and Walmart’s Spark program, depot locations can
vary; for instance, some fast Amazon Flex deliveries are
food products from a Whole Foods Market location, of
which there are many. Therefore, we also consider the
depot location to be random. For simplicity, we assume
that the depot has the same distribution as the custom-
ers’ locations. Therefore, a driver’s tour starts from the
depot, visits q customers, and returns to the depot,
which has length Lq+1. Note that the driver might have
to return to the depot for returning undeliverable pack-
ages and/or customer-returned items, which motivates

us to use a tour, rather than a path. Let Ljq+1 denote the
optimal length of the jth tour through the depot, which
serves the q customers ( j− 1)q+ 1, ( j− 1)q+ 2, : : : , jq,
and let vj denote the average travel speed for the jth
tour. Thus, Ljq+1=vj represents the optimal tour duration
of the jth tour. Motivated by the Bearwood et al. (1959)
limit theorem, we define

Uℓ
L #

Lℓq+1
vℓ

: βL
∑M

i#1

$$$$$$$$$$$$$
pi∑M

j#1Ajpj

√
Ai




≤
Lℓq+1$$$$$$$
q+ 1

√ ≤ βU
∑M

i#1

$$$$$$$$$$$$$
pi∑M

j#1Ajpj

√
Ai



(4)

as the uncertainty set for the ℓth tour duration. The βL
and βU parameters are lower and upper bounds, re-
spectively, on β̃, which reflect the fact that the limit the-
orem does not hold exactly for a finite q. These parame-
ters also control the level of conservatism in our model;
as customers’ delay sensitivity increases, the firm
should choose a higher βU value and a lower βL value.
A similar uncertainty set, motivated by the strong law
of large numbers, was utilized in Wagner (2018). Note
that, although the motivating TSP asymptotic results
are based on the Euclidean distance metric, the robust
uncertainty set does not require any specific distance
metric; indeed, in our numerical experiments we utilize
road distances measured on a real transportation net-
work in the Seattle area. Similarly, Carlsson and Delage
(2013), Cachon (2014), and Qi et al. (2018) utilize this
limit theorem when in reality, the distances are calcu-
lated using the Manhattan metric. In the sequel, we
show how we are modeling traffic patterns via the sets
Uℓ

L by appropriately setting the speeds vℓ.

2.2.3. Customer On-Site Service Times. The arrival of
a customer entails a request for a package delivery.
After the server travels to the customer’s location,
there is an on-site service time (e.g., parking, finding
the appropriate apartment, etc.). Let Xi denote the on-
site service time of the ith customer with mean and
standard deviation µs

i and σsi , respectively. We adopt
and modify the service time uncertainty set, for mul-
tiple servers in a nonrouting queueing context, from
Bandi et al. (2015). More specifically, we adapt their
uncertainty set to be defined in terms of the service
times of sets of customers, rather than individual cus-
tomer service times. Furthermore, we define the uncer-
tainty set for nonstationary service times. We again
assume there are n # mq crowdsourced customers,
resulting in m tours of size q that are served byN avail-
able crowd drivers; in the sequel, we discuss how N is
determined endogenously by self-selecting drivers. Let
τm¢m

N, assumed to be integer, denote the average
number of tours taken by each driver. We next assign
the m tours of customers, in order of their arrivals,
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into the following partitions: J1 # {1, : : : ,N}, J2 # {N + 1,
: : : , 2N}, : : : , Jτm # {(τm − 1)N + 1, : : : ,m}. The uncertain-
ty set UN

X for service times in a multiple-driver scenario
is defined as

UN
X #

(X1,: : : ,Xmq)≥0 :

∑
i∈I
∑jiq

k#( ji−1)q+1
(Xk−µs

k)
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$∑

i∈I
∑jiq

k#( ji−1)q+1
(σsk)2

√

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
≤γs,

∀ji ∈ Ji, ∀I⊆
{
1,: : : ,τm

}







,

(5)

where γs plays the same role as γa and ji is the index
that refers to the members in set Ji. Simply stated, the
uncertainty set UN

X considers all different interset com-
binations of service times under all possible partitions
for serving m sets by N available crowd drivers; we re-
fer to Bandi et al. (2015) for a more in-depth discussion
of this uncertainty set. Similar to the interarrival times
uncertainty set, we can model nonstationarity in ser-
vice times in the setUN

X via the µs
i and σsi parameters.

Finally, as in the robust optimization literature, our
uncertainty sets are motivated by limit theorems of
probability that typically assume independence of ran-
dom variables. However, the independence assump-
tion is not required for these uncertainty sets.

2.3 Our Crowdsourcing Model
2.3.1. Service Time Guarantees. We let Si denote the
system time of customer i in the crowdsourced delivery
system, defined as the time that passes between a cus-
tomer placing an order until receiving the package,
which entails wait time, transportation time, and on-site
time. The service levels of all customers are satisfied if
Si ≤ α, i # 1, : : : ,mq. If time e is needed for processing
and preparation of delivery orders, we should replace α
with α− e; however, for simplicity in the analysis we
consider e # 0 throughout. Regarding 3PL delivery, we
assume that all customers are guaranteed to receive their
packages on time; to realistically capture this assumption,
we let cT be decreasing in α, as supported by FedEx de-
livery fees. Therefore, we only analyze the system times
of customers in the crowdsourced delivery system.

2.3.2. Crowdsourced System Stability Condition. Im-
plicit in our discussion is a queueing system. Custom-
ers must wait for their sets (of size q) to form, and cus-
tomer sets must wait for one of the N available crowd
drivers to be free to serve them; in particular, a queue
of sets will form while all available drivers are busy
serving other sets. Therefore, we require a stability con-
dition for this set queueing system. The service time for
this queueing system consists of tour travel time and
on-site time. The expected on-site time for a set of q cus-

tomers is Rmq
i#1 µ

s
i

m . From uncertainty set Uℓ
L, defined in

Equation (4), an upper bound on the average tour time

for a set of q customers is
Rm
i#1βU RM

z#1
$$$$$$$

pz
RM
j#1Ajpj

√
Az

( ) $$$$
q+1

√
=vi

m ; in
the following analysis, for expository clarity, we replace

βU RM
z#1

$$$$$$$$pz
RM
j#1Ajpj

√
Az

( )
with β. Therefore, R

mq
i#1 µ

s
i

m + Rm
i#1β

$$$$
q+1

√
=vi

m

is an upper bound on the expected service time of each
set. The expected interarrival time between sets of q
customers, who are served via crowdsourced delivery,

is Rmq
i#1 µ

a
i =P

m . As a result, ρ¢P Rmq
i#1 µ

s
i

m + Rm
i#1 β

$$$$
q+1

√
=vi

m

( )/
N Rmq

i#1 µ
a
i

m

( )

is an upper bound on the utilization of the queueing
system serving sets of q customers. For queue stability,
we require ρ to be strictly less than 1: ρ < 1. For simpli-
city in the analysis, we write ρ < 1 as ρ ≤ 1− ε, where ε
is smaller than any other number.

