
Received: 5 February 2020 Revised: 30 June 2020 Accepted: 9 August 2020 Published on: 23 September 2020

DOI: 10.1002/nav.21946

R E S E A R C H A R T I C L E

Designing practical coordinating contracts in
decentralized projects

Shi Chen Ted Klastorin Michael R. Wagner

Department of Information Systems & Operations

Management (ISOM), Michael G Foster School of

Business, University of Washington, Seattle,

Washington

Correspondence
Shi Chen, Department of Information Systems &

Operations Management (ISOM), Michael G

Foster School of Business, University of

Washington, Seattle, WA 98195-3226.

Email: shichen@uw.edu

History
Accepted by Michael Pinedo, project management

and scheduling.

Abstract
Managing decentralized projects (DPs) effectively is a critical issue today as projects

have become increasingly complex, costly, and strategically important (especially

IT and new product development projects). In this article, we consider a DP that is

composed of n serial stages with stochastic durations; the project is planned, orga-

nized, and funded by a client organization that contracts the work at each stage to

independent contractors. Following previous research and practice, we assume that

the client and contractors incur time-dependent costs (including indirect/overhead

costs), resource-related direct costs, and incentive payments. We initially propose a

general linear time-based incentive contract and show that a simplified version of this

contract can indeed coordinate a DP when discounting is not considered. The pro-

posed contract sets the penalty due date to the start of each contractor’s stage, and the

optimal penalty cost rate is set equal to the client’s overhead/indirect cost; it actually

implies that the contractor is required to compensate for the client’s indirect/overhead

cost for the duration of the stage. This greatly simplifies the design and implementa-

tion of an optimal (coordinating) contract in a DP as the coordinating contract does

not require the contractor’s private cost information. When discounting is present,

we show that a nonlinear contract coordinates the project and provide numerical

evidence for when the linear time-based incentive contract is a good approximation.
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1 INTRODUCTION

The importance of strategic projects in both the public and

private sectors has increased greatly in recent years. Many

of these projects are characterized by high costs, complexity,

and risk, as well as potential returns. New product develop-

ment (NPD) projects in the pharmaceutical industry illustrate

the significant risks associated with NPD projects, where

the average cost of successfully developing a new oncology

drug was estimated at $1.861 M USD with a median dura-

tion of 13.1 years and an overall probability of success of

3.4% (DiMasi et al., 2016; Wong et al., 2019). Many other

[Correction added on 22 January 2021, after first online publication: Online

Appendix in Supporting Information has been moved into the article pdf.].

new product development (NPD) and IT projects face similar

conditions.

In addition to their complexity and risk, many of these

projects are also decentralized; that is, there is a project

owner or client who owns the intellectual property rights and

defines, plans, and funds the project although much of the

work is performed by independent contractors. The client

receives a payoff when the project is successfully completed

(the estimated median revenue for a new approved oncol-

ogy drug was $1.7B USD). Taneri and De Meyer (2017)

reported that over half of all approvals for new drug applica-

tions in 2015 by the US Food and Drug Administration (FDA)

were given to decentralized organizations or “alliances” con-

sisting of innovators and partners. In addition, many NPD

projects can be viewed as a series of sequential stages; even
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when a project is characterized by a general precedence net-

work, it can frequently be subdivided into sequential groups

of tasks or stages that are separated by review points or “stage

gates” to improve project monitoring and control (Santiago

& Vakili, 2005). In many NPD projects, the project naturally

defines a sequential series of tasks or stages. For example,

NPD development projects in the pharmaceutical industry

are frequently characterized by a series of sequential phases

or stages (Wong et al., 2019). Taneri and De Meyer (2017)

noted that many drug development efforts were completed

by sequential alliances where one party exerts “most of the

efforts at any point in time”.

When projects are decentralized, a major challenge fac-

ing project owners is how to align the goals of the owner

(or client) and contractors who act in their own self-interest

(although general economic conditions frequently play a sig-

nificant role in these projects as they influence costs as well

as the range of alternative choices faced by contractors). An

increasing number of researchers have started to recognize

the importance of defining optimal contracts to align conflict-

ing goals between the client and contractors (Chen, Klastorin,

& Wagner, 2015; Chen & Lee, 2017; Kwon, Lippman, &

Tang, 2010). This article extends this stream of work in sev-

eral directions by including more general cost functions for

both the client and contractors, relaxing assumptions about

the distribution of the stage durations and risk-neutral con-

tractors, and showing that clients do not need contractors’

private information to define optimal contracts.

In this article, we consider time-based incentive contracts

that include penalty costs if a project is completed after a

given due date and a bonus payment if the project is completed

prior to (other) stated due dates. These types of contracts are

also known as incentive/disincentive or I/D contracts. While

there are many types of I/D contracts, most incentive contracts

used today are variations of the time-based contract analyzed

in this article (Bubshait, 2003).

Following previous research and observed practice, we

assume that the project stages are stochastic and a function of

the work rate that is determined by the contractor in response

to the fixed fees, penalty rates, bonus rates, and due dates set

by the client. Initially, we make mild assumptions about the

distributions that describe stage durations. When we need to

examine the optimal contracts in more complex environments

(i.e., include discounting), we assume the stage duration dis-

tribution is exponential which is consistent with previous

research (Buss & Rosenblatt, 1997).

One of the key issues in specifying contracts in decentral-

ized organizations is the assumption of perfect information;

most previous studies assume that cost parameters for both the

client and contractors are known by all parties (Kwon, Lipp-

man, McCardle, & Tang, 2010). In this article, we initially

assume that the client has such information about the con-

tractors’ cost parameters but then we relax this assumption

and show how a client can design and implement an opti-

mal contract without having access to the contractors’ private

information.

To develop a benchmark for analyzing a decentralized

project (DP), we consider a centralized project where the

client controls all work in the project. Specifically, we derive

closed form solutions for the optimal work rates at each stage

that maximize the client’s (and project’s) expected profit. The

results we derive for a centralized project serve as the base-

line for our analysis of DPs and provide a means for defining

a coordinating contract in a DP. A coordinating contract in a

DP is a contract that results in a Nash equilibrium when no

stakeholder in the project has any incentive to deviate from

the project’s optimal actions.1

When discounting is negligible and contractors are risk

neutral, the project can be decomposed into n independent

single-stage projects. Our results in this case indicate that a

simple linear incentive contract (LIC), with all due dates set

to the beginning of each stage, coordinates a DP and maxi-

mizes a risk-neutral client’s expected profit when the optimal

penalty cost rate is set to the client’s indirect/overhead cost.

The simple LIC that we advocate can be interpreted as fol-

lows: in addition to receiving a fixed payment from the client,

the contractor is required to compensate for the client’s indi-

rect/overhead cost for the duration of the stage (as the “due

dates” are set to the beginning of the stage and the penalty cost

rate is equal to the client’s indirect/overhead cost). Indeed,

this type of Incentive/Disincentive (I/D) contract has been

commonly used in highway transportation and other infras-

tructure projects. Although there might exist other optimal

(coordinating) contract based on other penalty and bonus due

dates, the contract that we advocate has a distinct advantage

that it does not require the contractor’s private information.

That is, in this article, we show how a client can set the opti-

mal parameters in a contract for each stage that coordinates

the DP without knowing a contractor’s private information.

Furthermore, we show that a linear time-based incentive

contract coordinates the project whether the contractors are

risk neutral or risk averse.

When discounting is considered, we show that a nonlinear

incentive contract (retaining the feature of the simple linear

time-based incentive contract that all due dates are equal to

the starting time of each stage) will coordinate a DP under

the assumption that stage durations are exponential. Using

numerical studies, we show that the linear time-based incen-

tive contract used when there is no discounting provides a

good approximation to the nonlinear coordinating contract

when the discount rate is relatively small; furthermore, as

noted above, the LIC has the additional advantage of being

easy to implement as it does not require the client to have the

contractors’ private information.

