
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 1, FEBRUARY 2008 287

A Fully Automated Framework for Control of Linear
Systems from Temporal Logic Specifications

Marius Kloetzer, Student Member, IEEE, and Calin Belta, Member, IEEE

Abstract—We consider the following problem: given a linear sys-
tem and a linear temporal logic (LTL) formula over a set of linear
predicates in its state variables, find a feedback control law with
polyhedral bounds and a set of initial states so that all trajecto-
ries of the closed loop system satisfy the formula. Our solution to
this problem consists of three main steps. First, we partition the
state space in accordance with the predicates in the formula, and
construct a transition system over the partition quotient, which
captures our capability of designing controllers. Second, using a
procedure resembling model checking, we determine runs of the
transition system satisfying the formula. Third, we generate the
control strategy. Illustrative examples are included.

Index Terms—Control, model checking, temporal logic, transi-
tion systems.

I. INTRODUCTION

T EMPORAL LOGIC [1], [2] is the natural framework for
specifying and verifying the correctness of digital circuits

and computer programs. However, due to its resemblance to
natural language, its expressivity, and the existence of off-the-
shelf algorithms for model checking, temporal logic has the
potential to impact several other areas of engineering. Analy-
sis of systems with continuous dynamics based on qualitative
simulations and temporal logic was proposed in [3] and [4].
In the control-theoretic community, a framework for specify-
ing and controlling the behavior of a discrete linear system has
been developed in [5]. In [6], the authors consider the problem
of robustly controlling hybrid systems based on temporal logic
specifications. The use of temporal logic for task specification
and controller synthesis in mobile robotics has been advocated
as far back as [7], and recent results include [8]–[12]. In the
area of systems biology, the qualitative behavior of genetic cir-
cuits can be expressed in temporal logic, and model checking
can be used for analysis, as suggested in [13] and [14]. Besides
temporal logic, regular expressions represent another formalism
for describing desired behaviors of real systems, as in [15]. The
main difference is that regular expressions specify finite behav-
iors, whereas the temporal logic that we use specifies infinite
ones.

Manuscript received April 19, 2006; revised April 11, 2007. Recommended
by Associate Editor J. Hespanha. This work was supported by the National
Science Foundation under CAREER Grant 0447721 and Grant 0410514. Pre-
liminary results of this work were presented at the 9th International Workshop on
Hybrid Systems: Computation and Control, Santa Barbara, CA, March 2006.

The authors are with the Center for Information and Systems Engineer-
ing, Boston University, Boston, MA 02446 USA (e-mail: kmarius@bu.edu;
cbelta@bu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2007.914952

We consider the following problem: given a linear system
ẋ = Ax + b + Bu with polyhedral control constraints U , and
given a specification in terms of an arbitrary linear temporal
logic (LTL) formula φ over an arbitrary set of linear pred-
icates in x, find initial states and a feedback control strategy
so that the corresponding trajectories of the closed loop system
satisfy formula φ, while staying inside a given full-dimensional
polytope P .

Our approach in solving the aforementioned problem can
be summarized in the following three steps. In the first step,
we construct a finite-state “generator” transition system Tg . Its
states are the equivalence classes produced by the feasible full-
dimensional subpolytopes of P determined by the linear pred-
icates appearing in formula φ. The transitions of Tg are deter-
mined by adjacency of subpolytopes and existence of feedback
controllers, making such subpolytopes invariant or driving all
states in a subpolytope to an adjacent subpolytope through a
common facet [16]. In the second step, we produce runs of Tg

that satisfy formula φ. This is in essence a model checking prob-
lem, and we use standard tools based on Büchi automata [17].
In the third step, we construct a feedback “control strategy,”
which leads to a closed loop hybrid system, whose continuous
trajectories satisfy formula φ. We implemented our approach as
a user friendly software package LTLCON [18] under Matlab.

1) Related work and contribution of the paper: In order to
extend temporal logic techniques from purely discrete systems
to continuous systems, two approaches are possible. First, a
careful treatment of the semantics of temporal logic formu-
las in models with continuous or hybrid dynamics [19] can be
performed. Second, finite quotients with respect to meaning-
ful equivalence relations can be constructed. Such equivalence
relations include language equivalences (preserving properties
specified in linear temporal logic) and bisimulation relations
(preserving specifications in both linear and branching time
logic). The first success in this direction was the work on timed
automata reported in [20], followed by multirate automata [21]
and rectangular hybrid automata [22]. Other classes of sys-
tems for which finite bisimulation quotients exist are identified
in [23]. The interested reader is referred to [24] for an excellent
review of all these works. Linear dynamics are studied in [25],
while nonlinear systems are considered in [26] and [27]. Quo-
tients that only simulate a continuous or hybrid system and can
be used for conservative analysis are developed in [28] and [29].

This paper is inspired from [5] and [10]. The problem of
controller synthesis from LTL specifications for discrete-time
continuous-space linear systems with semilinear partitions are
considered in [5], where it is shown that finite bisimulations ex-
ist for controllable systems with properly chosen observables.

0018-9286/$25.00 © 2008 IEEE

288 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 1, FEBRUARY 2008

The focus in [5] is on the existence and computability. Specif-
ically, it is shown that the iterative (partitioning) bisimulation
algorithm [23] terminates and each step is computable. How-
ever, no computational formulas for the controllers are provided.
Another contribution of [5] is setting up of the framework for
producing runs of the finite quotient satisfying an LTL formula.
This framework is further refined in [10], where the authors
study the problem of controlling a planar robot in a polygon,
so that its trajectory satisfies an LTL−X formula. In [10], it is
assumed that a triangulation of the polygon is given, and vector
fields are assigned in each triangle so that the produced trajecto-
ries satisfy a formula over the triangles. For the construction of
vector fields, the authors use the algorithms developed in [30].

This paper extends the results of [5] and [10] in several
ways. First, we consider continuous-time systems as opposed to
discrete-time systems in [5]. Second, based on results on con-
trolling a linear system to a facet of a polytope from [16], and an
invariance theorem stated and proved in this paper, we provide a
fully computational and algorithmic approach to controller de-
sign consisting of polyhedral operations and searches on graphs
only. Third, as opposed to [5], we can guarantee arbitrary poly-
hedral control bounds. Fourth, we extend the results [10] by ap-
proaching arbitrary-dimensional problems and considering sys-
tems with (linear) drift. The feasibility of the partition induced
by the predicates in the formula and the construction of the par-
tition quotient is fully automated in our framework, rather than
assuming a given triangulation. Finally, we provide a tighter con-
nection between the continuous and the discrete part of the prob-
lem in two ways. First, the transitions of the discrete quotient
capture the controllability properties of the continuous system.
Second, the runs of the discrete system are shown to be of a par-
ticular form, which is implementable by the continuous system.

2) Organization of the paper: The remainder of the paper
is organized as follows. Section II provides some preliminaries
necessary throughout the paper. The problem is formulated in
Section III. The construction of the generator transition system
is presented in Section IV, while its runs satisfying the for-
mula are found in Section V. The control strategy providing a
solution to the main problem is presented in Section VI. The
conservativeness and complexity of our approach are discussed
in Section VII, while implementation notes and simulation re-
sults are given in Section VIII. We conclude with final remarks
and directions for future work in Section IX.