2.3.3. Crowd Participation Constraint. We assume that
there is a sufficiently large and heterogeneous supply of
potential crowd drivers for the firm to tap into for its de-
livery work, with the population given by N. The most
important factor that motivates the participation of these
crowd drivers is financial remuneration (Asdecker and
Zirkelbach 2020). The manner in which crowd delivery
platforms typically function is that the firm announces
the delivery work that it needs along with associated de-
tails, including the start date and time, and then, each
crowd driver who sees this announcement can choose to
sign up for it and provide the requested delivery serv-
ices, or not, depending on the compensation that the
firm offers compared with their opportunity costs. Let Ki
be crowd driver i’s uncertain opportunity cost, with
mean µk

i and standard deviation σki . Drivers have uncer-
tainty in their opportunity costs, driven by different fac-
tors, such as the impact of weather or the different days
of the week. Similar to the uncertainty set UN

X , we define
a CLT-motivated uncertainty set for the crowd’s oppor-
tunity costs as

UK #

(K1, : : : ,KN)≥ 0 :

∑
i∈I Ki −µk

i$$$$$$$$$$$$$$∑
i∈I σki

( )2√

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
≤ γk, ∀I ⊆ 1, : : : ,N{ }






,

(6)

where γk controls the level of conservatism in crowd
participation. If the µk

i and σki parameters are not known,
the firm can use a single mean µk

i # µk and standard de-
viation σki # σk, for all i.

During the time horizon that we are solving the prob-
lem for, let N denote the number of crowd drivers that
the firm needs in order to deliver all packages to its cus-
tomers on time. The firm can make sure to have at least
N willing to participate crowd drivers by offering them
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a sufficiently high compensation (but not higher than
necessary). Each of these N crowd driver’s expected
hourly income under the utilization of ρ and hourly

wage w is ρw or equivalently, wP Rmq
i#1 µ

s
i

m +
(

Rm
i#1 β

$$$$
q+1

√
=vi

m

)/

N Rmq
i#1 µ

a
i

m

( )
: As crowd drivers are compensated only for

their busy times, and not their idle times, the firm
should consider the hourly income ρw of crowd drivers
and not just their hourly wage w. If the utilization ρ of
crowd drivers is small, then the drivers are idle most of
the time, which results in a small crowd hourly income,
and the crowd is not as willing to participate in on-
demand delivery services; as a result, the firm should of-
fer a higher hourly wage to motivate the crowd to par-
ticipate. However, if the utilization ρ of crowd drivers is
high, then customers might not get their deliveries on
time because of extended wait times. In the sequel, we
analytically solve for the optimal hourly wage the firm
should offer to the crowd to minimize its delivery cost
while satisfying its customers’ orders on time.

Motivated by Taylor (2018), if the expected hourly in-
come of the crowd is at least its opportunity cost, then
the crowd participates. We next analyze the opportunity
costs of the crowd supply via the set UK. Similar to
Taylor (2018), we assume crowd drivers with higher op-
portunity costs participate if and only if crowd drivers
with lower opportunity costs participate. Thus, if N
crowd drivers participate, these are the N cheapest driv-
ers from the supply of available crowd drivers in set UK.
To guarantee the availability of N crowd drivers, we
analyze the worst-case opportunity costs of the cheapest
N crowd drivers, for a given level of conservatism γk.
This can be mathematically written as minS⊆{1, : : : ,N},

|S| #N

max(K1,: : : ,KN)∈UK

Ri∈SKi
N . In Lemma 1, we solve for these opti-

mization problems. For simplicity in the analysis, we as-
sume that µk

i depends on i but σki # σk, ∀i does not (as
in, for instance, linear discriminant analysis).

Lemma 1.

min
S⊆{1, : : : ,N},

|S| # N

max
(K1, : : : ,KN)∈UK

∑
i∈SKi

N
#
∑N

i#1 µ
k
(i) + γk

$$$
N

√
σk

N
,

where µk
(1) ≤ µk

(2) ≤ · · · ≤ µk
(N) are the order statistics of the

mean parameters.

The term
RN
i#1 µ

k
(i)+γk

$$
N

√
σk

N is the worst-case average op-
portunity cost of the cheapest crowd drivers of size N,
with the level of conservatism set at γk. Motivated by
Taylor (2018), the number of participating crowd drivers

satisfies wP Rmq
i#1 µ

s
i

m + Rm
i#1 β

$$$$
q+1

√
=vi

m

( )/
NRmq

i#1 µ
a
i

m

( )
≥ RN

i#1 µ
k
(i)+γk

$$
N

√
σk

N : This
constraint guarantees that the participation constraint of
the crowd drivers is satisfied with P(|Z| ≤ γk) probabil-
ity, where Z is a standard normal random variable (be-
cause of the CLT). The firm can influence the availability

of crowd drivers through (a) the hourly wage and (b)
the amount of on-demand delivery work it offers to the
crowd. In Proposition 1, we show the inequality is tight
at optimality, and we obtain the crowd supply function

w # RN
i#1 µ

k
(i) + γk

$$$
N

√
σk

( )
P Rmq

i#1 µ
s
i

m + Rm
i#1 β

$$$$
q+1

√
=vi

m

( )/
Rmq
i#1µ

a
i

m

( )
that

endogenously determines the number of available crowd
drivers. In this crowd supply function, the availability of
the crowd, namely N, is an increasing function of the
hourly wage offered by the firm, an increasing function
of the amount of on-demand delivery work, and a de-
creasing function of the crowd opportunity costs. Ac-
cording to this supply function, as variability in the op-
portunity cost of the crowd increases, the firm should
offer a higher hourly wage w to guarantee the availabil-
ity of crowd drivers.

We next analyze the firm’s objective function. The
drivers’ expected value-adding time for m sets of size q
consists of traversing m tours, which takes Rm

j#1L
j
q+1=vj

time, plus the on-site service time for mq customers,
namely Rmq

i#1Xi. The sum of these expressions, divided by
mq, is the value-adding time per package (e.g., hour per
package). If we multiply this value-adding time per
package by w, the driver’s wage rate per time unit (e.g.,
dollars per hour), we obtain the crowdsourced delivery
cost rate per package (e.g., dollars per package) as

w
Rm
j#1 L

j
q+1=vj+R

mq
i#1Xi

mq . As detailed previously, a P proportion
of customers is served via crowdsourced delivery, and
the remaining (1−P) proportion is served via a 3PL firm
at cost cT, which we consider to be the average of the 3PL
delivery costs for all customers with different distances
to the depot. Thus, the expected delivery cost rate per

package is Pw
Rm
j#1L

j
q+1=vj+R

mq
i#1Xi

mq + (1−P)cT; this expression
will serve as our objective, to be minimized by appropri-
ately selecting P and w. We subsequently optimize over q
numerically as well. To obtain a conservative estimate of
the impact of crowdsourcing last-mile deliveries, we
solve the following robust optimization model:

min
P∈(0,1],w>0

max
(X1, : : : ,Xmq) ∈UN

X

Ljq+1=vj ∈Uj
L ,j # 1 , : : : ,m

Pw

∑m
j#1 L

j
q+1=vj +

∑mq
i#1Xi

mq

( )

+ (1−P) cT

s:t: max
(A1 , : : : ,Amq) ∈UA(P)
(X1 , : : : ,Xmq) ∈UN

X

Ljq+1=vj ∈Uj
L ,j # 1 , : : : ,m

Si ≤ α, i # 1, : : : ,mq

P

∑mq
i#1 µ

s
i

m
+
∑m

i#1 β
$$$$$$$
q+ 1

√
=vi

m

( )/
N

∑mq
i#1 µ

a
i

m

( )
≤ 1− ε

wP

∑mq
i#1 µ

s
i

m
+
∑m

i#1 β
$$$$$$$
q+ 1

√
=vi

m

( )/
N

∑mq
i#1µ

a
i

m

( )