1Our definition follows work in supply chain management; for example, see

Cachon (2003)
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1.1 Literature review

Contracts in decentralized organizations have been widely

studied by economists, mostly at a “rather high level of

abstraction somewhat removed from the realm of practi-

cal application” (Weitzman, 1980). Other researchers have

provided anecdotal and limited empirical evidence that incen-

tive contracts offer superior performance to non-incentive

contracts with respect to maximizing the client’s expected

profit (Meng & Gallagher, 2012). Gutierrez and Paul (2000)

discussed the problem of partitioning a project into stages

that are allocated to independent contractors to minimize

project risks. Their model minimized the expected project

makespan; when there were multiple optimal solutions, they

selected the partition that minimized the variance of project

makespan. In a related paper, Paul and Gutierrez (2005) used

the concept of stochastic ordering to analyze the case when

a client wants to select a single contractor from a pool of N

possible contractors. They show that a fixed price contract

minimizes the expected cost to the client when the contractors

are risk neutral (that may not hold when the contractors are

risk averse). Following Paul and Gutierrez, we use stochas-

tic ordering and consider both risk neutral and risk-averse

players; however, we show that a simple incentive contract

dominates a fixed price contract.

Bayiz and Corbett (2005) analyzed the case when a LIC

was used to coordinate the relative efforts of all contractors

when a contractor’s work effort could not be observed by the

client. Their research suggested that contracts that increase

payments to contractors if their relative tasks are completed

before a given due date are weakly superior to fixed-price con-

tracts in terms of a shorter expected project makespan and

higher expected profits for the client. Kwon, Lippman, and

Tang (2010) showed that time-based and cost-sharing con-

tracts can achieve optimal channel coordination when there

is a single contractor (assuming that task durations are expo-

nentially distributed and the cost of a contractor is a quadratic

function of the work rate). In contrast, our work extends

to a serial project with multiple contractors while relaxing

the assumption of exponentially distributed durations. In a

related work, Kwon, Lippman, and Tang (2011) analyzed the

decision to outsource some or all of the stages in a project

(with two stages) when the client pays each contractor a fixed

amount that is negotiated at time zero. Tang, Zhang, and

Zhou (2015) analyze a DP where the work is outsourced to

a single contractor who is selected from two candidate con-

tractors using a reverse auction. They consider two contracts.

The first contract is based on the client’s specifying the fixed

price and due date used to define any penalty and/or bonus

payments. In the second contract, each contractor submits a

bid specifying a fixed payment and due date, and the client

selects the contractor that maximizes his expected payoff.

Chen and Lee (2017) showed that the delivery-schedule-

based contracts are able to coordinate the decentralized sup-

ply chain in a project management context. In their work,

however, they assumed that payments, penalty rates, and

bonus rates are exogenously given; their main focus is on the

client’s optimal decision about the targeted material deliv-

ery schedule, as well as the contractors’ optimal decisions

about their production schedules. Kwon et al. (2010b) stud-

ied payment timing options (no delayed or delayed payments)

in a stochastic project when all contractors worked concur-

rently; under the delayed payment contract, the client received

payment when all tasks were completed. They focused on

maximizing expected profit for a risk-neutral client and

did not consider coordinating contracts in their paper. Con-

versely, Chen et al. (2015) studied payment timing options

in a stochastic serial project that maximized the client’s

expected profit; following the Kwon, Lippman, McCardle,

and Tang (2010) paper, they did not consider coordinating

contracts. The results found by Chen et al. (2015) differed

significantly from those in Kwon, Lippman, McCardle, and

Tang (2010) suggesting that the design of the project network

is an important factor when considering payment options.

In Kwon, Lippman, McCardle, and Tang (2010) and Chen

et al. (2015), the authors also assumed that all information was

available to both the client and contractors; in this article, we

relax this assumption. Dawande, Janakiraman, and Qi (2019)

studied incentive contracts in both parallel and serial projects

under the assumption of perfect information and exponential

stage durations. While we limit our analysis to serial stochas-

tic projects, we include more general cost functions for both

the client and contractors that includes indirect/overhead costs

for both the client and contractors and contractor-dependent

cost function parameters, relax the assumption of exponen-

tial stage durations (when the discount rate is negligible), and

consider risk-averse as well as risk-neutral clients.

1.2 Scope and paper contributions

This article is organized as follows. In section 2, we define

a general time-based incentive contract that includes most

incentive contracts in practice today. This general incentive

contract allows multiple possible due dates for penalty costs

as well as multiple possible due dates for bonus payments. To

derive a benchmark for analyzing a DP, we analyze a central-

ized project where the client controls all stages of the project.

Initially, in section 3, we consider the case when discount-

ing can be ignored2 and provide closed-form solutions for the

optimal work rates at each stage in this case. Our results indi-

cate that an incentive contract, when due dates are set equal

to the starting time of each stage and the optimal penalty

cost rate is set equal to the client’s indirect/overhead cost,

coordinates the project and maximizes a risk-neutral client’s

expected profit. This type of contract also provides the sig-

nificant advantage that a client can set the parameters of the

coordinating contract without knowing a contractor’s private

2Discounting can be ignored when the risk free interest rate is small or the

project is relatively short-term.
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information. It is important to note that we derive these results

using only mild assumptions about the first moment of the

distribution of task durations.

In section 4, we relax the assumption in section 3 that

discounting is negligible and define a nonlinear incentive

contract that coordinates a DP when stage durations are expo-

nentially distributed. We present an efficient procedure that

allows a client to set the parameters of the optimal contract

for each contractor/stage.

Given that the contract defined in section 4 is nonlinear and

requires the contractors’ private information to coordinate a

DP, it may be difficult to implement in practice. In section 5,

we numerically demonstrate that this nonlinear contract can

be approximated by a LIC (based on a Taylor series approxi-

mation) and will coordinate a DP for risk-neutral contractors

when the discount rate is small. Our results in this section

are based on extensive numerical analyses and indicate that

the LIC performs better for smaller discount rates. Further-

more, our numerical results suggest that the use of incentive

contracts is increasingly important as discount rates increase.

In section 6, we extend our results to the case when the

client or contractors are risk averse. Using stochastic domi-

nance, we show that the linear contract defined in section 3

will also coordinate a DP for a risk-averse client or contrac-

tors for any strictly concave utility function when there is no

discounting. In the final section, we summarize our results

and discuss the managerial and practical implications of our

findings.

2 STACKELBERG MODEL DEFINED

We assume that a project consists of n sequential stages; with-

out loss of generality, we assume that the stages are sequen-

tially indexed i = 1,… ,n from the start to the completion of

the project. Following previous research (e.g., Buss & Rosen-

blatt, 1997; Chen et al., 2015; Kamien & Schwartz, 1972;

Kwon, Lippman, McCardle, & Tang, 2010), we assume that

the client receives a fixed payment Q when the project is

completed. This amount may represent the expected value

of future profits earned by a new product or the social wel-

fare accrued by a completed public infrastructure project.

We initially assume that the discount rate is sufficiently low

that we can ignore discounting costs, although we relax this

assumption later in the paper.

Following previous project management literature (Klas-

torin, 2011), we assume that there are three types of

project-related costs. First, there are time-dependent costs

that include a fixed overhead/indirect cost per time unit that

reflects administrative costs (e.g., managerial and security

costs), utility expenses, construction cranes, and so on. We

let Co denote the overhead/indirect cost rate incurred by the

client during the project duration and Ki denotes the over-

head/indirect cost rate incurred by the ith contractor during

her respective stage. Second, there are direct resource costs

at each stage that can be approximated by kiri
2 where ri is the

work rate at stage i and ki is the resource cost parameter that

reflects the complexity and difficulty of the ith stage (Chen

et al., 2015; Kwon, Lippman, McCardle, & Tang, 2010). In a

DP, the work rate ri is a decision variable that is set by each

ith contractor to maximize their respective expected profit.

Incentive costs define the third cost category; these will be

discussed later.

The duration of stage i is denoted by ti, where ti is a

non-negative random variable that is stochastically non-

increasing in the work rate ri > 0 (i.e., a larger work rate ri will

lead to a higher probability of completing stage i in a shorter

time span). We assume that ti are independent; initially,

we only assume that the distributions are defined such that

E[ti] = air−1
i for a given ai > 0. In sections 4 and 5, we restrict

our analysis to the case when ti∼exp(ri); this assumption has

been previously used by numerous researchers, including

Buss and Rosenblatt (1997), Tavares (2002), and Klastorin

and Mitchell (2007).