II. PRELIMINARIES

A. Polytopes

Let N ∈ N and consider the N -dimensional Euclidean space
R

N . A full-dimensional polytope P is defined as the convex hull
of at least N + 1 affinely independent points in R

N . A set of
M ≥ N + 1 points v1 , . . . , vM ∈ R

N whose convex hull gives
P and with the property that vi , i = 1, . . . , M is not contained
in the convex hull of v1 , . . . , vi−1 , vi+1 , . . . , vM is called the set
of vertices of P . A polytope is completely described by its set
of vertices:

P = conv(v1 , . . . , vM), (1)

where conv denotes the convex hull. Alternatively, P can be
described as the intersection of at least N + 1 closed half spaces.
In other words, there exist a K ≥ N + 1 and ai ∈ R

N , bi ∈ R,
i = 1, . . . ,K, such that

P =
{
x ∈ R

N | aT
i x + bi ≤ 0, i = 1, . . . , K

}
. (2)

Forms (1) and (2) are referred to as V- and H-representations
of the polytope, respectively. Given a full-dimensional polytope
P , there exist algorithms for translation from representation (1)
to representation (2) [31], [32]. A face of P is the intersection
of P with one or several of its supporting hyperplanes. If the
dimension of the intersection is p (with 0 ≤ p < N), then the
face is called a p-face. An (N − 1)-face obtained by intersecting
P with one of its supporting hyperplanes is called a facet. The
vertices of P are 0-faces. We denote by int(P) the set of points
of P , which are not on its facets, i.e., the region in R

N obtained
if the inequalities in (2) were strict. If F is a facet of P , int(F)
is defined analogously with the observation that F is a full-
dimensional polytope in R

N −1 .
A full-dimensional polytope with N + 1 vertices (and N + 1

facets) is called a full-dimensional simplex. Arbitrary full-
dimensional polytopes can be triangulized [33]. In other
words, for any full-dimensional polytope P , there exist full-
dimensional simplices S1 , . . . , SL such that: 1) P =

⋃L
i=1 Si ;

2) Si

⋂
Sj is either empty or a common face of Si and Sj , for

all i, j = 1, . . . , L, i �= j; and 3) the set of vertices of simplex
Si is a subset of {v1 , . . . , vM }, for all i = 1, . . . , L.

The interested reader is referred to [34] for more details on
polytopes and to [33] and [35] for more information on tri-
angulations. Available packages for triangulations and other
polyhedral operations such as transformations between the two
representations (1) and (2) are described in [36], [37], and [32].

B. Transition Systems and Temporal Logic

Definition 1: A transition system is a tuple T = (Q,Q0 ,→,
Π, |=), where Q is a set of states, Q0 ⊆ Q is a set of initial
states, →⊆ Q × Q is a transition relation, Π is a finite set of
atomic propositions, and |=⊆ Q × Π is a satisfaction relation.

In this paper, we assume that the transition system is finite
(Q is finite). For an arbitrary proposition π ∈ Π, we define
[[π]] = {q ∈ Q|q |= π} as the set of all states satisfying it. Con-
versely, for an arbitrary state q ∈ Q, let Πq = {π ∈ Π | q |= π},
Πq ∈ 2Π , denote the set of all atomic propositions satisfied at
q. A trajectory or run of T starting from q is an infinite se-
quence r = r(1)r(2)r(3) . . . with the property that r(1) = q,
r(i) ∈ Q, and (r(i), r(i + 1)) ∈→, for all i ≥ 1. A trajectory
r = r(1)r(2)r(3) . . . defines a word w = w(1)w(2)w(3) . . .,
where w(i) = Πr(i) .

In the rest of this section, we give a brief review of a propo-
sitional linear temporal logic known as LTL−X [1].

Definition 2 (Syntax of LTL−X formulas): A linear temporal
logic LTL−X formula over Π is recursively defined as follows:

1) every atomic proposition πi is a formula; and
2) if φ1 and φ2 are formulas, then φ1 ∨ φ2 , ¬φ1 , φ1Uφ2 are

also formulas.

KLOETZER AND BELTA: A FULLY AUTOMATED FRAMEWORK FOR CONTROL OF LINEAR SYSTEMS 289

The semantics of LTL−X formulas are given over words of
transition system T .

Definition 3 (Semantics of LTL−X formulas): The satisfac-
tion of formula φ at position i ∈ N of word w, denoted by
w(i) |= φ, is defined recursively as follows:

1) w(i) |= π, if π ∈ w(i);
2) w(i) |= ¬φ, if w(i) �|= φ (where �|= denotes the negation

of |=);
3) w(i) |= φ1 ∨ φ2 , if w(i) |= φ1 or w(i) |= φ2 ;
4) w(i) |= φ1Uφ2 , if there exist a j ≥ i such that w(j) |= φ2

and for all i ≤ k < j we have w(k) |= φ1 .
A word w satisfies an LTL−X formula φ, written as w |= φ, if
w(1) |= φ.

The symbols ¬ and ∨ stand for negation and disjunction.
The Boolean constants � and ⊥ are defined as � = π ∨ ¬π
and ⊥ = ¬�. The other Boolean connectors ∧ (conjunction),
⇒ (implication), and ⇔ (equivalence) are defined from ¬ and
∨ in the usual way. The temporal operator U is called the
until operator. Formula φ1Uφ2 intuitively means that (over a
word) φ2 will eventually become true, and φ1 is true until this
happens. Two useful additional temporal operators, “eventually”
and “always,” can be defined as ♦φ = �Uφ and �φ = ¬♦¬φ,
respectively. Formula♦φ means that φ becomes eventually true,
whereas �φ indicates that φ is true at all positions of w. More
expressivenesses can be achieved by combining the temporal
operators. Examples include �♦φ (φ is true infinitely often)
and ♦�φ (φ becomes eventually true and stays true forever).

The LTL [1], [2], the most used propositional linear temporal
logic, is richer than the LTL−X in the sense that it allows for an
additional temporal operator◦, which is called the “next” oper-
ator. Formally, the syntax of LTL is obtained by adding “◦φ1” to
Definition 2, and its semantics is defined by adding “w(i) |= ◦φ
if w(i + 1) |= φ” to Definition 3. A careful examination of the
LTL and LTL−X semantics shows that the increased expressiv-
ity of LTL is manifested only over words with a finite number
of repetitions of a symbol. Consider, for example, the words
w = π1π2π3 . . . , w′ = π1π2π2π3 . . . , and w = π1π2π2π2
Then, in LTL, while all w, w′, w′′ satisfy formula ◦π2 , we can
distinguish between w and w′ with formula◦◦π2 , which is true
for w′ and false for w. On the other hand, w′′ satisfies ◦�π2 ,
which is false for both w and w′. In the LTL−X , we can distin-
guish between w′′ and w or w′, because formula♦�π2 is true for
w′′ and false for both w and w′. However, we cannot distinguish
between w and w′, which would require the ◦ operator. Our
choice of LTL−X over LTL is motivated by our definition of the
satisfaction of a formula by a continuous trajectory, and by our
approach to finding runs. Specifically, as it will become clear
in Section III, a word corresponding to a continuous trajectory
will never have a finite number of successive repetitions of a
symbol.

III. PROBLEM FORMULATION AND APPROACH

Consider the following affine control system in a full-
dimensional polytope P in R

N

ẋ = Ax + b + Bu, x ∈ P, u ∈ U ⊂ R
m (3)

where A ∈ R
N ×N , B ∈ R

N ×m , b ∈ R
N , and U is a given poly-

hedral subset of R
m capturing control constraints. Let Π be a set

of atomic propositions given as arbitrary strict linear inequalities
in R

N . Formally

Π = {πi | i = 1, . . . , n} (4)

where each proposition πi , i = 1, . . . , n, denotes an open half-
space of R

N :

[[πi]] =
{
x ∈ R

N | cT
i x + di < 0

}
, (5)

with ci ∈ R
N and di ∈ R.

The polytope P can be seen as a region of R
N capturing

known physical bounds on the state of system (3), or as a region
that is required to be an invariant for its trajectories. For example,
for N = 2, P can be a convex polygon giving the environment
boundaries for a planar robot with kinematics given by (3). The
predicates (5) describe other regions (properties) of interest.
Note that, for technical reasons to become clear later, we only
allow strict inequalities in (5). However, this assumption does
not seem restrictive from an application point of view. If the
predicates in Π model sensor information, it is unrealistic to
check for the attainment of a specific value due to sensor noise.
Moreover, if a specific value is of interest, it can be included in
the interior of a polyhedron given by other predicates.

In this paper, we consider the following problem:
Problem 1: For an arbitrary LTL−X formula φ over Π, find a

set of initial states and a feedback control strategy for system (3)
so that all trajectories of the corresponding closed-loop system
satisfy φ, while always staying inside P .