≥ min
S⊆{1, : : : ,N},

|S| #N

max
(K1, : : : , KN )∈UK

∑
i∈SKi

N
: (7)

The objective function is the maximum expected delivery
cost rate per package, with respect to uncertainties that
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exist in the crowd delivery system. The left-hand side of
the first constraint is the worst-case system time for cus-
tomer i, with respect to uncertainties in the crowd deliv-
ery system. This constraint guarantees that the system
time is at most the service level α; the index i refers to
any customer who is served via crowdsourced delivery.
The second constraint ensures the underlying queue is
stable. The third constraint is the crowd participation con-
straint that endogenously determines the number N of
participating independent crowd drivers. In the proposed
robust queueing system, the number of service providers
is not exogenous and is endogenously determined by the
crowd compensation. Similarly, Dong and Ibrahim (2020)
study queueing systems with a random number of serv-
ers for on-demand service providers using fluid and sto-
chastic-fluid approximations, where the firm can use ei-
ther full-time employees or flexible workers.

Problem (7) allows a firm to intelligently decide on
crowd compensation and labor planning to minimize
logistical costs while making sure that there are enough
willing to participate crowd drivers that are (1) not too
busy to risk late deliveries or (2) not too idle, where the
drivers’ effective earning rate becomes too low for par-
ticipation. In the next section, we simplify Problem (7)
by solving the inner maximization problems over the
uncertainty sets UA(P), UN

X , U
j
L, and UK.

2.4. Solution Methodology
In Lemma 2, we analyze the objective function of
Problem (7) and derive an attainable upper bound for
it; in the remainder of our analysis of the robust model,
we utilize this bound as our objective.

Lemma 2.

max
(X1, : : : ,Xmq) ∈UN

X

Ljq+1=vj ∈Uj
L ,j # 1, : : : ,m

Pw

∑m
j#1L

j
q+1=vj +

∑mq
i#1Xi

mq

( )

+ (1−P)cT ≤

∑m
j#1 β

$$$$$$$
q+ 1

√
=vj

+
∑N

j#1
∑τm

i#1
∑jiq

k#( ji−1)q+1µ
s
k +γs

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$∑τm

i#1
∑jiq

k#( ji−1)q+1 σ
s
k

( )2√( )

mq
:

We next study the first constraint of Problem (7),
and for this purpose, we analyze the worst-case sys-
tem times of customers. Bandi et al. (2015) study the
worst-case system time of the last customer in a queue
formed by customers. However, in this paper, we are
studying the worst-case system times of all customers
in a queue formed by sets of customers, whose arrival
process is a superposition of customer arrival proc-
esses, interarrival times and service times are nonsta-
tionary. There is also an additional routing layer
whose duration depends on traffic patterns.

In order to analyze the customers’ system times, we
first let D( j−1)q+k, k # 1, : : : ,q denote the departure time of

customer k in set j # 1, : : : ,m. We provide set-specific
upper bounds Tj for the customers’ departure times Dk.
The first N sets of customers start getting served after
they are formed, as there areN idle drivers in the system
at time zero. Therefore, we have the following upper
bounds for all customer departure times in the first N
sets:

(Set1) Dk ≤ T1¢
∑q

ℓ#1
Aℓ +

∑q

ℓ#1
Xℓ + L1q+1=v1, k # 1, : : : ,q

(8)

(Set2) Dq+k ≤ T2¢
∑2q

ℓ#1
Aℓ +

∑2q

ℓ#q+1
Xℓ + L2q+1=v2, k # 1, : : : ,q

: : :

(9)

(SetN) D(N−1)q+k ≤ TN¢
∑Nq

ℓ#1
Aℓ +

∑Nq

ℓ#(N−1)q+1
Xℓ + LNq+1=vN,

k # 1, : : : ,q:
(10)

For instance, the bound T2 for set 2 consists of three
components: (1) R2q

ℓ#1Aℓ is the time when set 2 is
formed and ready for service, (2) R2q

ℓ#q+1Xℓ is the total
on-site service time for all the customers in set 2, and
(3) L2q+1=v2 is the optimal tour duration to visit all cus-
tomers in set 2.

A common difficulty in the analysis of multiserver
queues is that overtaking can occur, in that set i arrives
after set j, but is serviced and leaves the system first.
This results in the order of arrivals being different than
the order of departures, which creates technical difficul-
ties in the analysis. We perform an analysis motivated
by that in Bandi et al. (2015), which precludes overtak-
ing from happening, and sets depart in the same order
that they arrive to the crowdsourcing queue. We denote
the policy that precludes overtaking as H, and the sub-
sequent results are for this policy. Later, we show that
the worst-case system time under policy H is equal to
the worst-case system time under the FCFS policy.

Motivated by Krivulin (1994), which generalized the
recursive equations of Lindley (1952) to the multiserver
G=G=m queue, we define the following recursive set of
upper bounds for the departure times of customers in
the subsequent sets N + 1,N + 2, : : : ,m, which might re-
quire waiting for a driver to become free:

DH
( j−1)q+k ≤ TH

j ¢max
∑jq

ℓ#1
Aℓ,TH

j−N

{ }
+

∑jq

ℓ#( j−1)q+1
Xℓ + Ljq+1=vj,

j #N + 1, : : : ,m, k # 1, : : : ,q,
(11)

where for j # 1, : : : ,N, TH
j # Tj as defined in Equa-

tions (8)–(10), Rjq
ℓ#1Aℓ is the time when the jth set is

formed and ready for service; max Rjq
ℓ#1Aℓ,TH

j−N
{ }

is the
first time that set j begins service by a free driver,
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where TH
j−N is the exact time that a driver becomes free

from serving the ( j−N) th departed set.
Customers’ system times can be calculated from the

departure times as follows:

S( j−1)q+k #D( j−1)q+k −
∑( j−1)q+k

ℓ#1
Aℓ, k # 1, : : : ,q, j # 1, : : : ,m,

(12)

where R( j−1)q+k
ℓ#1 Aℓ is the arrival time of customer k in

the jth set to the system. In Lemma 3, we utilize the
bounds on departure times to derive upper bounds on
the system times Si for customers i # 1, : : : ,mq.

Lemma 3. System times of customers k in set j in a mul-
tiple-driver queue under policy H have the following upper
bounds:

SH( j−1)q+k ≤ BH
( j−1)q+k¢

∑jq

ℓ#( j−1)q+k+1
Aℓ

+
∑jq

ℓ#( j−1)q+1
Xℓ + Ljq+1=vj, k # 1, : : : , q, j # 1, : : :N

SH( j−1)q+k ≤ BH
( j−1)q+k¢

max
i#0, : : : aj

∑( j−iN)q

ℓ#1
Aℓ +

∑i

ℓ#0

∑( j−ℓN)q

p#( j−ℓN−1)q+1
Xp +

Lj−ℓNq+1
vj−ℓN













−
∑( j−1)q+k

ℓ#1
Aℓ, k # 1, : : : , q, j ≥ N + 1,

where aj # + j
N, − 1.