We consider a general incentive contract that is defined by

a payment qi that is negotiated and paid by the client at the

start of the project and any penalty or bonus payments made

at the completion of each stage when the stage’s duration has

been realized. Assuming a discounting rate 𝛼 ≥ 0, the payment

made by the client to each ith contractor is defined as

𝜌i(qi,Dj
i, D̂

j
i,P

j
i,B

j
i) = qi − e−𝛼

∑i
k=1

tk

×

(Pmax∑
j=1

f [Pj
i, (ti − Dj

i)
+] −

Bmax∑
j=1

g[Bj
i, (D̂

j
i − ti)+]

)
(1)

where f [Pj
i, (ti − Dj

i)
+] and g[Bj

i, (D̂
j
i − ti)+] define the penalty

and bonus payment functions, respectively. The decision vari-

ables and parameters that we use to define and analyze

variations of this contract are given below.

Contractor i’s decision variable

ri > 0 work rate for stage i.

Client’s decision variables

DPmax

i ≥ · · · ≥ D1
i ≥ D̂Bmax

i ≥ · · · ≥ D̂1
i ≥ 0 where Dj

i are the

due dates for penalty payments and D̂j
i are due dates for bonus

payments,

Pj
i is the penalty cost per time period tardy if stage i is

completed after due date Dj
i (for j = 1, 2,… ,Pmax),

Bj
i is the bonus per time period paid by client to contractor i if

stage i is completed prior to due date D̂j
i (for j= 1, 2,… ,Bmax),

and

qi is the payment made to the ith contractor at the beginning

of the project.

Parameters

Q is the payment to the client when project is completed,
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Co is the indirect/overhead cost rate incurred by the client

during project makespan,

Ki is the indirect/overhead cost rate incurred by contractor i
during stage i, 𝛼 is the non-negative discount rate,

ki is the variable resource cost parameter at stage i,

𝜃i is the minimum acceptable expected profit for contractor i,
and

ti is the duration of stage i (non-negative random variable).

To avoid trivial and unrealistic cases, we assume that

Co > 0, Ki > 0, and ki > 0 for all i = 1,… ,n. The parameter

𝜃i defines the minimum expected profit that the ith contrac-

tor will require to participate in this project; 𝜃i represents

the current economic conditions and alternative investments

available to the contractor at the time when the incentive con-

tract is negotiated. In a weak economy, 𝜃i would be small

and possibly zero if a contractor has few alternatives and

needs the project to remain economically viable. These par-

ticipation constraints are analogous to “individual rationality

(IR)” constraints in the principle-agent problem literature

(Hurwicz, 1972).

Furthermore, it is clear from (1) that the problem decom-

poses into n independent stages when 𝛼 = 0 and contractors

are risk neutral. Not only does this simplify the analysis and

allows us to define an optimal (coordinating) contract where

the client is not required to know contractors’ private cost

information, we will also show that the coordinating contract

defined in this case also holds when the client is risk averse

and provides a good approximation for cases when 𝛼 > 0.

3 LINEAR TIME-BASED INCENTIVE
CONTRACTS WITHOUT DISCOUNTING

Linear time-based incentive contracts are widely used in prac-

tice (Tang et al., 2015); assuming 𝛼 = 0, we can modify the

general contract defined by (1) by letting f [Pj
i, (ti − Dj

i)
+] =

Pj
i[ti − Dj

i]
+ and g[Bj

i, (D̂
j
i − ti)+] = Bj

i[D̂
j
i − ti]+. In this case,

the client pays each contractor the amount:

𝜌i = qi −
∑

j
{Pj

i[ti − Dj
i]
+ − Bj

i[D̂
j
i − ti]+}. (2)

As previously noted, we assume that the earliest due date for

penalties must equal or exceed the latest due date for bonuses;

that is, D1
i ≥ D̂Bmax

i (for all i = 1, … , n), to avoid the case

when the contractor is both paying a penalty and receiving

a bonus. Furthermore, it should be noted that the aggregate

penalties paid by any ith contractor will be monotonically

non-decreasing with the duration of stage i. A similar state-

ment can be made for the bonuses.

To develop a benchmark for analyzing DPs, we initially

consider a centralized project where the client controls all

stages of the project and sets the work rates ri at each ith stage.

The results from the centralized project allow us to define a

coordinating contract for DPs.

3.1 Centralized project

In a centralized project (CP), the client wants to maximize

his expected profit that is defined by the payment Q received

when the project is completed minus the indirect/overhead

costs
∑

i(Co + Ki)ti and direct resource costs
∑

ikir2
i ti where

ti is the realized duration of each stage.

Letting ΠCP denote the client’s profit in a centralized

project and assuming a discount rate 𝛼 = 0,

ΠCP = Q −
n∑

i=1

(Co + Ki + kiri
2)ti. (3)

Based on our assumption that E[ti] = air−1
i for all ai > 0,

E[ΠCP] = Q −
n∑

i=1

[(
Co + Ki

ri

)
+ kiri

]
ai. (4)

Using first-order conditions (FOCs), the client would set

the optimal work rates as follows:

ri
∗ =

√
Co + Ki

ki
(5)

that uniquely maximize E[ΠCP] due to the strict concavity of

the objective. Using (4) and (5), the maximum expected profit

for the centralized project (and client) is

E∗[ΠCP] = Q − 2

n∑
i=1

ai
√

ki(Co + Ki). (6)

3.2 Decentralized project: Linear incentive contract

In this case, the client outsources the n stages of the project to

independent contractors and sets the contract terms with each

contractor at the start of each stage (or project). Given the

LIC defined by (2), each ith contractor subsequently decides

if she will participate and, if so, determines the work rate

that maximizes her expected profit. In this case, the problem

of defining an optimal LIC decomposes into n independent

subproblems for each contractor where each subproblem is a

Stackelberg game between the client and contractor. In these

games, a client needs to know each contractor’s best response

to any proposed contract that typically requires knowing the

contractors’ cost parameters. However, it is important to note

that a client generally does not have access to this private

information.

To avoid this problem, the client can modify the contract

defined by (2) by setting all due dates relating to penalty

fees and bonus payments equal to the starting time of each

stage (i.e., set Dj
i = D̂j

i = 0 for all i, j). Under the terms of

this simplified contract, each ith contractor is paid an amount

equal to

𝜌i = qi − Piti. (7)

We will show that the contract defined by (7) is a coordinat-

ing contract that maximizes the expected profit of the project

and does not require the client to have the contractors’ private
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information. Although there could be other coordinating con-

tracts with the due dates not being equal to the starting time

of each stage (that is, set Dj
i ≠ 0 for some i, j), those contracts

require that the client has access to the contractors’ private

cost information (i.e., values of ki and Ki) to coordinate the

project; such contracts are harder to implement while bring no

additional benefit to either the client or the contractors com-

pared to the contract defined by (7), as the latter is an optimal

(coordinating) contract.

We refer to the contract defined by (7) as a LIC. In a LIC, the

penalty charges begin to accrue as soon as the ith stage begins

(i.e., mathematically we set due penalty due date equal to the

starting time of that stage). These contracts have been widely

used in transportation (highway) infrastructure projects where

they are sometimes referred to as “lane rental” contracts (since

a contractor must “rent” a lane to close it). According to the

Washington State Department of Transportation (2015), “the

intent is to minimize the impacts of a project on the traveling

public… [by creating] a monetary incentive for the contractor

to be innovative and minimize the duration of lane closures”

(WSDOT 2015).

Given E[ti] = air−1
i , the expected profit for the ith contractor

is

E[𝜋i] = qi − (Pi + Ki + kiri
2)ai

ri
. (8)

Given that other projects may be available to contractors,

we require E[𝜋i]≥ 𝜃i where 𝜃i defines the minimum expected

profit that the ith contractor will require to participate in this

project. Applying FOCs, the optimal work rate for the ith con-

tractor who participates in this project would be r∗i =
√

Pi+Ki

ki
;

second-order conditions (SOCs) confirm that this solution is

unique and minimizes the contractors’ expected cost. This

simple result leads to the following proposition.

Proposition 1

a. If the client offers the ith contractor a LIC
defined by (7) with Dj

i = D̂j
i = 0 for all i, j;

Pi =Co, and any q∗
i ≥ 0 that ensures con-

tractor participation, the contract will coor-
dinate the entire project.

b. In addition, the split of the total profit
among the client and the contractors is
subject to negotiation over the fixed pay-
ment qi paid at the beginning of each stage.