To fully specify Problem 1, we need to define the satisfaction
of an LTL−X formula φ on Π by a trajectory of (3), which can
be seen as a continuous curve a : [0,∞) → R

N . This curve can,
in general, be nonsmooth and can have self-intersections. For
each Θ ∈ 2Π , we define [[Θ]] as being the set of states in R

N

satisfying all and only propositions π ∈ Θ

[[Θ]] =
⋂
π∈Θ

[[π]] \
⋃

π∈Π\Θ
[[π]]. (6)

Definition 4: The word corresponding to trajectory a is the se-
quence wa = wa(1) wa(2)wa(3) . . ., wa(k) ∈ 2Π , k ≥ 1, gen-
erated such that the following rules are satisfied for all τ ≥ 0
and k ∈ N, k ≥ 1:

1) a(0) ∈ [[wa(1)]];
2) if a(τ) ∈ [[wa(k)]] and wa(k) �= wa(k + 1), then there ex-

ist τ ′ > τ such that: a) a(τ ′) ∈ [[wa(k + 1)]], b) a(t) /∈
[[π]], ∀t ∈ [τ, τ ′], ∀π ∈ Π \ (wa(k) ∪ wa(k + 1)), and c)
cT
i a(t′) + di �= 0, for all i ∈ {1, . . . , n} and t′ ∈ {τ, τ ′};

3) if a(τ) ∈ [[wa(k)]] and wa(k) = wa(k + 1), then a(t) ∈
[[wa(k)]], ∀t ≥ τ (i.e., the region [[wa(k)]] is a “sink” for
trajectory a).

A careful examination of Definition 4 shows that the word
produced by a continuous trajectory is exactly the sequence of
sets of propositions satisfied by it as time evolves. Some il-
lustrative examples of words defined by continuous trajectories
are given in Fig. 1, where πi , i = 1, . . . , 6 are open half-spaces
and Π1 = {π1 , π3}, Π2 = {π1 , π3 , π5}, Π3 = {π1 , π2 , π3 , π5},

290 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 1, FEBRUARY 2008

Fig. 1. Examples of continuous trajectories for Definition 4.

Π4 = {π1 , π2 , π5}, Π5 = {π1 , π2}, Π6 = {π1 , π2 , π3}. Con-
tinuous trajectory a1 starts from the region where the predicates
in Π1 are true and converges to a point in the region where the
predicates in Π2 are true. By the earlier definition, the word wa1

is Π1Π2Π2 Trajectory a2 starts from Π1 and loops infinitely,
as shown in the figure. The corresponding word wa2 will be
Π1Π2Π3Π4Π5Π6Π3Π4Π5Π6 For trajectory a3 originating
in Π2 and converging inside Π2 , the word wa3 is Π2Π2Π2
Finally, trajectory a4 , which has a self-intersection, generates
the word wa4 = Π1Π6Π1Π2Π1Π2Π2

Remark 1: On the well posedness of Definition 4, first note
that our assumption that trajectories of system (3) always stay
inside P implies that the generated words have infinite length,
so the problem of satisfaction of an LTL−X by such a word
is well-posed. Second, since the predicates in (4) are given
by strict linear inequalities, Definition 4 makes sense only if
cT
i a(0) + di �= 0 and cT

i ā + di �= 0, where ā = limt→∞ a(t) (if
it exists), for all i = 1, . . . , n. Third, Definition 4 is a proper
characterization of satisfaction of sets of predicates from Π by
a(t) as time evolves only if there does not exist t1 < t2 and
i = 1, . . . , n, such that cT

i a(t) + di = 0, for all t ∈ (t1 , t2). All
these three requirements are guaranteed by the way we design
controllers, as it will become clear in Sections IV-A and VI.

Remark 2: According to Definition 4, the word wa produced
by a trajectory a(t) does not contain a finite number of succes-
sive repetitions of a symbol, which suggests using LTL without
the “next” operator, as stated in Section II-B.

Definition 5: A trajectory a : [0,∞) → R
N of (3) satisfies

LTL−X formula φ, written as a |= φ, if and only if wa |= φ,
where wa is the word generated in accordance with Definition 4.

IV. GENERATOR TRANSITION SYSTEM

In this section, we define the generator transition system Tg ,
which captures our ability to design feedback controllers for (3).
We start by stating a theorem from [16], which gives a sufficient
condition for the existence of an affine feedback controller driv-
ing all initial states of a linear system in a polytope through a
facet in finite time. Using similar ideas, we state and prove a
necessary and sufficient condition for invariance in a polytope.
We then use these characterizations to construct Tg .

A. Control of Affine Systems in Polytopes

Consider a full-dimensional polytope P in R
N with vertices

v1 , . . . , vM , M ≥ N + 1. Let F1 , . . . , FK denote the facets of
P with normal vectors n1 , . . . , nK pointing out of the polytope
P . For i = 1, . . . , K, let Vi ⊂ {1, . . . , M} be the set of
indexes of vertices belonging to facet Fi . For j = 1, . . . , M , let
Wj ⊂ {1, . . . ,K} be the set of indexes of all facets containing
vertex vj .

Lemma 1 (Lemma 4.6 from: [16]): There exists a continuous
function λ : P → [0, 1]M with

∑M
j=1 λj (x) = 1, such that, for

all x ∈ P , x =
∑M

j=1 λj (x)vj .
Theorem 1 (Theorem 4.7 plus Remark 4.8 from [16]): Con-

sider control system (3) defined on the full-dimensional poly-
tope P . Assume that there exist u1 , . . . , uM ∈ U such that:

1) ∀j ∈ V1 :
a) nT

1 (Avj + Buj + b) > 0
b) ∀i ∈ Wj \ {1}: nT

i (Avj + Buj + b) ≤ 0;
2) ∀j ∈ {1, . . . , M} \ V1 :

a) ∀i ∈ Wj : nT
i (Avj + Buj + b) ≤ 0

b) nT
1 (Avj + Buj + b) > 0.

Then, there exists a continuous feedback controller u: P → U
with the property that for any initial state x(0) ∈ P , there exist
a T0 > 0 such that: 1) ∀t ∈ [0, T0]: x(t) ∈ P ; 2) x(T0) ∈ F1 ;
and 3) nT

1 ẋ(T0) > 0.
In other words, Theorem 1 states that if linear inequalities

(1)(a),(b) and (2)(a),(b) are satisfied by some u1 , . . . , uM ∈ U ,
then a continuous feedback controller driving all initial states
from P out of P through facet F1 in finite time exists (condition
3 means that the velocity on the exit facet F1 is oriented outside
the facet).

Theorem 2: Consider control system (3) defined on the full-
dimensional polytope P . There exists a continuous feedback
controller u : P → U that makes P an invariant for (3) if and
only if there exist u1 , . . . , uM ∈ U such that

∀j ∈ {1, . . . , M},∀i ∈ Wj : nT
i (Avj + Buj + b) ≤ 0.

Proof: For necessity, assume that u(x) is a continuous
feedback controller so that P is an invariant for ẋ = Ax +
Bu(x) + b. Let uj = u(vj), j = 1, . . . ,M . Assume by con-
tradiction that there exist j = 1, . . . , M and i ∈ Wj such that
nT

i (Avj + Buj + b) > 0. Then, the closed loop system ẋ =
Ax + Bu(x) + b starting at vj will leave the polytope. In fact,
by continuity of the vector field, there will exist a whole set
of points on Fi leaving the polytope, which contradicts the
assumption.

For sufficiency, by applying Lemma 1 to an arbitrary facet Fi

(which can be seen as a full-dimensional polytope in R
N −1),

any x ∈ Fi can be written as x =
∑

j∈Vi
λj (x)vj . Let u(x) =∑M

j=1 λj (x)uj . Since uj ∈ U , j = 1, . . . ,M , of course u(x) ∈
U , for all x ∈ P . Also, Ax + Bu(x) + b =

∑M
j=1 λj (x)(Avj +

Buj + b), for all x ∈ P . For any i ∈ {1, . . . ,K}, we
have nT

i (Ax + Bu(x) + b) =
∑

j∈Vi
λj (x)(nT

i (Avj + Buj +
b)) ≤ 0 by hypothesis. In other words, the velocity of the closed
loop system is oriented “inwards” for all facets, and therefore,
P is an invariant for its trajectories. �

KLOETZER AND BELTA: A FULLY AUTOMATED FRAMEWORK FOR CONTROL OF LINEAR SYSTEMS 291

For both Theorems 1 and 2, given the values u1 , . . . , uM

at the vertices, the construction of a continuous controller ev-
erywhere in P starts with a triangulation S1 , . . . , SL of P .
Let vi