Lemma 3 defines BH
i as the upper bound on SHi , for

any i. Considering the bounds for the customers within
an arbitrary set j ∈ {1, : : : ,m}, we observe that BH

( j−1)q+1 ≥
BH
( j−1)q+2 ≥ · · · ≥ BH

jq ; in other words, the upper bound for
the ith customer assigned to the set is at least the upper
bound of the (i+ 1) th customer, and the first customer
assigned to the set (in FCFS) has the largest upper
bound (because of the largest wait time for the set to
form). Therefore, we have the following implications:
BH
( j−1)q+1 ≤ α⇒BH

( j−1)q+k ≤ α, k # 1, : : : ,q, j # 1, : : : ,m,
which further imply

max
(A1, : : : , Amq) ∈UA(P)
(X1, : : : , Xmq) ∈UN

X

Ljq+1=vj ∈Uj
L, j # 1, : : : , m

BH
( j−1)q+1 ≤ α, j # 1, : : : ,m

⇒ max
(A1, : : : , Amq) ∈UA(P)
(X1, : : : , Xmq) ∈UN

X

Ljq+1=vj ∈Uj
L, j # 1, : : : , m

SHi ≤ α, i # 1, : : : ,mq:

Consequently, we replace the n # mq service con-
straints of Problem (7) with the m constraints in the
first inequality. In the next set of results, we analyze
this constraint, namely the maximum upper bound on
the system time of the first customer in the jth set,

j ∈ {1, : : : ,m}. Letting L=v # (L1q+1=v1 , : : : ,Lmq+1=vm), A #
(A1, : : : ,Amq), and X # (X1, : : : ,Xmq), we solve the inner
optimization problems, for j # 1, : : : ,m, of the first con-
straint sequentially:

max
A ∈UA(P)
X ∈UN

X

L=v ∈×m
j#1 U

j
L

BH
( j−1)q+1(L=v,A,X)

# max
L=v∈×m

j#1U
j
L

max
A∈UA(P)

max
X∈UN

X

BH
( j−1)q+1(L=v,A,X)

{ }{ }
:

(13)

We first analyze the innermost optimization prob-
lem over UN

X in the right-hand side of Equation (13),
whose solution is presented in Lemma 4.

Lemma 4. For j # 1, : : : ,m, we have that

max
X∈UN

X

BH
( j−1)q+1

L
v
,A,X

( )

≤

∑jq

ℓ#( j−1)q+2
Aℓ +

∑jq

ℓ#( j−1)q+1
µs
ℓ + γs

$$$$$$$$$$$$$$$$$
∑jq

ℓ#( j−1)q+1
σsℓ
( )2

√√

+Ljq+1=vj, j # 1, : : : ,N

max
i#0, : : : aj

∑( j−iN)q

ℓ#1
Aℓ +

∑i

ℓ#0

∑( j−ℓN)q

p#( j−ℓN−1)q+1
µs
p

+γs

$$$$$$$$$$$$$$$$$$$$$$$$$$
∑i

ℓ#0

∑( j−ℓN)q

p#( j−ℓN−1)q+1
(σsp)2

√√
+
∑i

ℓ#0

Lj−ℓNq+1
vj−ℓN

−
∑( j−1)q+1

ℓ#1
Aℓ







,

j #N + 1, : : : ,m:




In Lemma 5, we solve the second-tier optimization
over UA(P) in the right-hand side of Equation (13).

Lemma 5. For j # 1, : : : ,m, we have the following upper
bounds:

max
A∈UA(P)

max
X∈UN

X

BH
( j−1)q+1(L=v,A,X)

{ }

≤
gN, j # 1, : : : ,N

max max
i#1, : : : , aj

f Ni ,gN
{ }

, j #N + 1, : : : ,m,




where gN # Rjq
ℓ#( j−1)q+2 µ

a
ℓ=P+ γa

$$$$$$$$$$$$$$$$$$$$$$$
Rjq
ℓ#( j−1)q+2 σ

a
ℓ=P

( )2√
+Rjq

ℓ#( j−1)q+1

µs
ℓ + γs

$$$$$$$$$$$$$$$$$$$$
Rjq
ℓ#( j−1)q+1 σ

s
ℓ

( )2√
+ Ljq+1=vj and fNi # −R( j−1)q+1

ℓ#( j−iN)q+1

µa
ℓ=P+ γa

$$$$$$$$$$$$$$$$$$$$$$$$
R( j−1)q+1
ℓ#( j−iN)q+1 σ

a
ℓ=P

( )2√
+Ri

ℓ#0R
( j−ℓN)q
p#( j−ℓN−1)q+1µ

s
p +

γs
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Ri
ℓ#0R

( j−ℓN)q
p#( j−ℓN−1)q+1 σ

s
p

( )2
√

+ Ri
ℓ#0L

j−ℓN
q+1 =vj−ℓN.

In Lemma 6, we solve the final outer optimization
over ×m

j#1 U
j
L in the right-hand side of Equation (13).
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Lemma 6. For j # 1, : : : ,m, we have the following upper
bounds:

max
L=v∈×m

j#1U
j
L

max
A∈UA(P)

max
X∈UN

X

BH
( j−1)q+1(L=v,A,X)

{ }{ }

≤
ĝN, j # 1, : : : ,N

max max
i#1, : : : ,aj

f̂
N
i , ĝ

N
{ }

, j #N + 1, : : : ,m,




where ĝN # Rjq
ℓ#( j−1)q+2µ

a
ℓ=P+ γa

$$$$$$$$$$$$$$$$$$$$$$$
Rjq
ℓ#( j−1)q+2 σ

a
ℓ=P

( )2√
+Rjq

ℓ#( j−1)q+1µ
s
ℓ+

γs
$$$$$$$$$$$$$$$$$$$$
Rjq
ℓ#( j−1)q+1 σ

s
ℓ

( )2√
+ β

$$$$$$$
q+ 1

√
=vj and f̂

N
i # −R( j−1)q+1

ℓ#( j−iN)q+1µ
a
ℓ=P+

γa
$$$$$$$$$$$$$$$$$$$$$$$$
R( j−1)q+1
ℓ#( j−iN)q+1 σ

a
ℓ=P

( )2√
+ Riℓ#0R

( j−ℓN)q
p#( j−ℓN−1)q+1µ

s
p + γs

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Ri
ℓ#0R

( j−ℓN)q
p#( j−ℓN−1)q+1 σ

s
p

( )2
√

+
Ri
ℓ#0 β

$$$$$$$
q+ 1

√
=vj−ℓN:

The next result shows that the bounds BH
i are also

applicable to the FCFS policy.