In particular, the contract maximizes the
client’s expected profit if the client sets q∗i =
2ai

√
ki(Co + Ki) + 𝜃i, where the expected

profit for the contractors and client, respec-
tively, are as follows:

E∗[𝜋i] = 𝜃i

E∗[Πc] = Q − 2

n∑
i=1

ai
√

ki(Co + Ki) −
n∑

i=1

𝜃i.

Proof See Appendix. ▪

It is important to note that, after setting P∗
i = Co (that does

not require the client to have contractors’ private information),

specific values of qi only determine how the project’s prof-

its are allocated between the client and contractors; any value

of qi will result in a coordinating contract that maximizes

the project’s expected profit. In practice, the final values of

qi are determined through incremental negotiations and rep-

resent the relative bargaining power between the client and

contractors. In contrast, when the client has access to the con-

tractors’ private information (e.g., ki, Ki, and 𝜃i), the client

would optimally set each contractor’s fixed payment equal to

q∗
i , which maximizes the client’s expected profit while leads

to the minimal expected profits of the contractors.

3.3 Decentralized project: Fixed price contracts

The contract defined by (7) becomes a fixed price contract

when Pi = 0; that is, a contractor receives a payment qi regard-

less of the time needed to complete her stage. In this case, the

optimal work rate for the ith contractor is

r∗i =
√

Ki

ki

and it can be seen that q∗
i = 2ai

√
kiKi + 𝜃i. The client’s

expected optimal profit, in this case, is then

E[ΠFP
C ] = Q −

∑
i
𝜃i −

∑
i

ai

⎡⎢⎢⎢⎣
(2Ki + Co)√

Ki

ki

⎤⎥⎥⎥⎦ (9)

(the contractors’ expected profits do not change). Corol-

lary 1 implies that an incentive contract always outperforms

a fixed price contract when Co > 0; furthermore, the benefit

increases with the value of Co. Even though the fixed-price

contract is a special case of the incentive contract, this result

is not intuitively obvious given the nature of the Stackel-

berg game where the client and contractors have competing

objectives.

Corollary 1 The client’s maximum expected
profit under an incentive contract defined by
Proposition 1 is greater than or equal to the
client’s expected profit defined by (9) using a
fixed price contract. Furthermore, the expected
makespan of the project using the incentive con-
tract defined by Proposition 1 is less than the
expected makespan when a fixed price contract
is used.

Proof See Appendix. ▪

4 INCENTIVE CONTRACTS WITH
DISCOUNTED CASH FLOWS

When discounting is considered (i.e., 𝛼 > 0), we can define a

coordinating contract in a decentralized serial project when



CHEN ET AL. 189

the density of the duration of each stage is f (t) = rie−ri t

(i.e., exponentially distributed durations) by setting Dj
i =

D̂j
i = 0 for all i, j and letting f [Pj

i, (ti − Dj
i)
+] = ePi ti in (1).

While the assumption that durations are exponential is some-

what more restrictive than our previous assumption about the

duration distribution, we note that exponential task durations

have been used in numerous previous studies (Buss & Rosen-

blatt, 1997; Klastorin & Mitchell, 2007 and Tavares, 2002).

Given the nature of the penalty cost function, we refer to

this contract as an EXIN (Exponential Incentive) contract.

To show that the EXIN contract is a coordinating contract,

we initially analyze a centralized project using the same

assumptions.

4.1 CP when 𝛂 > 0

The project’s (and client’s) collective discounted profit in this

case is

ΠCP (̂r1, … , r̂n) = Qe−𝛼
∑n

i=1
ti −

n∑
i=1

×
⎡⎢⎢⎣e−𝛼

∑i−1

j=1
ti

ti

∫
0

(Co + Ki + kir̂2
i )e

−𝛼xdx
⎤⎥⎥⎦ (10)

where r̂i denotes the work rates when 𝛼 > 0. The expected

discounted profit in a centralized project, denoted by

E[ΠCP (̂r1, … , r̂n)], is defined as follows:

E[ΠCP(̂r1, … , r̂n)] = Q
n∏

i=1

r̂i

𝛼 + r̂i
−

n∑
i=1

×

(
Co + Ki + kir̂2

i

𝛼 + r̂i

) i−1∏
j=1

r̂j

𝛼 + r̂j
. (11)

Following our previous analysis of a centralized project, a

risk-neutral client wants to set the work rates (̂r∗
1
, … , r̂∗n) in

each stage to maximize the expected profit defined by (11).

The optimal work rates (̂r∗
1
, … , r̂∗n) in this case are defined in

Proposition 2.

Proposition 2 When ΠCP (̂r1, … , r̂n) is
defined by (10) and ti ∼ exp(̂ri), E[ΠCP(̂r∗1 , … ,

r̂∗n)] ≥ E[ΠCP (̂r1, … , r̂n)] for all r̂1, … , r̂n > 0

when r̂∗i =
√

𝛼2 + Q̂i 𝛼+Co+Ki

ki
− 𝛼 where Q̂i =

Q
∏n

j=i+1

r̂∗j
𝛼+r̂∗j

−
∑n

j=i+1

[Co+Kj+kj (̂r∗j )
2]

𝛼+r̂∗j

∏j−1

m=i+1

r̂∗m
𝛼+r̂∗m

for i = n − 1, … , 1 and Q̂n = Q.

Proof See Appendix. ▪

4.2 DP when 𝛂> 0

Assume that the client offers each ith contractor a payment qi
at the beginning of the project and each contractor reacts by

setting an appropriate work rate r̂i. When the client uses an

EXIN contract, a contractor’s discounted profit is now defined

as

𝜋i(̂ri) =
⎡⎢⎢⎣(qi − ePiti)e−𝛼ti −

ti

∫
0

(Ki + kir̂2
i )e

−𝛼xdx
⎤⎥⎥⎦ e−𝛼

∑i−1

j=1
tj .

(12)

Since f (t) = r̂i e−r̂i t, the expected profit for contractor i who

is willing to participate in the project is equal to

E[𝜋i(̂ri)] =

[
qir̂i − Ki − kir̂2

i

𝛼 + r̂i
− r̂i

𝛼 − Pi + r̂i

] i−1∏
j=1

r̂j

𝛼 + r̂j
.

(13)

A risk-neutral contractor’s objective is to maximize her

expected discounted profit defined by (13). The unique work

rate that maximizes her expected profit is defined by Propo-

sition 3.

Proposition 3 Given qi > 0, Pi ≥ 0, then work

rates r̂∗i uniquely maximize E[𝜋i(̂ri)] as defined

by (13), where r̂∗i are the unique solutions to

r̂∗i =

√
[ki(̂r∗i )2 + 2kir̂∗i 𝛼 − (qi𝛼 + Ki)](𝛼 − Pi + r̂∗i )2

(Pi − 𝛼)
−𝛼 > 0.

(14)

Proof See Appendix. ▪

Proposition 3 provides an implicit expression for each con-

tractor i’s optimal work rate r̂∗i for any values of qi > 0 and

Pi ≥ 0. Moreover, we show in the proof that this work rate

always exists (̂r∗i (qi, Pi) > 0) and is unique. Using the results

of Proposition 3, the expected discounted contractor profit can

be simplified as follows:

E[𝜋i(̂r∗i )] =

[
ki (̂r∗i )

2 − Ki

𝛼
−

Pi(̂r∗i )
2

𝛼(𝛼 − Pi + r̂∗i )2

] i−1∏
j=1

r̂∗j
𝛼 + r̂∗j

.

(15)

Our results assume that contractors are willing to partici-

pate in the project. As we noted in section 2, this may not

be the case when contractors have better alternative invest-

ment opportunities. As a result, we imposed participation

constraints for a risk-neutral contractor as a lower bound on

the expected profit that we denoted by the opportunity cost

𝜃i; that is, a risk-neutral contractor would only participate

in the project if E[𝜋i(̂r∗i )] ≥ 𝜃i where E[𝜋i(̂r∗i )] is defined

by (15) and the r̂∗i values are defined in Proposition 3. This

assumption is reasonable given that contractors often disclose

their opportunity costs during negotiations. However, private

contractor cost information, such as their overhead cost rates,

are typically not disclosed during negotiations. Our model

does not require the client to know this private contractor

information.
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4.3 Client response to an EXIN contract

Using an EXIN contract, a client’s discounted profit is defined

as

ΠC = Qe−𝛼
∑n

i=1
ti −

n∑
i=1

⎡⎢⎢⎣(qi − ePi ti)e
−𝛼

i∑
j=1

tj
⎤⎥⎥⎦

−
n∑

i=1

⎡⎢⎢⎣e−𝛼
∑i−1

j=1
ti

ti

∫
0

Coe−𝛼xdx
⎤⎥⎥⎦ .