1 , . . . , v
i
N +1 ∈ {v1 , . . . , vM } be the vertices of the full-

dimensional simplex Si , i = 1, . . . , L, and ui
1 , . . . , u

i
N +1 ∈

{u1 , . . . , uM } be the corresponding control values. Then, ev-
erywhere in P , the feedback control is given by

u(x) = ui(x) if x ∈ Si, i = 1, . . . , L (7)

where the control in each simplex is given by [38]

ui(x) =
[
ui

1 · · · ui
N +1

] [
vi

1 · · · vi
N +1

1 · · · 1

]−1 [
x

1

]
,

i = 1, . . . , L. (8)

Note that the controller given by (7) is well defined. It is obvious
that the controller is well defined when (7) is restricted to the in-
terior of the simplices, since the intersection of all such interiors
is empty. The only problem that might appear is on the common
facets. However, recall that an affine function defined on R

N

is uniquely determined by its values at the vertices of a full-
dimensional simplex, and the restriction of the function to the
simplex is a unique convex combination of these values [16],
[38]. Moreover, a facet of a full-dimensional simplex in R

N

is a full-dimensional simplex in R
N −1 . It follows that, given

a pair of adjacent simplices Si and Sj , ui(x) = uj (x) every-
where on the common facet of Si and Sj . Therefore, (7) is well
defined, and the affine feedback controller is continuous every-
where in P . Moreover, u(x), constructed using (7), is always a
convex combination of the values u1 , . . . , uM . This guarantees
that u(x) ∈ U everywhere in P if and only if uj ∈ U , for all
j = 1, . . . , M .

If inequalities (1)(b) and (2)(a) from Theorem 1 are satis-
fied strictly, then it can be seen that, for all i = 2, . . . ,K and
all j ∈ Vi , nT

i (Avj + Buj + b) < 0. Since with u constructed
using (7) and (8), the restriction of nT

i (Ax + Bu + b) to Fi is
a convex combination of nT

i (Avj + Buj + b), j ∈ Vi , it fol-
lows that nT

i (Ax + Bu + b) < 0 everywhere in Fi . We con-
clude that, if the system starts in int(P), it will never reach
Fi . Moreover, if it starts in Fi , it will instantaneously penetrate
in int(P). Similar reasoning applies to the case when the in-
equalities of Theorem 2 are strict, leading to the following two
corollaries:

Corollary 1: If inequalities (1)(b) and (2)(a) from Theorem 1
are satisfied strictly, the continuous controller constructed in
accordance with (7) and (8) produces trajectories that satisfy
x(t) ∈ int(P), for all t ∈ (0, T0) and x(T0) ∈ int(F1).

Corollary 2: If the inequalities in Theorem 2 are satisfied
strictly, then int(P) is an invariant for system (3) with controls
given by (7) and (8).

B. Construction of the Generator Transition System

Assume that the polytope P is given in the inequality form (2).
We denote by M, 1 ≤ M ≤ 2n the number of feasible sets of
the form

∧n
i=1((−1)ji (cT

i x + di) < 0)
∧K

l=1(a
T
l x + bl < 0),

where j1 , . . . , jn ∈ {0, 1} (each of these sets is the interior of a

full-dimensional polytope included in P , which corresponds to a
feasible combination of all predicates from Π inside P). To each
of them, we attach a symbol qi , i = 1, . . . ,M. Let P denote
the set of all such symbols P = {qi | i = 1, . . . ,M}. Let h :
PN− → P be the quotient map corresponding to these nonempty
sets, where PN− = int(P) \

⋃n
i=1{x ∈ R

n |cT
i x + di = 0}. We

also use the notations h−1(q) and h−1(h(x)) to denote the set
of all points in PN− with quotient q and the set of all points
in PN− in the same equivalence class with x, respectively.
Let h−1(q) denote the closure of h−1(q). Note that h−1(q),
q ∈ P are full-dimensional subpolytopes of P . It is easy to see
that h−1(qi)

⋂
h−1(qj) = ∅ for all i, j = 1, . . . ,M, i �= j and⋃M

i=1 h−1(qi) = P .
Definition 6: The transition system Tg = (Qg ,Qg0 ,→g ,

Πg , |=g) is defined by:
1) Qg = Qg0 = P;
2) for all i = 1, . . . ,M, (qi, qi) ∈→g , if there exists a feed-

back controller uqi qi
: h−1(qi) → U for the polytope

h−1(qi), making h−1(qi) an invariant for the trajectories
of (3), as in Corollary 2 of Theorem 2;

3) for all i, j = 1, . . . ,M, i �= j, (qi, qj) ∈→g if h−1(qi)
and h−1(qj) share a facet, and there exists a feedback
controller uqi qj

: h−1(qi) → U for the polytope h−1(qi)
with exit facet h−1(qi) ∩ h−1(qj), as in Corollary 1 of
Theorem 1,

4) Πg = Π, with Π, as defined in (4);
5) q |=g πi ∈ Π if ∃x ∈ h−1(q), so that cT

i x + di < 0.
On the computation of the transition system Tg , (i.e., checking

the existence of affine controllers uqi qi
and uqi qj

), it is important
to note that it only consists of checking the nonemptiness of
polyhedral sets (since U is polyhedral), for which there exists
several powerful algorithms.

V. DETERMINING TRAJECTORIES OF THE GENERATOR

TRANSITION SYSTEM

For Tg constructed as shown in the previous section, we need
to find runs satisfying an arbitrary LTL−X formula over its pred-
icates. In this section, we develop a general algorithm, which
takes as input an arbitrary transition system T = (Q,Q0 ,→,
Π, |=) (Definition 1) and an arbitrary LTL−X formula φ over
Π. The algorithm returns the initial states of T from which the
formula can be satisfied, together with a satisfying run from
each initial state. None of the produced runs will have a finite
number of successive repetitions of a state, in accordance with
the semantics of a continuous curve (Remark 2). In addition, the
produced runs will be optimal in a sense to be defined later in
this section.

The main steps of the algorithm are as follows. We start by
translating φ into a Büchi automaton Bφ . Then, we take the
product of T with Bφ to obtain a product automaton Aφ , whose
accepted runs will only include trajectories of T that satisfy
formula φ. We then find “short” runs of Aφ that do not contain
finite successive repetitions, and project back into runs of T .

Our approach is inspired from classical algorithms for LTL
model checking. Such algorithms take as input a nonblocking

292 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 1, FEBRUARY 2008

transition system T (also called Kripke structure) and a formula
φ, and return the initial states of T from which the formula is
satisfied. For the initial states where the formula is not satisfied,
a counterexample is returned. If there are blocking states in T ,
then the “stutter extension" rule [10], [39] can be applied when
self-transitions are artificially added to blocking states.

Given the specific requirements of our problem, we could
not use standard LTL model checkers. This is motivated by the
fact that our transition system can have blocking states, and the
use of the stutter extension rule might add spurious transitions
that could not be implemented by a controller. In the rest of
this section, we give the necessary definitions and describe the
details of our algorithm.

Definition 7 (Büchi automaton): A Büchi automaton is a tuple
B = (S, S0 ,Σ,→B, F), where:

1) S is a finite set of states;
2) S0 ⊆ S is the set of initial states;
3) Σ is the input alphabet;
4) →B⊆ S × Σ × S is a nondeterministic transition relation;
5) F ⊆ S is the set of accepting (final) states.
The semantics of a Büchi automaton is defined over infinite

input words. Let ω = ω1ω2ω3 . . . be an infinite input word of
automaton B, ωi ∈ Σ, ∀i ∈ N \ {0}. We denote by RB (ω) the
set of all initialized runs of B that can be generated by ω

RB(ω) = {r = s1s2s3 . . . |s1 ∈ S0 , (si, ωi, si+1) ∈→B,

∀i ∈ N \ {0}}. (9)

Definition 8 (Büchi acceptance): A word ω is accepted by
the Büchi automaton B (the word satisfies the automaton) if
and only if ∃r ∈ RB (ω) so that inf(r) ∩ F �= ∅, where inf(r)
denotes the set of states appearing infinitely often in run r.

In [40], it was proved that, for any LTL formula φ over a set
of atomic propositions Π, there exists a Büchi automaton Bφ

with input alphabet Σ ⊆ 2Π accepting all and only the infinite
strings over Π satisfying formula φ. Translation algorithms were
proposed in [40] and efficient implementations were developed
in [41] and [17]. The interested reader is referred to [42] for a
detailed tutorial on this matter. In this paper, we use the con-
version algorithm described in [17] and its freely downloadable
implementation, LTL2BA.