Lemma 7. The system time of customer i, i # 1, : : : ,mq,
under the FCFS policy SFCFSi is at most the bound BH

i de-
fined in Lemma 3 for the no-overtaking policyH:

SFCFSi (L=v,A,X) ≤ BH
i (L=v,A,X), ∀X ∈UN

X ,

∀A ∈UA(P), ∀L=v ∈×m
j#1

Uj
L:

As a result of Lemma 7, all of the analyses of the H
policy are applicable and equivalent to the FCFS pol-
icy; we therefore replace, in the sequel, the H super-
script with FCFS. Thus, Lemmas 1–6 allow us to de-
fine the following approximation to Problem (7):

z # min
P∈(0, 1], w>0

Pw
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(14)
For each customer set j, i # 1, : : : , aj indexes the cus-

tomer sets formed before set j that are also served by the
same crowd driver who serves set j. For analyzing
the system times in Problem (14), let Ej

i¢R( j−1)q+1
ℓ#( j−iN)q+1

µa
ℓ − γa

$$$$$$$$$$$$$$$$$$$$$
R( j−1)q+1
ℓ#( j−iN)q+1 σ

a
ℓ

( )2√
denote the best-case interarrival

time between set j and the ith preceding set, all

served by the same driver. Let Fji¢Ri
ℓ#0R

( j−ℓN)q
p#( j−ℓN−1)q+1µ

s
p +

γs
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+Ri
ℓ#0

β
$$$$
q+1

√
vj−ℓN

denote the cumulative
worst-case system times (including the on-site service
times and tour times) of set j and the i preceding sets, all
of which served by the same driver. Finally, let

Gj¢Rjq
ℓ#( j−1)q+2µ

a
ℓ +γa

$$$$$$$$$$$$$$$$$$$$
Rjq
ℓ#( j−1)q+2 σ

a
ℓ

( )2√
denote the worst-case

waiting time for the first customer in set j until her set
forms. Using these terms, the closed form solutions to
Problem (14) are provided in Proposition 1.
Proposition 1. If α >maxj#1, : : : ,m Fji#0

{ }
, then Problem

(14) is feasible if and only if P̂ ≤min P̄N, P̃, 1
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; if feasible,
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{ }

, j #N+ 1, : : : ,m:

According to Proposition 1, the optimal hourly wage
that the firm should offer to crowd drivers changes
with the delivery time window and the different uncer-
tainties that exist in the delivery system, including the
uncertainty in customer purchasing patterns, delivery
service times, and crowd opportunity costs. In particu-
lar, the hourly wage that the firm should offer to crowd
drivers is higher as the uncertainty in their opportunity
costs (i.e., σk) increases; this is to ensure their participa-
tion. The precise nature of the dependence of the opti-
mal crowd hourly wage on the other various uncertain-
ties in the system is not straightforward (i.e., nonlinear)
because of the underlying queue; we study this depend-
ence in Section 5.1 via a numerical analysis. Finally, if
the firm wants to ensure crowd participation with an
even higher probability (i.e., increasing γk), the hourly
wage that the firm should offer is even higher.

Our analysis shows that there exists an upper bound
on P, denoted by P̄N, that, if exceeded, results in the on-
time delivery of packages being at risk. P̃ is another upper
bound on P, which ensures that the underlying queue in
the crowd delivery system is stable. P̂ is a lower bound
on P that guarantees that sufficient delivery orders are as-
signed to the available crowd drivers such that customers
do not wait too long for the formation of their delivery
tours and thus, can receive their orders within α. Respect-
ing these bounds means that the number of packages as-
signed to crowd drivers is large enough to help with the
reduction of logistical cost but at the same time, small
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enough to not jeopardize the promise of on-time delivery.
In other words, if firms want to use a crowdsourced sys-
tem for their last-mile deliveries, they cannot assign too
little nor too much work to the crowd—it has to be a
moderate workload.

3. Benchmark 1: A Stochastic
Crowdsourcing Model

In this section, we propose and solve a stochastic coun-
terpart to our robust model, where we replace the worst-
case expressions by expected values; we aim to compare
our worst-case analysis approach against an expected
value analysis approach. The comparison of these two
models, in Section 5, will evaluate the benefit of using ro-
bust optimization over stochastic optimization. Further-
more, although trend and seasonality can be rather easily
incorporated into the robust model, we found them to be
analytically intractable to incorporate into our stochastic
model, which is based on the analysis in Bertsimas and
Van Ryzin (1993); consequently, we develop the stochas-
tic model for stationary random variables.

We assume customers arrive according to a Poisson
Process with rate λ; similar to the robust crowdsourcing
model, a proportion P of customers is randomly assigned
to crowdsourced delivery, and the remaining (1−P) pro-
portion is served via a 3PL firm. The mean interarrival
time between crowdsourced customers is 1

Pλ. We again
form sets of q customers based on an FCFS policy, and
these sets are served by the first available crowd driver,
who then visits the customers within a set using the opti-
mal TSP tour. The time for a set to form has an Erlang
distribution with mean q

Pλ and variance q
P2λ2. The on-site

service times have a general distribution, with mean µs

and variance σ2s . Customer locations are distributed ac-
cording to the density f(x), and Lq+1 again denotes the
shortest tour through q customer locations; according
to Bertsimas and Van Ryzin (1993), E[Lq+1] # β̂

$$$$$$$
q+ 1

√
,

where from Equation (3), we set β̂ # β̃RM
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$$$$$$$$pi
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j#1Ajpj

√
Ai. We

denote β̂
$$$$$$$
q+ 1

√ /
v and σ2Lq+1

/
v2 as the mean and variance

of the tour duration Lq+1=v, respectively, where v is the
average travel speed for all crowd delivery tours.

We can model the queue formed by the sets as a
G=G=m queue. Assuming N crowd drivers are willing to
provide on-demand delivery services for the firm,

the utilization of the crowd delivery system is Pλ
qN β̂
(

$$$$$$$
q+ 1

√
=v+ qµs

)
: We assume that the opportunity costs

of available crowd drivers are distributed according to
a general distribution with mean µk and standard
deviation σk. Similar to the approach in the robust model,
the number of participating crowd drivers satisfies

wPλ
qN β̂
( $$$$$$$

q+ 1
√

=v+ qµs
)
≥ µk; in Proposition 2, we show

this inequality is tight, and we obtain the supply function
w #Nµk q

Pλ( β̂
$$$$
q+1

√
=v+qµs)

that endogenously determines

the number of participating crowd drivers, as a function
of the crowd hourly wage and the delivery work load.

Using a similar analysis to that in Bertsimas and Van
Ryzin (1993), we calculate the expected system times of
customers. The expected time a customer must wait un-

til her set forms is Wexpected-time-to-form-a-set # 1
q

(
0 + 1

λ +

2
λ + · · · + q−1

λ

)
# (q−1)

2λ : Using the heavy traffic limit intro-

duced by Kingman (1974), we write an approximation
for the expected waiting time in queue (for a set of size

q) as Wexpected-waiting-time-for-sets≈
Pλ
q

q
P2λ2

+ 1
N2 σL2=v2+qσs2( )( )

2 1−Pλ
qN β̂

$$$$
q+1

√
=v+qµs

( )( ) .

This approximation becomes more accurate as the sys-
tem utilization increases toward one. In our simulation
study, covering the Seattle area, the utilization of crowd
drivers under the stochastic policy is at least 0.8, which
is high enough for this heavy traffic approximation
(Whitt 1993). Hence, we assume the quality of the King-
man (1974) approximation for our stochastic analysis is
practically reasonable.