A risk-neutral client who wants to maximize his expected

profit would find the optimal values q∗
i and P∗

i by solving

Problem P1:

max
qi,Pi

E[ΠC] = Q
n∏

i=1

r̂∗i
𝛼 + r̂∗i

−
n∑

i=1

[(
qir̂∗i
𝛼 + r̂∗i

−
r̂∗i

𝛼 − Pi + r̂∗i

) i−1∏
j=1

r̂∗j
𝛼 + r̂∗j

]

−
n∑

i=1

[
Co

𝛼 + r̂∗i

i−1∏
j=1

r̂∗j
𝛼 + r̂∗j

]
(P1)

s.t.

[
ki (̂r∗i )

2 − Ki

𝛼
−

Pi (̂r∗i )
2

𝛼(𝛼 − Pi + r̂∗i )2

] i−1∏
j=1

r̂∗j
𝛼 + r̂∗j

≥ 𝜃i for alli = 1, … , n,
qi > 0

Pi ≥ 0

where r̂∗i are defined by (14) and Proposition 3. Recog-

nizing that the client’s expected profit defined in problem

P1 is similar to the client’s expected profit in the cen-

tralized case defined by (11), we can develop an efficient

procedure to solve problem P1. This procedure, that we

denote as the X-procedure, calculates the optimal work

rate at each stage and then finds the optimal penalty

P∗
i and initial payment q∗

i for each contractor who is

paid an amount q∗
i − eP∗

i ti based on their realized stage

makespan ti. This procedure is described below; the proof

that the X-procedure finds the optimal solution is given in

the Appendix.

4.4 X-Procedure

1. Set r̂∗∗i =
√

𝛼2 + Q̂i𝛼+Co+Ki

ki
− 𝛼 where Q̂i = Q

∏n
j=i+1

r∗j
𝛼+r∗j

−
∑n

j=i+1

[Co+Kj+kj(r∗j )
2]

𝛼+r∗j

∏j−1

m=i+1

r∗m
𝛼+r∗m

for i = n − 1, … , 1

and Q̂n = Q.

2. Set P∗
i = 𝜉i𝛼(𝛼+r̂∗∗i )

𝜉i𝛼+(̂r∗∗i )2
,where 𝜉i =

ki (̂r∗∗i )2−Ki

𝛼
− 𝜃i∏i−1

j=1

r̂∗∗j
𝛼+r̂∗∗j

for i =

n, … , 1.

3. Set q∗
i = ki (̂r∗∗i )2−Ki+2kir̂∗∗i 𝛼

𝛼
− (P∗

i −𝛼)(𝛼+r̂∗∗i )2

𝛼(𝛼−P∗
i +r̂∗∗i )2

for i = n, … , 1.

Proposition 4 shows that the EXIN contract coordinates

a DP. This proposition indicates that an EXIN contract is

optimal for a risk-neutral client since the client’s expected

payout is equal to the optimal centralized project profit

minus the sum of the opportunity costs 𝜃i paid to the

contractors.

Proposition 4 An EXIN contract, where the
client pays each contractor an amount equal to
q∗

i − eP∗
i ti when q∗

i and P∗
i are calculated by

the X-Procedure, coordinates a decentralized
serial stochastic project when stage durations
ti∼exp(ri). The client obtains an expected profit
equal to E[ΠCP(̂r∗1 , … , r̂∗n)] −

∑n
i=1 𝜃i and each

ith contractor obtains an expected profit equal
to their opportunity cost 𝜃i.

Proof See Appendix. ▪

Note that our results generalize the findings of Dawande

et al. (2019), for a serial project. In particular, our model

includes non-zero indirect cost rates for both the client

and contractors, direct resource cost factors (ki) that are

stage-dependent and positive opportunity costs. If we adopt

the more restriction assumptions made by Dawande et al.,

our centralized work rates are identical to those given

by Dawande et al., 2019.3 To show this equivalence, we

note that the work rate at stage i is given as follows (by

Proposition 2):

ri =
√

𝛼2 + Qi𝛼 + Co + Ki

ki
− 𝛼

where

Qi = Q
n∏

j=i+1

rj

𝛼 + rj
−

n∑
j=i+1

Co + Kj + kj(rj)2

𝛼 + rj

j−1∏
m=i+1

rm

𝛼 + rm
,

i = n − 1, … , 1 and Qn = Q.

Following Dawande et al., we set Co = Ki = 0, and define

ri as 𝜆i, Qi as Vi+ 1, and ki as 𝜅. In this case, our optimal work

rate simplifies to

𝜆i =
√

𝛼2 + Vi+1𝛼

𝜅
− 𝛼,

that agrees with Proposition 6 in Dawande et al. However,

relabeling Qi as Vi+ 1 must be proved, since the definition of

Vi is different in Dawande et al.: Vi = Vi+ 1 - 2𝜅𝜆i. The proof

of equivalence is given in Proposition 5.

Proposition 5 If Co = Ki = 0 and ki = 𝜅, then

Qi = Vi+ 1 and ri = 𝜆i for i = 1,… ,n.

Proof See Appendix. ▪

3Note that hat’s and *’s are omitted for convenience.
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5 USING A LIC TO IMPLEMENT AN EXIN
CONTRACT

It is likely that an EXIN contract will be difficult to imple-

ment in practice given the nonlinear form of the contract

and the fact that implementing the contract requires the

client to have contractors’ private information (e.g., val-

ues of ki and Ki). The LIC proposed in section 3 avoids

these difficulties; we note that the LIC can be derived from

the definition of the EXIN contract using the linear term

in a Taylor’s series approximation. However, the question

remains if the LIC is a good approximation for an EXIN

contract.

When 𝛼 > 0, the client’s discounted profit in a decentralized

serial project using a LIC is equal to

ΠDP(qi,Pi) = Qe−𝛼T −
n∑

i=1

e−𝛼
∑i−1

j=1
tj

×
⎡⎢⎢⎣(qi − Piti)e−𝛼ti + Co

ti

∫
0

e−𝛼tdt
⎤⎥⎥⎦ . (16)

In this case, we were unable to find closed-form solutions;

as a result, we used extensive numerical analysis to test the

impact of implementing a LIC when there is a positive dis-

count rate. To find solutions, we used a numerical procedure

that solved for a contractor’s optimal work rate as a function

of q, P, and 𝛼. This procedure formed the basis of a search

algorithm that found the values of qi
*(𝛼) and Pi

*(𝛼) that

maximized the client’s expected profit for a given discount

rate 𝛼.

Our results were consistent over a variety of cost param-

eters and discount rates. To illustrate our findings, consider

the results for a risk-neutral client and risk-neutral contrac-

tors in a two-stage project with parameters Q = 350, Co = 20,

k1 = k2 = 20, K1 = K2 = 5. When 𝛼 = 0, the client would

set qi*(0) = $44.72, P*(0) = Co = $20, and earn an expected

profit of $215.84. As the discount rate 𝛼 increases, the client’s

optimal expected profit decreases as indicated in Figure 1 (in

general, the values of q*(𝛼) and P*(𝛼) increase as 𝛼 > 0). If a

client continues to use q*(0) and P*(0) when 𝛼 > 0, the error

introduced (in terms of the client’s expected profit) increases

with increasing values of α to a maximum of 14.37% (when

𝛼 = 0.15).

Our results also indicate that for small values of 𝛼 (e.g.,

α≤ 0.05), a client who uses the closed-form results derived

when α = 0 will earn a nearly optimal expected profit without

requiring extensive numerical analysis. This relationship is

indicated in Figure 1.

The results in Figure 1 also indicate a significant advantage

to the client of an incentive contract over a fixed price con-

tract (when p = 0). When there is no discounting, the client’s

expected profit is approximately 27% lower when using a

fixed price contract; this loss in expected profit increases to

FIGURE 1 Client’s discounted expected profit using incentive and

fixed-price contracts [Colour figure can be viewed at

wileyonlinelibrary.com]

67% when α = 0.15. Clearly, it is in the client’s best interest

to use an incentive contract, especially as the discount rate

increases.