Definition 9 (Product automaton): The product automaton
A = T × B between the transition system T = (Q,Q0 ,→,
Π, |=) and the Büchi automaton B = (S, S0 ,Σ,→B, F) with
Σ ⊆ 2Π is defined as the tuple A = (SA, SA0 ,→A, FA), where:

1) SA = (Q ∪ {q0}) × S is the finite set of states;
2) SA0 = {q0} × S is the set of initial states;
3) →A⊆ SA × SA is the transition relation, defined

as: {(qi, sj), (qk , sl)} ∈→A if and only if (qi, qk) ∈
(→ ∪({q0} × Q0)) and (sj ,Πqk

, sl) ∈→B;
4) FA = Q × F is the set of accepting (final) states.
The acceptance condition of A is formulated similar to

Definition 8, but with respect to runs instead of input words [10],
[43]. Explicitly, a run rA of A is accepted if it satisfies the tran-
sitions →A and inf(rA) ∩ FA �= ∅. The product automaton in
Definition 9 can be regarded as a match between the states of T
and the transitions of B, and therefore, A is sometimes referred

to as the synchronous product [39]. The dummy state q0 , which
has transitions to initial states of T only, has been introduced
for checking the possible satisfaction of a part of the formula
from an initial state of T .

For any initialized run rA = (q0 , sj1)(qi1 , sj2)(qi2 , sj3) . . .
of automaton A, we define the projection γT (rA) = qi1qi2 . . .,
which maps rA to the corresponding run of T . The following
result is adapted from [10].

Proposition 1: If φ is an arbitrary LTL formula over Π and
Bφ is a corresponding Büchi automaton, then the projection
γT (rAφ

) of any accepted run rAφ
of Aφ = T × Bφ is a run of

T satisfying LTL formula φ.
Therefore, a run of T satisfying specification φ exists if and

only if Aφ has an accepted run [10], [43]. This, in turn, is
equivalent to the existence of a strongly connected component of
the directed graph corresponding to Aφ reachable from at least
one initial state and containing at least one accepting state [39].
Among the accepted runs rAφ

of Aφ , we look for those with
the particular structure of a prefix followed by infinitely many
repetitions of a suffix. A prefix is a finite trajectory from an
initial state to an accepting state (excluding the accepting state),
while a suffix starts and ends at the previous accepting state.
It is important to note that, if Aφ has at least one accepted
run from an initial state, then it has at least one accepted run
in the prefix–suffix form [39]. From all such accepted runs of
Aφ , we choose shortest runs in the following way. First, from
each initial state, we find the shortest prefixes by finding the
shortest paths to all final states. From these final states, we find
the shortest suffixes. From all these runs, we select one with
the smallest number of states in prefix concatenated with suffix.
In all those mentioned earlier, for finding shortest paths, we
use Dijkstra’s algorithm [44], [45]. Therefore, in our approach,
a shortest path corresponds to the fewest number of traversed
polytopes. Alternatively, one can consider costs equal to the
volumes of the traversed polytopes, or measures of the time
spent in each polytope. The details are presented in Algorithm 1.

An empty run resulted from Algorithm 1 has the significance
that the formula cannot be satisfied by starting from the current
initial state. Let ri = ri(1)ri(2)ri(3) . . ., ri(j) ∈ Q denote the
nonempty run of T starting from state qi , i.e., ri(1) = qi . Since
a run ri is a projected run of Aφ , any run ri has a prefix and a
suffix with the same significance as stated before. In other words,
there exist ni

p and ni
s such that for any j > ni

p + ni
s , ri(j) =

ri((j − ni
p − 1)mod ni

s + ni
p + 1). The number of states in

prefix and suffix of ri are ni
p and ni

s , respectively, and thus, the
run ri contains at most ni

p + ni
s different states.

Under the assumption of an optimal Büchi automaton Bφ ,1

Algorithm 1 guarantees that in a run ri , none of the states can
be succeeded by itself, except for the state of a suffix of length

1We say that Bφ is optimal if it satisfies the requirement mentioned in the
proof of Proposition 2 related to the absence of the “next” operator. In all the
tests we performed (by using the implementation from [17]), the obtained Bφ

was optimal, although the optimality condition we use is not mentioned in [17].
Even if the run ri was obtained by using a nonoptimal Bφ , one can collapse all
finite successive repetitions of a symbol to a single occurrence of that symbol,
and the obtained run will still satisfy the formula φ (see explanations ending
Section II-B).

KLOETZER AND BELTA: A FULLY AUTOMATED FRAMEWORK FOR CONTROL OF LINEAR SYSTEMS 293

one (case in which this state will be infinitely repeated). This
is in accordance with the allowed semantics for the continuous
curves (see Remark 2). Formally, we have:

Proposition 2: If Bφ is optimal, each nonempty run
ri = ri(1)ri(2)ri(3) . . . of T satisfies the following prop-
erty: ri(j) �= ri(j + 1),∀j ∈ N \ {0}, j �= ni

p + k ni
s + 1, k ∈

N. Moreover, if ni
s ≥ 2, ri(j) �= ri(j + 1), ∀j ∈ N \ {0}.

Proof: Let (ri(j), sk)(ri(j + 1), sl) be any two successive
states encountered in the run of Aφ that was projected to ri ,
with j > 0 and j �= ni

p + k ni
s + 1, k ∈ N (i.e., ri(j) is not the

first state from the suffix of run ri).
Since the run of Aφ corresponds to a shortest path, as de-

scribed before, (ri(j), sk) �= (ri(j + 1), sl). From Definition 9,
this means that ri(j) �= ri(j + 1) and/or sk �= sl . We want to
prove that ri(j) �= ri(j + 1). Contradict this hypothesis by con-
sidering the case ri(j) = ri(j + 1), which implies sk �= sl .
This means that in the Büchi automaton, there is a transition
(sk ,Πri (j) , sl) = (sk ,Πri (j+1) , sl) ∈→Bφ

. Because ri(j) �= q0
(the dummy state q0 was eliminated by projection γT), in the
run of Aφ there is at least one more state before (ri(j), sk).
Let us denote this state by (qa , sh). Thus, there is a tran-
sition (sh ,Πri (j) , sk) ∈→Bφ

. If Bφ is optimal, transitions
(sh ,Πri (j) , sk) and (sk ,Πri (j) , sl) imply the existence in Bφ

of transition (sh ,Πri (j) , sl), because LTL−X formula φ does
not contain the “next” operator. Using ri(j) = ri(j + 1), we
obtain ((qa , sh), (ri(j + 1), sl)) ∈→Aφ

. But, this means that
the shortest possible trajectory from (qa , sh) to (ri(j + 1), sl)
does not contain (ri(j), sk), so the hypothesis ri(j) = ri(j + 1)
is false.

If ni
s ≥ 2, then there are at least two states in the suffix, so the

current run is not ending with an infinite number of repetitions
of one state. In this case, the earlier reasoning holds for all states
of run ri . �

To find the runs of Tg satisfying an LTL−X formula φ, we
use Algorithm 1 with T = Tg . Let I ⊆ {1, . . . ,M} be the set of
indexes of all nonempty runs ri = ri(1)ri(2)ri(3) . . ., ri(j) ∈
Qg = P , ri(1) = qi .

VI. CONTROL STRATEGY

To provide a solution to Problem 1, we restrict the set of initial
states of system (3) to

x(0) ∈ ∪i∈I h
−1(qi) (10)

where I ⊆ {1, . . . ,M} is the set of indexes of nonempty runs
as defined at the end of the previous section.