Finally, the expected wait time for a customer to be
served, after the driver starts serving the customer’s set,
is at most Wexpected-service-time-of-sets # β̂

$$$$$$$
q+ 1

√
=v+ 1

q µs+(

2µs + · · · + qµs)# β̂
$$$$$$$
q+ 1

√
=v+ (q+1)µs

2 : As a result, the ex-
pected system time of a customer in the stable crowd-
sourced delivery system (i.e., Pλ

qN (β̂
$$$$$$$
q+ 1

√
=v+ qµs) ≤

1− ε) is at most (q−1)
2λ +

Pλ
q

q
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√
=
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2 : As a result of the analysis, a stochastic opti-
mization variant of Model (7) can be written as the fol-
lowing model, with its solution provided in the subse-
quent proposition:
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Proposition 2. If (q−1)

2λ + β̂
$$$$$$$
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√
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2 ≤ α and
∆ ≥ 0, then Problem (15) is feasible if and only if
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P1 ≤min P2,P3, 1{ }; if feasible, the optimal solution is P∗ #
min P2,P3, 1{ } with the crowd supply function w∗ #
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Similar to the robust analysis in Proposition 1, P1 is a
lower bound on P that guarantees that enough delivery
orders are assigned to the available crowd such that cus-
tomers do not wait too long for their crowd delivery set to
form. P2 is an upper bound on P that guarantees that the
number of assigned delivery orders to the available crowd
drivers is small enough so that deliveries can be made on
time, and P3 is another upper bound on P to guarantee a
stable crowd delivery queueing system. Similar to the ro-
bust approach, even though the number of crowd drivers
N is determined endogenously, the supply function al-
lows us to indirectly optimize overw by usingN.

4. Benchmark 2: A Nonrandomized
Heuristic Crowdsourcing Model

In this section, we propose and analyze a capacitated ve-
hicle routing problem (CVRP)-based heuristic bench-
mark model that uses package characteristics (i.e., deliv-
ery location) to determine which packages should be
crowdsourced and which should be assigned to the 3PL
firm. In Section 5, we compare the quality of this dynam-
ic and heuristic-based benchmark approach, which uti-
lizes package characteristics, with that of the static and
randomized allocation policy of Section 2. This bench-
mark utilizes andmodifies the savings algorithm, origin-
ally proposed by Clarke and Wright (1964), which is a
heuristic method for solving the static deterministic
CVRP, and it is used in many commercial vehicle rout-
ing packages (Simchi-Levi et al. 2014).

In contrast to the static deterministic CVRP, where all
customer locations are known a priori, if customers ar-
rive (revealing their location and demand) dynamically
over time, it is a dynamic CVRP. In order to solve the dy-
namic CVRP, we apply the savings algorithm in a rolling
horizon framework. In particular, whenever q customers
arrive—a batch of size q—we reapply the algorithm.

We next modify the algorithm to accommodate the
case where each demand point can be served by either
an available crowd driver or a 3PL firm. In our modi-
fied savings algorithm (Algorithm 1), as the initial solu-
tion, we assign each customer to a 3PL firm at cost ciT,
where the superscript i indicates customer i, whose dis-
tance to the depot influences this cost (i.e., if customer i
is located farther from the depot, ciT increases); in our

subsequent numerical analysis, we use FedEx delivery
prices with volume discounts to parameterize ciT. The
cost of this initial solution is Rn

i#1c
i
T.

We next apply the basic idea of the savings algorithm
and calculate the savings for (1) serving customer i in a
single crowdsourced delivery tour, instead of the 3PL
firm, and (2) combining customers i and j and serving
them using a single crowdsourced delivery tour. The
savings sii we obtain from reassigning customer i from
the 3PL firm to a single crowdsourced delivery tour are
sii # ciT − 2wdi, where ciT is the delivery cost via the 3PL,
di is the distance from customer i’s location to the depot,
and 2wdi is the delivery cost via a crowd driver with
hourly wage w. Note that, for simplicity, we consider di
to be the travel time, between customer i and the depot,
in hours. The savings we obtain from reassigning cus-
tomers i and j from the 3PL firm to a crowdsourced de-
livery tour, which serves both customers i and j, is
sij # ciT + cjT −w(di + dj + dij), where ciT + cjT is the deliv-
ery cost for customers i and j if they are both served via
the 3PL, dij is the distance between customers i and j,
and w(di + dj + dij) is the delivery cost if customers i and
j are served in a single tour via a crowd driver. Note
that a crowd driver also experiences an on-site service
time Xi when delivering a package to customer i (e.g.,
parking, finding the appropriate apartment, etc.); we in-
clude these on-site service times in the savings matrix as
sii # ciT −w(2di +Xi), sij # ciT + cjT −w(di + dj + dij +Xi +Xj):

Algorithm 1 outlines the steps of our proposed
modified savings algorithm, based on the savings algo-
rithm in Larson and Odoni (1981) and Simchi-Levi
et al. (2014), for every batch arrival of size q. Loosely
speaking, the proposed algorithm outsources deliv-
eries, where either their location is not close to other
deliveries or they require large on-site service times, to
the 3PL. Note that, as guaranteed by Step 4, the ser-
vice-level constraints of all customers are satisfied
under this nonrandomized allocation policy.

Algorithm 1 (The Modified Savings Algorithm)
Step 1. Assign each customer to a 3PL firm.
Step 2. Calculate the savings sij,∀i, j.
Step 3. List the savings in descending order of

magnitude.
Step 4. Choose the first feasible link (i, j) from the

savings, where
1. i and j are not assigned to the same route,
2. i and j are traveled first or last in their routes,
3. there is an available crowd driver for serving the

newly formed route frommerging the routes of i and j,
4. merging the routes of i and j does not violate the

service-level constraints.
Add the new route to the solution, delete the merged
routes consisting of i and j, and delete sij from the
savings list.
Step 5. Repeat Step 4 until there is no feasible link.
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5. Numerical Analysis
In this section, we evaluate the performances of the
optimal policies from the robust crowdsourcing
model and the two benchmark models, via a real-
world simulation analysis covering 17 ZIP codes in
Seattle, Washington. These ZIP codes include the
downtown area as well as sparsely populated areas,
served by one active Amazon Flex depot (Amazon
Flex Info 2018). Our simulation experiment is de-
signed as follows. We randomly generated 1,000 cus-
tomer locations according to the probability density
function f(x) in Equation (2). Figure 1 shows the 17
ZIP codes, the 1,000 randomly generated customers
(green diamonds), and the Amazon Flex depot (black
star). The boundaries of the ZIP codes are from the
2016 U.S. ZIP codes via ArcGIS.

We assume orders arrive from the 1,000 customers in
Figure 1 via a Poisson process, where customer on-site
service times are exponentially distributed with a mean
of three minutes. We consider mean customer interar-
rival times that follow the pattern in the left panel in
Figure 2, where µa

L and µa
H are the mean interarrival

times during busy and normal hours, respectively,
which captures heavier buying patterns before/after
normal business hours as well as the lunch hour. As a
baseline, we consider µa

H # 2µa
L # 5 minutes. The center

panel of Figure 2 shows a heterogeneous supply of
crowd drivers of size N # 50, with two different ex-
pected opportunity costs, split evenly among the N
drivers. According to Cook et al. (2018), on average, the
weekly earnings of Uber drivers from January 2015 to
March 2017 was $376:38 for 17.06 hours covering 29.83
trips, where there was an average wait time of approxi-
mately 8 minutes between trips. This is equivalent to
working for 21.04 hours and earning $376:38 weekly,
which results in earnings of $17:9 per hour. In our nu-
merical analysis, we assume that crowd drivers’ oppor-
tunity costs are normally distributed; the crowd drivers
with lower opportunity costs have an expected oppor-
tunity cost of µk

L # $18 an hour, and the ones with high-
er opportunity costs have an expected opportunity cost
of µk

H # $22 an hour. The baseline standard deviation
of the opportunity costs is σk # $3 an hour. Finally, we
consider a crowd driver’s mean vehicle speed that fol-
lows the pattern in the right panel in Figure 2, where vL
and vH are delivery speeds during busy and normal
hours, respectively, which captures rush hour traffic
patterns. As a baseline, we consider vH # 2vL # 30 miles
per hour (mph), which is motivated by the speed limits
in the city of Seattle (Seattle Department of Transporta-
tion 2018).