6 RISK AVERSE CLIENT OR
CONTRACTORS

The results in this article assumed that the client and con-

tractors are risk neutral. When stage durations are expo-

nential, however, we can show that our results apply when

the client or contractors are risk averse. For example, in

the case of a centralized project when 𝛼 = 0, we showed

in section 3.1 that a client’s expected profit is maxi-

mized when he sets work rates r∗i =
√

Co+Ki

ki
. This

result also maximizes the utility of a risk-averse client

for any strictly concave utility function as indicated in

Corollary 2.

Corollary 2 When the client’s profit ΠCP(r1,

… , rn) is defined by (3) and f (t) = ri e−ri t,

E[u(ΠCP(r∗1 , … , r∗n))] ≥ E[u(ΠCP(r1, … , rn))]
for all r1,… ,rn > 0 and any monotone increas-

ing and strictly concave utility function u if r∗i =√
Co+Ki

ki
for all i = 1,… ,n.

Proof See Appendix. ▪

When 𝛼 > 0, extensive numerical tests indicate that these

results do not hold in general as the optimal solution depends

on the specific form of the utility function.

For a DP, we showed in section 3.2 that when contractors

set their optimal work rates equal to r∗i =
√

Pi+Ki

ki
, a LIC

defines a coordinating contract for risk-neutral contractors. In

http://wileyonlinelibrary.com
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Corollary 3, we show that this result also holds if the contrac-

tors are risk averse as defined by any strictly concave utility

function.

Corollary 3 When the contractors’ realized
profits are defined by 𝜋i(ri) = qi − (Ki + Pi
+kir2

i )ti, then E{u[𝜋i(ri
*)]}≥E{u[𝜋i(ri)]}for all

ri > 0 and any monotone increasing and strictly
concave utility function u, when the contractors’
work rates are defined by r∗i =

√
Co+Ki

ki
.

Proof See Appendix. ▪

7 CONCLUSIONS AND EXTENSIONS

In this article, we analyzed a DP consisting of a series of

stochastic stages where a client organization funds, directs,

and manages the project but outsources the work at each stage

to an independent contractor who maximizes her expected

profit. These types of projects occur frequently and repre-

sent many strategic projects, including IT and new product

development projects.

Given that the client and contractors have conflicting goals,

the type of contract used by the client is critically impor-

tant. In this article, we focused on general incentive contracts

and showed that a LIC with the due dates set to zero will

coordinate a DP when discounting can be ignored and a non-

linear incentive contract (the EXIN contract) with due dates

set to zero will coordinate a DP when discount rates are pos-

itive. In addition to incentive contracts, our analysis included

fixed-price contracts that are special cases of the incentive

contracts when the penalty cost rates are set to zero.

To evaluate these contracts, we analyzed the project

performance for a centralized project and showed how a

client would set his optimal work rate to maximize the

expected profit or expected utility in this case. We used

the results for a centralized project as a benchmark for

analyzing DPs.

When using the EXIN contract, we developed an efficient

procedure to find the optimal values of qi and Pi that coor-

dinate the project (i.e., maximize the overall profit of the

project). Recognizing that an EXIN contract may be difficult

to implement in practice, we proposed using a LIC when 𝛼 > 0

as a LIC has two advantages over an EXIN contract. The first

advantage is that LIC is easy to implement (set Pi
* = Co) and

has a simple linear penalty function. The second advantage

is that a LIC does not require the client to have contractors’

private knowledge. Our numerical analysis indicated that a

LIC is a reasonably good approximation of an EXIN contract,

especially for small discount rates.

We are continuing to analyze various types of contracts

in DPs, including “cost plus” contracts when a client pays

a contractor her audited direct costs in addition to a fixed

fee (or percentage of the costs) for overhead/indirect costs.

Cost-plus contracts are widely used in practice and provide a

means to allocate risks from contractors to the client. A better

understanding of these—and related—contracts could have a

significant impact on the ultimate cost and success of many

complex and costly projects.
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APPENDIX

Proof of Proposition 1 If the client offers the ith contractor, a linear incentive contract defined by (7) with all

the due dates set to zero, the expected profit of the ith contractor has been given by (8). Applying the FOC of (8),

the contractor’s optimal choice of the work rate will be r∗i =
√
(Pi + Ki) ∕ki. In contrast, in the centralized project,

the client would set the optimal work rates at r∗i =
√
(Co + Ki) ∕ki. It is clear that if the client in the decentralized

project sets Pi = Co, then the contractor will choose the same optimal work rate as what the client would do in the

centralized project. Therefore, with all due dates being zero and Pi = Co, the contract will coordinate the entire

project, provided that the contract ensures participation of the contractor. Note that the client can use this contract

to coordinate the decentralized project without knowing the contractors’ private information (e.g., ki and Ki).

While part (a) of this proposition has established the coordinating contract, which maximizes the total expected

profit of the entire project, the division of the total expected profit between the client and the contractors depends

on the values of qi. As we noted, the values of qi can be determined by the relative negotiation powers of those

parties; a higher qi implies a higher negotiation power of the ith contractor.

In particular, if ideally the client knows the contractor’s private information on 𝜃i or the client has the absolute

negotiation power, then at q∗
i = 2ai

√
ki (Co + Ki) + 𝜃i, the expected profit of the ith contractor will be 𝜃i. To see

this result, note that under the coordinating contract,

E∗ [𝜋i] = q∗
i −

(
Pi + Ki + kir∗

2

i

)
ai

r∗i
= q∗

i −

(
Co + Ki + kir∗

2

i

)
ai

r∗i
=

(
2ai

√
ki (Co + Ki) + 𝜃i

)
− 2 (Co + Ki) ai√

Co+Ki

ki

= 𝜃i.

Therefore, the coordinating contract leads to the maximum expected profit for the entire decentralized project,

and at q∗
i = 2ai

√
ki (Co + Ki) + 𝜃i, each contractor receives only the minimum acceptable expected profit, 𝜃i.

As a result, the client’s expected profit is maximized. Specifically, the client’s maximum expected profit must be

equal to the maximum expected profit of the entire project less the sum of the contractors’ minimum acceptable

expected profits. That is,

E∗ [Πc] = E∗ [ΠCP] −
n∑

i=1

𝜃i = Q − 2

n∑
i=1

ai
√

ki (Co + Ki) −
n∑

i=1

𝜃i.

Q.E.D. ▪

Proof of Corollary 1 The expected client profit using the incentive contract 𝜌i = qi −Piti was shown by

Proposition 1 to be equal to

E∗ [Πc] = Q − 2

n∑
i=1

ai
√

ki (Co + Ki) −
n∑

i=1

𝜃i

For ki > 0, we want to show that

E∗ [Πc] − E
[
ΠFP

c
] ≥ 0

Q − 2

n∑
i=1

ai
√

ki (Co + Ki) −
n∑

i=1

𝜃i ≥ Q −
∑

i
𝜃i −

∑
i

ai

⎡⎢⎢⎢⎣
(2Ki + Co)√

Ki

ki

⎤⎥⎥⎥⎦
That is, we want to show that

2

n∑
i=1

ai
√

ki (Co + Ki) ≤ ∑
i

ai

⎡⎢⎢⎢⎣
(2Ki + Co)√

Ki

ki

⎤⎥⎥⎥⎦
which is true for any Co ≥ 0.

The expected make span for a project using a fixed price contract is

EFP

[ n∑
i=1

ti

]
=

n∑
i=1

ai√
Ki

ki
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while the expected make span for a project using an incentive contract is

EIC

[ n∑
i=1

ti

]
=

n∑
i=1

ai√
Pi+Ki

ki

Thus, EFP
[ n∑

i=1

ti
]
> EIC

[ n∑
i=1

ti
]

for any Pi, ki > 0.

Q.E.D. ▪

Proof of Proposition 2 From (11), the expected discounted profit at time 0 is (the hat’s omitted for clarity)

E [ΠCP] = Q
n∏

i=1

ri

𝛼 + ri
−

n∑
i=1

(
Co + Ki + kiri

2
)

𝛼 + ri

i−1∏
j=1

rj

𝛼 + rj
.