Definition 10 (Control strategy): A control strategy for system
(3) corresponding to an LTL−X formula φ is a tuple Cφ =
(L,L0 , u, Inv,Rel), where:

1) L = {liri (j)ri (j+1) | i ∈ I, j ≥ 1} is its set of locations;

2) L0 = {liqi ri (2) , i ∈ I} is the set of initial locations;

3) Inv: L → 2P , Inv(liri (j)ri (j+1))= h−1(ri(j)) gives the
invariant for each location;

4) u: L × P → U is a map that assigns to each location
liri (j)ri (j+1) and state x ∈ Inv(liri (j)ri (j+1)) a control

value u(liri (j)ri (j+1) , x) = uri (j)ri (j+1)(x) (uri (j)ri (j+1)
are defined in Section IV-B);

5) Rel ⊆ L × L, Rel = {(liri (j)ri (j+1) , l
i
ri (j+1)ri (j+2)), i ∈

I, j ≥ 1, ri(j) �= ri(j + 1)}.
A location liri (j)ri (j+1) corresponds to position j in run ri ,

where ri is a nonempty run returned by Algorithm 1. According
to the structure of runs described in Section V, the set of locations
L is finite, even though the runs are infinite. In fact, the number
of locations is

∑
i∈I (n

i
p + ni

s), which justifies our search for
shortest runs satisfying φ, as described in Section V. A location
liri (j)ri (j+1) corresponds to driving all states from h−1(ri(j))
to h−1(ri(j + 1)) in finite time (through the common facet
of h−1(ri(j)) and h−1(ri(j + 1))) if ri(j) �= ri(j + 1), or to
keeping the state of the system in h−1(ri(j)) for all times if
ri(j) = ri(j + 1), by using the control uri (j)ri (j+1)(x). Note
that there can be several locations mapped to the same physical
region h−1(q), q ∈ Q. These can correspond to different runs
of Tg passing through q or to locations of the same run passing
through q at different times and with different successors.

The semantics of control strategy from Definition 10 applied
to system (3) with initial states (10) are as follows: starting
from x(0) ∈ h−1(qi) and location l = liqi ri (2) ∈ L0 , feedback
controller u(l, x) is applied to system (3) as long as the state
x ∈ Inv(l). When (and if) x /∈ Inv(l), then the location of

294 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 1, FEBRUARY 2008

Cφ is updated to l′ according to (l, l′) ∈ Rel, and the process
continues.

Remark 3: From the given semantics of the control strategy,
it follows that the control is well defined on common facets:
the one from the polytope that is left is always used. Also, with
controllers uqi qi

and uqi qj
designed according to Corollaries 1

and 2, the produced trajectories are consistent with Definition 4
in the sense of Remark 1.

We are now ready to provide a solution to Problem 1:
Theorem 3: All trajectories of system (3), with feedback con-

trol strategy given by Definition 10 and set of initial states as
in (10), satisfy the LTL−X formula φ and stay inside P for all
times.

Proof: The proof follows from the construction of Cφ from
Definition 10, the satisfaction of an LTL−X formula by a con-
tinuous trajectory given in Definition 5 and Corollaries 1 and 2
of Theorems 1 and 2.

Let a denote a trajectory of system (3) with control strategy
Cφ starting from an arbitrary initial state a(0) ∈ h−1(qi), i ∈ I .
Then, by Definition 4, the corresponding word wa has wa(1) =
Πqi

. The applied control u(liqi ri (2) , a(0)) is designed in accor-
dance with Corollary 1 if qi �= ri(2), or Corollary 2 if qi = ri(2).

In the first case, trajectory a(t) is guaranteed to leave
Inv(liqi ri (2)) = h−1(qi) through the interior of facet h−1(qi) ∩
h−1(ri(2)) and hit h−1(ri(2)) in finite time. From Definition 4,
it follows that the symbol wa(2) = Πri (2) is added to wa . Note
that wa(1)wa(2) are also the first two symbols of word gener-
ated by run ri of Tg . The same reasoning holds for any loca-
tion liri (j)ri (j+1) ∈ L with ri(j) �= ri(j + 1). In the second case
(qi = ri(2)), by Corollary 2, trajectory a will always remain in-
side h−1(qi) by evolving under control u(liqi qi

, x). The word
wa will be wa = Πqi

Πqi
. . .. From Definition 10, location liqi qi

does not have any outgoing relation in Rel. From Proposition 2,
we have that ri = qiqi . . ., so the corresponding word of
Tg is wa . A similar reasoning can be used for any location
liri (j)ri (j) ∈ L.

We conclude that any trajectory a of (3) with initial state in
(10) and control strategy given by Definition 10 will generate a
word wa , which is also a word of Tg satisfying formula φ. Any
trajectory also satisfies a(t) ⊂ ∪i∈I ∪j∈N\{0} h−1(ri(j)) ⊆ P ,
∀t ≥ 0, and the theorem is proved. �

Remark 4: It is possible that the solution trajectories visit
some states more than once, and have different velocities at
the same state at different times. Therefore, the obtained feed-
back control strategy is a dynamic extension. The feedback
controllers will be piecewise affine and with a thin set of
discontinuities—the common facets of full-dimensional sub-
polytopes of P . The generated trajectories will be piecewise
smooth and everywhere continuous.

To implement the control strategy described in Definition 10,
we have, in general, infinitely many choices of controllers of the
types uqi qi

and uqi qj
. Indeed, for any polytope, Corollaries 1 and

2 return whole polyhedral sets of allowed controls at vertices.
In order to construct a controller according to (7) and (8), we
need to choose a control at each vertex. To this goal, we solve
a set of (maximization) linear programs obtained by attaching

a cost to each vertex. If a controller of type uqi qj
is desired in

h−1(qi), then the costs corresponding to the vertices of h−1(qi)
are the projections of the controls at the vertices along the unit
vector connecting the center of h−1(qi) to the center of h−1(qj).
If a controller of type uqi qi

is desired in h−1(qi), then the cost
at a vertex is the projection of the control at the vertex along the
unit vector from the vertex to the center of h−1(qi).

VII. DISCUSSION

Our approach to solving Problem 1 is obviously conserva-
tive. If the planning algorithm does not find any solution, this
does not mean that there does not exist initial states and feed-
back controllers producing trajectories satisfying the formula.
In other words, our solution to Problem 1 is not complete. There
are three sources of conservativeness in our approach. First, we
look for whole sets (full-dimensional polytopes) of initial states
instead of investigating isolated ones. Second, we restrict our
attention to affine feedback controllers, as opposed to allowing
for any type of controllers. Third, Theorem 1 and Corollary 1
provide sufficient conditions for the existence of controllers, as
opposed to equivalent conditions.

On the positive side, working with sets of states instead of
isolated states provides robustness with respect to uncertainty
in initial conditions and measurement of the current state. As
proved in [16], Theorem 1 can be replaced with a very similar
result providing equivalent conditions for the existence of affine
controllers if full-dimensional simplices are considered instead
of full-dimensional polytopes. Therefore, if P was triangulized
instead of partitioned into arbitrary polytopes, the third source
of conservativeness would be eliminated. Another advantage of
using simplices instead of polytopes would be the fact that we
could produce smooth trajectories everywhere by matching the
choice of controls at vertices on adjacent simplices [30]. We
chose polytopes as opposed to simplices for two reasons. First,
as far as we know, there does not exist algorithms for triangula-
tion in dimension larger than 2 that preserve linear constraints
(we need to produce proposition preserving partitions when we
construct Tg). Second, triangulations can produce an explosion
in the number of states of Tg .

On the complexity of our approach, we can easily construct
an upper-limit for the number of states in the product automaton
Aφ . If n is the number of predicates from (4), then transition
system Tg has maximum 2n states (if n > N , there will be less
than 2n states), and the Büchi automaton Bφ obtained using
LTL2BA has maximum n × 2n states [17]. Thus, the product
automaton (including the dummy state q0) has at most n ×
2n × (2n + 1) states. Note that this limit does not depend on
the dimension N of the state space. However, if n > N , which
is usually the case, then the size of the state space plays a role
in the number of states of Tg . Indeed, as N increases, a constant
number of half spaces n can define an increasing number of
feasible subpolytopes. The good news is that, in practice, the
upper limits for both the Büchi automaton and the generator
transition system are almost never reached.

Finally, it is worth mentioning that, in our implementation,
we use an iterative procedure to construct the set of feasible

KLOETZER AND BELTA: A FULLY AUTOMATED FRAMEWORK FOR CONTROL OF LINEAR SYSTEMS 295

subpolytopes, while at the same time taking into consideration
new constraints. This way, since usually M � 2n (especially
for large values for n), we end up with testing a number of
proposition combinations much smaller than 2n .