In order to calculate the distances between each cus-
tomer and the depot as well as that between customers,
we use real distances (i.e., on a street network) via the
origin destination cost matrix implemented in the Net-
work Analyst tool in ArcGIS. We calculate the TSP

tours of each instance using the nearest neighbor algo-
rithm (Johnson and McGeoch 1997); we also tested our
results using the two-opt local search algorithm (Croes
1958), and our results remain unchanged.

We set the drivers’ capacity Q # 50 as the baseline
value; this number is supported by Amazon Flex driv-
ers’ YouTube videos (Ducklow 2016, Ivy 2016). Ama-
zon’s Prime Now program (primenow.amazon.com)
offers two-hour deliveries. Additionally, Amazon of-
fers same-day delivery services: If customers order by
noon, they can receive their orders by 9 p.m. the same
day. Therefore, we consider α ∈ {2, 4, 9} hours as the
range of customer service levels.

We also need to have ciT estimates. The delivery fees
of USPS, UPS, and FedEx vary significantly based on
the distance between origin and destination and the de-
livery time window. Therefore, ciT, the 3PL delivery
cost for package i, should be a function of the distance
between a customer’s location and the depot, as well as
the service level α. We use distance-dependent FedEx
delivery fees for same-day, four-hour, and two-hour
deliveries (FedEx Economy Delivery 2016, FedEx Prior-
ity Delivery 2016, FedEx Standard Delivery 2016), for
packages weighing between 0 and 50 pounds (87% of
Amazon packages weigh less than 5 pounds: Wells
and Stevens 2016). According to FedEx (2019), depend-
ing on a firm’s annual shipping volume, the firm can
get discounts of up to 30%. Thus, we consider the Fe-
dEx delivery prices, discounted by η # 30%, as repre-
sentative pricing for a 3PL firm.

In our robust and stochastic models, we use a sin-
gle α-dependent value of cT (the modified savings
algorithm, Algorithm 1, uses all ciT values). We set
cT # Rn

i#1c
i
T=n, where ciT is the FedEx delivery cost for

customer i who is located di miles from the depot.
Our results are as follows: The average cT values,
after an η # 30% discount, for all n # 1,000 customers
in all 17 ZIP codes are cT # $9:55 for α # 9 hours, cT #
$12:04 for α # 4 hours, and cT # $14:51 for α # 2
hours.

In the robust model, we estimate an upper bound
on tour lengths for each tour size q ∈ {1, : : : ,Q}, start-
ing and ending at the Amazon Flex depot, by βUR

M
i#1$$$$$$$$$$$

pi
RM
j#1Ajpj

√
Ai

$$$$$$$
q+ 1

√
. Using the population and area of

each of the 17 Seattle ZIP codes in Figure 1, we calcu-

late the multiplier RM
i#1

$$$$$$$$$$
pi

RM
j#1Ajpj

√
Ai # 6:94. Additional-

ly, we consider βU # 2β̃≈1:4, in which β̃ is the Bear-
wood–Halton–Hammersley constant for Euclidean
distances on a plane (Steele 1997), and the two multi-
plier reflects a finite q in the limit theorem for the
robust model.

We also perform an additional layer of numerical
optimization for the robust model to determine the
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optimal value of q: We insert the solutions from
Proposition 1 into Problem (14), which results in an
objective function that appears to be convex in q (our
conclusion is from extensive numerical analysis as we
could not prove this analytically), and this is easily solv-
able numerically.

5.1. Analysis of the Robust Solution
Figure 3 shows the worst-case cost of the robust opti-
mal policies as a function of demand uncertainty σa, for
different levels of conservatism in the robust model.
The results show that, as there is more demand uncer-
tainty, the delivery cost increases according to a step

Figure 1. (Color online) One Thousand Randomly Generated Customers in 17 Seattle ZIP Codes
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function. Each of the sharp increases is because of hav-
ing an extra crowd driver in the crowdsourced delivery
system. An increase in the number of crowd drivers de-
creases the utilization of the system, and hence, it ena-
bles the firm to better respond to demand uncertainties.
Although in each of the plateaus, the number of crowd
drivers does not change, crowd compensation and de-
livery assignments change as we move across the pla-
teaus, as indicated for γr # 3 and 4 crowd drivers. In
this example, on the left-hand side of the plateau,
which corresponds to lower levels of demand uncer-
tainty, the firm should assign a smaller number of
packages (q∗ # 9) to crowd drivers for the delivery
tours. This allows the firm to create a stream of avail-
able delivery work for these independent crowd driv-
ers, which helps with their participation, without hav-
ing to offer them higher hourly wages. However, as we
move to the other end of the plateau, which corre-
sponds to higher demand uncertainty, the firm should
assign a larger number of packages (q∗ # 18) to the
crowd drivers for the delivery tours. Assigning a larger
number of packages means that the interarrival times
between delivery tours increases or equivalently, the
utilization of crowd drivers decreases, which helps the

crowd delivery system to deal with higher levels of de-
mand uncertainty to satisfy customer demands on
time. However, this decrease in utilization of the sys-
tem results in lower income for the crowd drivers,
which can adversely impact their participation, and
therefore, the firm should increase the crowd hourly
wage; in this example, on the left-hand side, the hourly
wage is $23, and on the right-hand side, the hourly
wage is $30. In addition, the optimal value of P∗ across
each plateau is one. The changes of the optimal policy
with respect to uncertainty in service times are qualita-
tively similar.

Figure 4 shows the robust optimal policies as a func-
tion of variability in crowd opportunity costs. As vari-
ability in crowd opportunity costs increases, the firm
should not change the labor planning and crowd deliv-
ery assignment but rather, simply offer a higher hourly
wage to guarantee the availability of independent crowd
drivers. Increasing the service guarantee level from 95%
to 99% (i.e., increasing the γr parameters in the robust
uncertainty sets from two to three) is more expensive
than increasing it from 68% to 95%, and this is because
of a significant decrease in crowd utilization ρ. This re-
sults in the firm offering a higher hourly wage w for
guaranteeing crowd participation. Thus, the firm, by of-
fering satisfactory levels of an on-time delivery guaran-
tee (e.g., 95%), can significantly reduce its delivery cost
via crowdsourcing; we subsequently confirm this via
the real simulation study over Seattle ZIP codes.