We optimize from the last stage n. We isolate the terms in E[ΠCP] that only includes rn as follows

E [ΠCP (n)] =

(
Q rn−1

𝛼 + rn−1

r∗n
𝛼 + r∗n

−
(
Co + Kn−1 + kn−1rn−1

2
)

𝛼 + rn−1

−
(
Co + Kn + kn(r∗n)2

)
𝛼 + r∗n

rn−1

𝛼 + rn−1

) n−2∏
j=1

rj

𝛼 + rj

=

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝
Q

r∗n
𝛼 + r∗n

−
(
Co + Kn + kn(r∗n)2

)
𝛼 + r∗n

constant

⎞⎟⎟⎟⎟⎠
rn−1

𝛼 + rn−1

−
(
Co + Kn−1 + kn−1rn−1

2
)

𝛼 + rn−1

⎞⎟⎟⎟⎟⎠
n−2∏
j=1

rj

𝛼 + rj
.

𝜕E [ΠCP]
𝜕rn

=
(
−knrn

2 − 2knrna + (Qa + Co + Kn)
(𝛼 + rn)2

) n−1∏
j=1

rj

𝛼 + rj
.

𝜕2E [ΠCP]
𝜕rn2

=

(
−

2
(
Qa + ka2 + Co + Kn

)
(a + r)3

) n−1∏
j=1

rj

𝛼 + rj
< 0.

Setting
𝜕E[ΠCP]

𝜕rn
= 0, we have r∗n =

√
𝛼2 + Q𝛼+Co+Kn

kn
− 𝛼 and the second order condition confirms that r∗n

maximizes E[ΠCP]. Note that r∗n (Q, 𝛼,Co,Kn, kn) is a function of the project overall parameters and specific cost

parameters only related to stage n. Next, we solve for stage

n− 1. We isolate the terms in E[ΠCP] that only includes rn− 1 as follows:

E [ΠCP (n − 1)] =

(
Q rn−1

𝛼 + rn−1

r∗n
𝛼 + r∗n

−
(
Co + Kn−1 + kn−1rn−1

2
)

𝛼 + rn−1

−
(
Co + Kn + kn(r∗n)2

)
𝛼 + r∗n

rn−1

𝛼 + rn−1

) n−2∏
j=1

rj

𝛼 + rj

=

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝
Q

r∗n
𝛼 + r∗n

−
(
Co + Kn + kn(r∗n)2

)
𝛼 + r∗n

constant

⎞⎟⎟⎟⎟⎠
rn−1

𝛼 + rn−1

−
(
Co + Kn−1 + kn−1rn−1

2
)

𝛼 + rn−1

⎞⎟⎟⎟⎟⎠
n−2∏
j=1

rj

𝛼 + rj
.

Clearly, r∗n−1
=

√
𝛼2 + Q̂n−1𝛼+Co+Kn−1

kn−1

− 𝛼, where Q̂n−1 = Q r∗n
𝛼+r∗n

−
(

Co+Kn+kn(r∗n)2
)

𝛼+r∗n
. Then, through induction, we

can show that r∗i =
√

𝛼2 + Q̂i𝛼+Co+Ki

ki
− 𝛼, where

Q̂i = Q
n∏

j=i+1

r∗j
𝛼 + r∗j

−
n∑

j=i+1

(
Co + Kj + kj

(
r∗j
)2

)
𝛼 + r∗j

j−1∏
m=i+1

r∗m
𝛼 + r∗m

for i = 1, … , n − 1.

Q.E.D. ▪

Proof of Proposition 3 Here, we assume Pi >𝛼; note that Pi is the client’s decision variable and can be viewed

as a constant in the subcontractor i’s problem. In Proposition 4, we will then show that, at the equilibrium, Pi >𝛼

is always true
(
P∗

i > 𝛼
)
.
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Subcontractor i’s optimization problem is

max
r̂i

E [𝜋i] =

[
qir̂i − Ki − kir̂2

i

𝛼 + r̂i
− r̂i

𝛼 − Pi + r̂i

] i−1∏
j=1

r̂j

𝛼 + r̂j
.

Since
𝜕2E[𝜋i]

𝜕r̂2
i

=
[
−ki𝛼

2−2𝛼qi−2Ki

(𝛼+r̂i)3 − 2(Pi−𝛼)
(𝛼−Pi+r̂i)3

] i−1∏
j=1

r̂j

𝛼+r̂j
< 0, (Pi >𝛼)

to find the maximizer r∗i , we set
𝜕E[𝜋i]
𝜕r̂i

=
[
(qi−2kir̂i)𝛼+Ki−kir̂2

i

(𝛼+r̂i)2 + Pi−𝛼

(𝛼−Pi+r̂i)2

] i−1∏
j=1

r̂j

𝛼+r̂j
= 0. Which implies

(qi−2kir̂∗i )𝛼+Ki−ki (̂r∗i )
2

(𝛼+r̂∗i )
2 + Pi−𝛼

(𝛼−Pi+r̂∗i )
2 = 0, r̂∗i =

√[
ki (̂r∗i )

2+2kir̂∗i 𝛼−(qi𝛼+Ki)
]
(𝛼−Pi+r̂∗i )

2

(Pi−𝛼) − 𝛼 > 0. Moreover, lim
r̂i→0

𝜕E[𝜋i]
𝜕r̂i

=[
qi𝛼+Ki

𝛼2
+ 1

(𝛼−Pi)2

] i−1∏
j=1

r̂j

𝛼+r̂j
> 0 and lim

r̂i→∞

𝜕E[𝜋i]
𝜕r̂i

= [−ki]
i−1∏
j=1

r̂j

𝛼+r̂j
< 0 we can conclude that r̂∗i > 0 exists and is unique.

Q.E.D. ▪

Proof of Proposition 4 From Proposition 3, we can rearrange r̂∗i =

√[
ki (̂r∗i )

2+2kir̂∗i 𝛼−(qi𝛼+Ki)
]
(𝛼−Pi+r̂∗i )

2

(Pi−𝛼) − 𝛼 to

obtain pi =
ki (̂r∗i )

2−Ki+2kir̂∗i 𝛼
𝛼

− (Pi−𝛼)(𝛼+r̂∗i )
2

𝛼(𝛼−Pi+r̂∗i )
2 . Next substitute pi in the objective of P1; we have that

max
r̂∗i ,Pi

E [ΠC] = Q
n∏

i=1

r̂∗i
𝛼 + r̂∗i

−
n∑

i=1

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝
(

ki
(̂
r∗i
)2 − Ki + 2kir̂∗i 𝛼

)
r̂∗i

𝛼
(
𝛼 + r̂∗i

) −
Pi
(̂
r∗i
)2

𝛼
(
𝛼 − Pi + r̂∗i

)2

⎞⎟⎟⎟⎠
i−1∏
j=1

r̂∗j
𝛼 + r̂∗j

⎤⎥⎥⎥⎦
−

n∑
i=1

[
Co

𝛼 + r̂∗i

i−1∏
j=1

r̂∗j
𝛼 + r̂∗j

]
s.t[

ki
(̂
r∗i
)2 − Ki

𝛼
−

Pi
(̂
r∗i
)2

𝛼
(
𝛼 − Pi + r̂∗i

)2

] i−1∏
j=1

r̂∗j
𝛼 + r̂∗j

≥ 𝜃i ∀i. (P2)

We first assume that the constraints are all binding,

[
ki (̂r∗i )

2−Ki

𝛼
− Pi (̂r∗i )

2

𝛼(𝛼−Pi+r̂∗i )
2

] i−1∏
j=1

r̂∗j
𝛼+r̂∗j

= 𝜃i ∀i, and then show

that this is always the case at equilibrium. The binding constraints imply that
Pi (̂r∗i )

2

𝛼(𝛼−Pi+r̂∗i )
2

i−1∏
j=1

r̂∗j
𝛼+r̂∗j

= ki (̂r∗i )
2−Ki

𝛼

i−1∏
j=1

r̂∗j
𝛼+r̂∗j

−

𝜃i ∀i. Substitute this expression into the objective of P2 we have

max
r̂∗i

E [ΠC] = Q
n∏

i=1

r̂∗i
𝛼 + r̂∗i

−
n∑

i=1

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝
(

ki
(̂
r∗i
)2 − Ki + 2kir̂∗i 𝛼

)
r̂∗i

𝛼
(
𝛼 + r̂∗i

) −
ki
(̂
r∗i
)2 − Ki

𝛼

⎞⎟⎟⎟⎠
i−1∏
j=1

r̂∗j
𝛼 + r̂∗j

+ 𝜃i

⎤⎥⎥⎥⎦
−

n∑
i=1

[
Co

𝛼 + r̂∗i

i−1∏
j=1

r̂∗j
𝛼 + r̂∗j

]
,

which can be simplified as

max
r̂∗i

E [ΠC] = Q
n∏

i=1

ri

𝛼 + ri
−

n∑
i=1

[(
Co + Ki + kir2

i

𝛼 + ri

) i−1∏
j=1

rj

𝛼 + rj

]
Centralized profit E[ΠCP]