VIII. IMPLEMENTATION NOTES AND SIMULATION RESULTS

We implemented our approach as a user friendly software
package for linear temporal logic control of linear systems
LTLCon under Matlab. The tool, which is freely download-
able from [18], takes as input the polytope P , the matrices
A,B, and b of system (3), and the LTL−X formula φ. If it finds
a solution, it plots the produced trajectories corresponding to
user defined initial states. Even though transparent to the user,
LTLCon also uses two free packages. The first one is a mex-file
calling CDD in Matlab [46], and it is used to convert a polytope
expressed in form (1) to form (2) and vice versa. The second
one is LTL2BA [17], which is used to convert an LTL formula
to a Büchi automaton.

To illustrate the use of LTLCon, we first consider a 2-D case
(N = 2), chosen for simplicity of graphical representation. We
considered the following numerical values for system (3)

ẋ =
[

0.2 − 0.3
0.5 − 0.5

]
x +

[
1 0
0 1

]
u +

[
0.5
0.5

]
, x ∈ P, u ∈ U.

(11)
Polytope P is specified in form (2), as the intersection

of eight closed half spaces, defined by: a1 = [−1 0]T , b1 =
−5, a2 = [1 0]T , b2 = −7, a3 = [0 − 1]T , b3 = −3, a4 =
[0 1]T , b4 = −6, a5 = [−3 − 5]T , b5 = −15, a6 = [1 −
1]T , b6 = −7, a7 = [−1 2.5]T , b7 = −15, a8 = [−2 2.5]T ,
b8 = −17.5. Control constraints are captured by the set U =
[−2, 2] × [−2, 2].

We define a set Π containing ten predicates, as in (4) and
(5), where: c1 = [0 1]T , d1 = 0, c2 = [1 − 1]T , d2 = 0, c3 =
[4 1]T , d3 = 12, c4 = [4 − 7]T , d4 = 34, c5 = [−2 − 1]T ,
d5 = 4, c6 = [−1 − 12]T , d6 = 31, c7 = [−1 − 1]T , d7 =
11, c8 = [1 0]T , d8 = −3, c9 = [0 − 1]T , d9 = −1.5, c10 =
[−6 − 4.5]T , d10 = −12.

There are 33 feasible full-dimensional subpolytopes in P , and
therefore, 33 states in Tg . Fig. 2 depicts the bounding polytope
P , the vector field given by the drift of system (11), the pred-
icates πi , i = 1, . . . , 10, and the feasible subpolytopes corre-
sponding to states qi , i = 1, . . . , 33 of Tg . The lines connecting
the centroids of the polytopes in Fig. 2 represent the transi-
tions of Tg , with the following convention: for all i �= j: a full
line means that (qi, qj), (qj , qi) ∈→g ; a dashed line means that
(qi, qj) ∈→g for i < j; a dotted line means that (qi, qj) ∈→g

for i > j. A self-transition (qi, qi) ∈→ is represented by a star
in the center of h−1(qi).

We have chosen an LTL−X formula inspired from robot
motion planning, which involves visiting a sequence of three
regions infinitely often, while always avoiding three obsta-
cles. The regions to be visited are, in order: r1 = h−1(q1),
r2 =

⋃
i∈{20,21,29} h−1(qi), and r3 = h−1(q32). The ob-

stacles are represented by the polyhedral regions o1 =⋃
i∈{13,14,16,17,18} h−1(qi), o2 =

⋃
i∈{19,28} h−1(qi), and o3 =

h−1(q10). All regions to be visited and obstacles are rep-

Fig. 2. The arrows represent the drift vector field of system (11). The
white boxes mark the half-spaces corresponding to atomic propositions πi ,
i = 1, . . . , 10. The regions to be visited are light gray, while the obstacles are
gray.

Fig. 3. Union of the white polytopes represents the set of initial states from
which there exist continuous trajectories satisfying formula φ.

resented in Fig. 2. The LTL−X formula can be written as
φ = �(♦(r1 ∧ ♦(r2 ∧ ♦r3)) ∧ ¬(o1 ∨ o2 ∨ o3)).

By expressing interesting regions ri and oi , i = 1, 2, 3
in terms of predicates πj , j = 1, . . . , 10, we obtain φ =
�(♦((π3 ∧ π10) ∧♦((¬π4 ∧ π5 ∧ π6 ∧ π8) ∧♦(¬π1 ∧ ¬π6 ∧
¬π8))) ∧¬(π4 ∨ π7 ∨ (π1 ∧ ¬π2 ∧ ¬π5 ∧ π9))).

The set of initial states from which there exist continu-
ous trajectories satisfying the formula is the union of the
white polytopes in Fig. 3. The set of initial states of Tg from
which there exist runs satisfying the formula are the corre-
sponding labels. Run r15 of Tg starting from q15 and satis-
fying φ is presented in Fig. 4(a). The prefix of run r15 of
Tg is q15q2 (shown as light gray polytopes), while the suffix
is q1q3q26q23q20q23q31q32q30q22q20q23q26q3 (gray polytopes).
A continuous trajectory starting from the centroid of polytope
h−1(q15), x0 = [−4.17 1.19]T , is also shown in Fig. 4(a). The

296 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 1, FEBRUARY 2008

Fig. 4. Simulation results. (a) Run r15 returned by Algorithm 1: light gray polytopes correspond to prefix, while gray polytopes correspond to suffix. The
continuous trajectory starting from x0 = [−4.17 1.19]T (marked with a diamond) is colored in black for its prefix part and in gray for its suffix part. (b) Applied
controls: u1 (full line) and u2 (dashed line)—the black parts correspond to prefix, while the gray parts correspond to suffix.

part corresponding to the prefix is black, while the suffix is
shown in gray.

The previous case study was run on a Pentium 4 (2.66 GHz)
machine with 1 GB RAM, Windows XP, and Matlab 7. The
transition system Tg with 33 states was created in about 0.9 s.
The Büchi automaton had nine states and was created in 2.2 s.
The desired runs of Tg were obtained in about 11 s.

We also ran a 4-D example (N = 4), with P defined by nine
hyperplanes and Π containing n = 15 predicates. There were
M = 295 states in Tg —its construction took 68 s. A tesselation
using the intersection points between hyperplanes defining the
predicates would yield 17509 tetrahedra. As explained before,
these simplices are not suitable for our problem; but, even if
they were, a transition system with so many states would be
inefficient from a computational point of view.

IX. CONCLUSION

In this paper, we described a fully automated framework for
control of linear systems from specifications given in terms of
LTL−X formulas over linear predicates in its state variables.
We expect that the method will find applications in several ar-
eas of engineering, where linear systems are used for modeling
and temporal logic for specifying correctness and performance.
Such areas include robotic motion planning and control of gene
networks. Future directions of research include the extension of
these techniques to continuous multiaffine systems [47], piece-
wise affine, or multiaffine hybrid systems, and the inclusion of
branching time logical specifications.

REFERENCES

[1] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical
Computer Science: Formal Models and Semantics, vol. B, J. van Leeuwen,
Ed. Amsterdam, The Netherlands: North Holland/MIT Press, 1990,
pp. 995–1072.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA: MIT Press, 2000.

[3] B. Shults and B. Kuipers, “Proving properties of continuous systems:
Qualitative simulation and temporal logic,” Artif. Intell., vol. 92, no. 1–2,
pp. 91–130, 1997.

[4] G. Brajnik and D. Clancy, “Focusing qualitative simulation using temporal
logic: Theoretical foundations,” Ann. Math. Artif. Intell., vol. 22, no. 1–2,
pp. 59–86, 1998.

[5] P. Tabuada and G. Pappas, “Model checking LTL over controllable linear
systems is decidable,” in Hybrid Systems: Computation and Control,
vol. 2623 (Ser. Lecture Notes in Computer Science), O. Maler and
A. Pnueli, Eds. New York: Springer-Verlag, 2003, pp. 498–513.

[6] T. Moor and J. Davoren, “Robust controller synthesis for hybrid systems
using modal logic,” in Hybrid Systems: Computation and Control, vol.
2034 (Ser. Lecture Notes in Computer Science), C. J. Tomlin and M.
R. Greenstreet, Eds. New York: Springer-Verlag, 2001, pp. 433–446.

[7] M. Antoniotti and B. Mishra, “Discrete event models + temporal logic =
supervisory controller: Automatic synthesis of locomotion controllers,” in
Proc. IEEE Int. Conf. Robot. Autom., 21–27 May, 1995, vol. 2, pp. 1441–
1446.