Similar to the results in each of the plateaus in
Figure 3, for lower levels of conservatism γr, the firm
assigns a smaller number of deliveries to each crowd
delivery tour to create a stream of available delivery
work for the independent crowd drivers to make them
willing to participate without having to offer them
high hourly wages. However, for higher levels of con-
servatism γr, the firm wants to keep utilization low to
guarantee on-time deliveries. Thus, the firm assigns
larger set sizes q to crowd drivers to increase the inter-
arrival times between delivery tours and as a result, de-
crease crowd utilization; instead, they compensate
them via higher hourly wages. Currently, Amazon
(Amazon Flex 2019) and Postmates (Postmates 2018)
offer crowd hourly wages of $18–$25, which is

Figure 2. (Color online) Patterns of Random Variables over a Day

Figure 3. (Color online) Robust Optimal Policy as a Function
of Demand Uncertainty
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consistent with our findings for service-level guarantees
with 68%–95% probabilities for same-day deliveries.

Finally, we can apply our robust model on smaller
time horizons (e.g., three-, four-, or six-hour durations,
as motivated by Amazon Flex’s delivery blocks) by
defining our uncertainty sets for the time horizon of
interest. Hence, the optimal policy can result in a non-
stationary number of drivers and different package as-
signments across different time horizons. Under the
trend and seasonality parameters of Figure 2 with the
benchmark settings and µk

L # µk
H # $18, our model for

4-hour deliveries results in the following policies for
12- and 4-hour time horizons, respectively:

These optimal policies show that considering smaller
time horizons results in more flexibility for the firm,
and hence, lower cost, because the firm can adjust its
crowd compensation and labor planning in a more
flexible manner.

5.2. Comparison of the Robust and
Benchmark Solutions

For our simulation studies over the 17 Seattle ZIP co-
des, for each parameter set, we generate 1,000 simula-
tion trials. We simulate the customer arrivals to each
of the ZIP codes during 12-hour time intervals, from
8 a.m. to 8 p.m., as a function of the daily pattern of
mean interarrival times.

5.2.1. Comparison of the Robust and Stochastic Solu-
tions. The plots in Figure 5 summarize the compari-
sons between the robust and stochastic optimal

solutions for different levels of conservatism in the ro-
bust model, as a function of γa # γs # γk # γ. The goal
of this section is to see how our robust analysis com-
pares against an expected value analysis approach.
Note that, because our stochastic model cannot handle
nonstationary random variables, we first consider sta-
tionary arrivals, service times, delivery speeds, and
crowd opportunity costs for the comparison. We set
vH # vL # 15 mph and µk

H # µk
L # $18, as supported by

the average speed and average hourly wage of Uber
drivers (Cook et al. 2018), respectively, and interarrival
mean µa

H # µa
L # 5 minutes, where interarrival times of

customer orders are exponentially distributed. The left
panel in Figure 5 provides the percentage of on-time
deliveries, and the right panel in Figure 5 shows the
cost-savings percentage per day with respect to the dis-
counted delivery costs that FedEx offers to retailers.

The left panel in Figure 5 shows that under the robust
optimal policy for γ # 3, almost all customers receive
their same-day delivery orders on time. The robust pol-
icy for γ # 3 is (w∗,q∗,P∗) # ($24:06, 12, 1), which, as mo-
tivated by the CLT, captures approximately 99% of vari-
ability, and that results in the on-time delivery of almost
all orders. In contrast, under the stochastic optimal pol-
icy, which is (w∗,q∗,P∗) # ($18:24, 20, 1), approximately
half of the customer orders were not delivered on time.
The stochastic policy suggests that the firm should as-
sign a relatively large number of deliveries and offer
crowd drivers a relatively low hourly wage, with respect
to the robust policy with γ # 3; this results in a signifi-
cant number of customers not receiving their orders on
time under the stochastic policy because of not having
enough crowd drivers participating and the associated
long wait time of customers until they get served. The
right panel in Figure 5 shows that for γ ≤ 1, the cost sav-
ings under the robust optimal policy are higher than
those of the stochastic policy. However, as γ increases
further, the robust model becomes more conservative,
which results in lower cost savings but higher on-time
deliveries; in other words, the stochastic model can

Figure 4. (Color online) Robust Optimal Policy as a Function of Uncertainty in CrowdOpportunity Costs for µa
H # 3µa

L # 10
Minutes
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reduce costs more than the robust model but at the ex-
pense of late deliveries.

However, the comparison is not complete, as the ro-
bust model is easily able to analytically handle nonsta-
tionary uncertainties. In contrast, our stochastic bench-
mark, based on the analysis of Bertsimas and Van
Ryzin (1993), does not capture trend and seasonality in
problem parameters. Figure 6 evaluates the perform-
ances of the robust and stochastic policies under our
benchmark settings and nonstationary interarrival
times. As the stochastic benchmark cannot capture
nonstationary problem parameters, we utilized the
weighted average of the means of the nonstationary
interarrival times. The results in Figure 6 show that the
robust model outperforms the stochastic benchmark
for both cost savings and on-time deliveries.

5.2.2. Comparison of the Robust Solution and the
Heuristic Benchmark Algorithm. The proposed robust
model is a static model that uses a randomized alloca-
tion policy, whereas the heuristic dynamic benchmark
algorithm, a modified savings algorithm (Algorithm 1),

uses package characteristics (e.g., customer locations) to
assign packages to the crowd or the 3PL provider. In
this section, we evaluate how our robust model per-
forms against the nonrandomized heuristic benchmark.
For this comparison, we use the baseline parameter val-
ues, where we assume customer orders arrive according
to a Poisson process with rate λ. Table 1 shows the cost
savings of the robust model and the nonrandomized
heuristic benchmark as a function of α and λ, respective-
ly. The baseline for these cost saving calculations is the
discounted FedEx delivery cost. The results show that,
despite being a simpler and faster strategy, the robust
model results in higher cost savings for the firm.

According to Table 1, as the customer order arrival
rate λ decreases, the percentage of cost savings de-
creases until it becomes zero. The reason is that, as λ
decreases, the interarrival time between orders in-
creases, and consequently, the utilization of crowd
drivers decreases. This decreased utilization translates
to decreased income for crowd drivers, which adverse-
ly impacts their participation. Thus, the firm should of-
fer a higher hourly wage to crowd drivers to ensure

Figure 5. (Color online) Comparison of the Performances of the Robust and Stochastic Optimal Solutions

Figure 6. (Color online) Performances of the Robust and Stochastic Optimal Solutions for µa
H # 3µa

L # 15 Minutes
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their participation. As λ decreases further, utilizing
crowd drivers becomes more expensive than outsourc-
ing to 3PL companies. At that point, the firm should
outsource all package deliveries to a 3PL firm, and the
cost savings from crowdsourcing become zero.

6. Conclusion
In this paper, we analytically studied crowdsourcing
last-mile deliveries, with guaranteed delivery time win-
dows, under nonstationary uncertainties. We developed
our optimization model by combining crowdsourcing,
robust queueing, and robust routing theory. We analytic-
ally solved the proposed robust crowdsourcing model
and provided closed form solutions, which allowed us to
derive managerial insights on how the operations of
crowdsourced last-mile delivery systems for on-demand
orders should be designed. Our results show that crowd-
sourcing helps firms significantly decrease their delivery
costs while keeping the promise of on-time delivery to
their customers for their on-demand orders. We vali-
dated the performance of the robust policy via a realistic
simulation study over the 17 Seattle ZIP codes that mod-
eled a real transportation network and varying purchas-
ing and traffic patterns. Finally, the robust model outper-
formed the two proposed benchmark models in terms of
the firm’s delivery cost savings as well as the percentage
of on-time deliveries.
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