−
n∑

i=1

𝜃i. (P3)

Since
n∑

i=1

𝜃i is a constant, the solution to P3 is the same as the centralized solution, namely, r̂∗∗i = r∗i . Previously,

we have assumed that the constraints in P2 are binding; here, we provide the justification. The maximum expected

profit for the whole system is at most E
[
ΠCP

(
r∗

1
, … , r∗n

)]
, since the subcontractors, in total, want at least

n∑
i=1

𝜃i, the
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maximum that the client could obtain is E
[
ΠCP

C
(
r∗

1
, … , r∗n

)]
−

n∑
i=1

𝜃i. This is exactly what the client has obtained at

equilibrium when the constraints are binding. Note that r̂∗i =

√[
ki (̂r∗i )

2+2kir̂∗i 𝛼−(qi𝛼+Ki)
]
(𝛼−Pi+r̂∗i )

2

(Pi−𝛼) − 𝛼 were obtained

from Proposition 3, where we have assumed Pi >𝛼 ∀ i. Since this assumption also leads the client to receiving

the maximum expected profit, hence we can conclude that at the equilibrium P∗
i > 𝛼 ∀i. Thus far, we have

shown that the solution to P1 is equivalent to the solution that maximizes (11). Hence, the first step is to set

r̂∗∗i =
√

𝛼2 + Q̂i𝛼+Co+Ki

ki
− 𝛼 where Q̂i = Q

n∏
j=i+1

r̂∗∗j

𝛼+r̂∗∗j
−

n∑
j=i+1

(
Co+Kj+kj

(
r̂∗∗j

)2
)

𝛼+r̂∗∗j

j−1∏
m=i+1

r̂∗∗m

𝛼+r̂∗∗m
for i = n, … , 1. Since[

ki (̂r∗∗i )
2−Ki

𝛼
− Pi (̂r∗∗i )

2

𝛼(𝛼−Pi+r̂∗∗i )
2

] i−1∏
j=1

r̂∗∗j

𝛼+r̂∗∗j
= 𝜃i ∀i. Then, it is easy to show that

P∗
i =

2𝛼𝜉i
(
𝛼 + r̂∗∗i

)
+

(̂
r∗∗i

)2 + r̂∗∗i

√
4𝛼𝜉i

(
𝛼 + r̂∗∗i

)
+

(̂
r∗∗i

)2

2𝛼𝜉i
,

where 𝜉i =
ki
(̂
r∗∗i

)2 − Ki

𝛼
− 𝜃i

i−1∏
j=1

r̂∗∗j

𝛼+r̂∗∗j

for i = n, … , 1.

Finally, we can then conclude that q∗
i = ki (̂r∗∗i )

2−Ki+2kir̂∗∗i 𝛼

𝛼
− (P∗

i −𝛼)(𝛼+r̂∗∗i )
2

𝛼(𝛼−P∗
i +r̂∗∗i )

2 , for i = n, … , 1.

Q.E.D. ▪

Proof of Corollary 2 Since the duration of tasks are independent of each other and Q is constant, stochas-

tically maximizing ΠCP (r1, … , rn) = Q −
n∑

i=1

[(
Co + Ki + kir2

i

)
ti
]

is equivalent to stochastically minimizing

the costs at each stage, namely, max
ri>0

Pb
[(

Co + Ki + kir2
i

)
ti ≤ y

]
for all y ≥ 0. Recall that ti is exponentially

distributed; thus, this problem is equivalent to max
ri>0

[
1 − e

− ri
Co+Ki+kir2

i
y
]
. Note that 1 − e

− ri
Co+Ki+kir2

i
y

is maximized

when the exponent
ri

Co+Ki+kir2
i
y is maximized. From

𝜕

𝜕ri

ri

Co+Ki+kir2
i
y = y(Co+Ki−kir2

i )
(Co+Ki+kir2

i )
2 , we can see that

𝜕

𝜕ri

ri

Co+Ki+kir2
i
y >

0 ∀0 < ri <
√

Co+Ki

ki
and

𝜕

𝜕ri

ri

Co+Ki+kir2
i
y < 0 ∀ri >

√
Co+Ki

ki
. This result implies that

ri

Co+Ki+kir2
i
y is uni-

modal in ri and has a maximum at ri
∗ =

√
Co+Ki

ki
, which does not depend on y. Thus, the cost of each stage is

stochastically minimized when ri
∗ =

√
Co+Ki

ki
. By Theorem 1.A.3 (Shaked and Shanthikumar 2007), the total cost

n∑
i=1

(
Co + Ki + kir2

i

)
ti is stochastically minimized when ri

∗ =
√

Co+Ki

ki
for i = 1, … , n. Since Q is constant,

we have Pb
(

Q −
n∑

i=1

(
Co + Ki + ki

(
r∗i
)2
)

ti ≤ y
)

≤ Pb
(

Q −
n∑

i=1

(
Co + Ki + ki(ri)2

)
ti ≤ y

)
for y ≥ 0 and ri ≥

0 ∀i = 1, … , n.
Thus, ΠCP(r1

*, … , rn
*)≥FSDΠCP(r1, … , rn), ∀ ri > 0, where ≥FSD indicates first order stochastic dominance.

Q.E.D. ▪

Proof of Corollary 3 The objective is to find a r̂∗i such that 𝜋i
(̂
r∗i
)≥FSD𝜋i

(̂
ri
)

for all r̂i > 0. Since qi is constant,

it is equivalent to max
r̂i≥0

Pb
[(

Pi + Ki + kir̂2
i

)
ti ≤ y

]
for all y. Since tiis exponentially distributed, it is equivalent to

max
r̂i≥0

[
1 − e

− r̂i
Pi+Ki+ki r̂2

i
y
]
. Similar to the proof of Corollary 2, the exponent

r̂i

Pi+Ki+kir̂2
i
y is uniquely maximized when

r̂∗i =
√

Pi+Ki

ki
, which does not depend on y.

Q.E.D. ▪

Proof of Proposition 5 The proof is by induction. The base case is i = n, which is easy to see since, right after

Equation (11) in Dawande et al., Vn+ 1 = R, which is our Q, which equals Qn; thus, Qn = Vn+1, which implies rn
= 𝜆n.
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We next assume that ri+1 = 𝜆i+ 1 and Qi + 1 = Vi+2, and prove that Qi = Vi+1, which implies that ri = 𝜆i. Note

that our definition of Qi can be recast into a recursive form:

Qi = Q
n∏

j=i+1

rj

𝛼 + rj
−

n∑
j=i+1

𝜅r2
j

𝛼 + rj

j−1∏
m=i+1

rm

𝛼 + rm

=
(

ri+1

𝛼 + ri+1

)(
Q

n∏
j=i+2

rj

𝛼 + rj
−

n∑
j=i+2

𝜅r2
j

𝛼 + rj

j−1∏
m=i+2

rm

𝛼 + rm

)
−

𝜅r2
i+1

𝛼 + ri+1

i∏
m=i+1

rm

𝛼 + rm

=1

=
(

ri+1

𝛼 + ri+1

)
(Qi+1 − 𝜅ri+1)

=
(

𝜆i+1

𝛼 + 𝜆i+1

)
(Vi+2 − 𝜅𝜆i+1) ,

where the last equality is by the induction hypothesis. Note that, since 𝜆i+1 is optimal, the last expression is equal

to Equation (11) in Dawande et al. (with their index n equaling our i+1); therefore,
(

𝜆i+1

𝛼+𝜆i+1

)
(Vi+2 − 𝜅𝜆i+1) = Vi+1,

and we conclude that Qi = Vi+1, which implies that ri = 𝜆i, completing the proof.

Q.E.D. ▪