[8] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of multiagent
motion tasks based on LTL specifications,” in Proc. 43rd IEEE Conf. Dec.
Control, 14–17 Dec. 2004, vol. 1, pp. 153–158.

[9] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot motion
planning: A timed automata approach,” in Proc. 2004 IEEE Int. Conf.
Robot. Autom., New Orleans, LA, pp. 4417–4422.

[10] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers for
path planning: A temporal logic approach,” in Proc. 2005 IEEE Conf.
Dec. Control, Seville, Spain, pp. 4885–4890.

[11] M. Kloetzer and C. Belta, “LTL planning for groups of robots,” in Proc.
IEEE Int. Conf. Netw., Sensing, Control, Ft. Lauderdale, FL, 23–25 Apr.,
2006, pp. 578–583.

[12] M. Kloetzer and C. Belta, “Hierarchical abstractions for robotic swarms,”
in Proc. IEEE Int. Conf. Robot. Autom., Orlando, FL, 15–19 May 2006,
pp. 952–957.

[13] M. Antoniotti, F. Park, A. Policriti, N. Ugel, and B. Mishra, “Foundations
of a query and simulation system for the modeling of biochemical and
biological processes,” in Proc. Pacific Symp. Biocomput., L. H. R. B.
Altman, A. K. Dunker, and T. Klein, Eds. Lihue, Hawaii, 2003, pp. 116–
127.

[14] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page,
and D. Schneider, “Validation of qualitative models of genetic regulatory
networks by model checking: Analysis of the nutritional stress response
in E. coli,” presented at the 13th Int. Conf. Intell. Syst. Molecular Biol.,
Detroit, MI, 2005.

[15] X. Koutsoukous, P. Antsaklis, J. Stiver, and M. Lemmon, “Supervisory
control of hybrid systems,” in Proc. IEEE, Special Issue Hybrid Syst.,
Jul. 2000, vol. 88, no. 7, pp. 1026–1049.

[16] L. Habets and J. van Schuppen, “A control problem for affine dynamical
systems on a full-dimensional polytope,” Automatica, vol. 40, pp. 21–35,
2004.

[17] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
Proc. 13th Conf. Comput. Aided Verification (CAV’01) (Ser. Lecture Notes
in Computer Science), H. C. G. Berry and A. Finkel, Eds. New York:
Springer-Verlag, 2001, vol. 2102, pp. 53–65.

KLOETZER AND BELTA: A FULLY AUTOMATED FRAMEWORK FOR CONTROL OF LINEAR SYSTEMS 297

[18] M. Kloetzer and C. Belta, “LTLCon, a Matlab package for control of
linear systems from linear temporal logic specifications,” 2005 [Online].
Available: http//iasi.bu.edu/∼software/LTL-control.htm

[19] J. Davoren, V. Coulthard, N. Markey, and T. Moor, “Non-deterministic
temporal logics for general flow systems,” in Proc. 7th Int. Workshop
Hybrid Syst.: Comput. Control, Philadelphia, PA, 2004, pp. 280–295.

[20] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Comput.
Sci., vol. 126, no. 2, pp. 183–235, 1994.

[21] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine, “Hybrid automata: An algorithmic
approach to specification and verification of hybrid systems,” Theoretical
Comput. Sci., vol. 138, pp. 3–34, 1995.

[22] A. Puri and P. Varaiya, “Decidability of hybrid systems with rectangular
inclusions,” Comput. Aided Verification, vol. 818, pp. 95–104, 1994.

[23] G. Lafferriere, G. J. Pappas, and S. Sastry, “O-minimal hybrid systems,”
Math. Control, Signals Syst., vol. 13, no. 1, pp. 1–21, Mar. 2000.

[24] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proc. IEEE, vol. 88, no. 7, pp. 971–984,
Jul. 2000.

[25] G. J. Pappas, “Bisimilar linear systems,” Automatica, vol. 39, no. 12,
pp. 2035–2047, 2003.

[26] M. Broucke, “A geometric approach to bisimulation and verification
of hybrid systems,” in Hybrid Systems: Computation and Control,
(Ser. Lectures Notes in Computers Science), F. W. Vaandrager and
J. H. van Schuppen, Eds. New York: Springer-Verlag, 1999, vol. 1569,
pp. 61–75.

[27] E. Haghverdi, P. Tabuada, and G. Pappas, “Bisimulation relations for
dynamical and control systems,” Electron. Notes Theoretical Comput.
Sci., vol. 69, pp. 1–17, 2003.

[28] A. Tiwari and G. Khanna, “Series of abstractions for hybrid automata,”
presented at the 5th Int. Workshop Hybrid Syst.: Comput. Control, Stan-
ford, CA, 2002.

[29] M. Kloetzer and C. Belta, “Reachability analysis of multi-affine systems,”
in Proc. Hybrid Syst.: Comput. Control: 9th Int. Workshop, vol. 3927 (Ser.
Lecture Notes in Computer Science), J. Hespanha and A. Tiwari, Eds.
Berlin/Heidelberg, Germany: Springer-Verlag, 2006, pp. 348–362.

[30] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot plan-
ning and control in polygonal environments,” IEEE Trans. Robot., vol. 21,
no. 5, pp. 864–874, Oct. 2005.

[31] T. Motzkin, H. Raiffa, G. Thompson, and R. M. Thrall, “The double
description method,” in Contributions Theory Games, vol. 2, H. Kuhn
and A. Tucker, Eds. Princeton, NJ: Princeton University Press, 1953.

[32] K. Fukuda, “CDD/CDD+ package,” [Online]. Available: http://www.cs.
mcgill.ca/∼fukuda/soft/cdd_home/cdd.html

[33] C. W. Lee, “Subdivisions and triangulations of polytopes,” in Handbook of
Discrete and Computational Geometry, J. E. Goodman and J. O. Rourke,
Eds. Boca Raton, NY: CRC Press, 1997, pp. 271–290.

[34] G. M. Ziegler, “Lectures on polytopes,” in Graduate Texts in Mathemat-
ics. Berlin, Germany: Springer-Verlag, 1995, vol. 152.

[35] S. Fortune, “Voronoi diagrams and Delaunay triangulations,” in Hand-
book of Discrete and Computational Geometry, J. E. Goodman and
J. O. Rourke, Eds. Boca Raton, NY: CRC Press, 1997, pp. 377–388.

[36] B. Jeannet, “Convex polyhedra library,” Verimag, Grenoble, France, Tech.
Rep. 1016, 1999.

[37] D. K. Wilde, “A library for doing polyhedral operations,” IRISA, Rennes,
France, Tech. Rep. Publication Interne 785, 1993.

[38] C. Belta and L. Habets, “Constructing decidable hybrid systems with
velocity bounds,” in Proc. 43rd IEEE Conf. Dec. Control, Paradise Island,
Bahamas, 14–17 Dec. 2004, vol. 1, pp. 467–472.

[39] G. Holzmann, The SPIN Model Checker, Primer and Reference Manual.
Reading, MA: Addison-Wesley, 2004.

[40] P. Wolper, M. Vardi, and A. Sistla, “Reasoning about infinite computation
paths,” in Proc. 24th IEEE Symp. Found. Comput. Sci., E. N. et al., Ed.
Tucson, AZ, 1983, pp. 185–194.

[41] R. Gerth, D. Peled, M. Vardi, and P. Wolper, “Simple on-the-fly automatic
verification of linear temporal logic,” in Proc. 15th IFIP WG6.1 Int.
Symp. Protocol Spec., Testing Verification XV. London, U.K.: Chapman
& Hall, 1996, pp. 3–18.

[42] P. Wolper, “Constructing automata from temporal logic formulas: A tuto-
rial,” in Lectures Formal Methods Performance Analysis: First EEF/Euro
Summer School on Trends in Computer Science, vol. 2090 (Ser. Lecture
Notes in Computer Science), H. H. E. Brinksma and J. Katoen, Eds.
New York: Springer-Verlag, 2001, pp. 261–277.

[43] G. D. Giacomo and M. Vardi, “Automata-theoretic approach to plan-
ning for temporally extended goals,” in Proc. 5th Eur. Conf. Planning
(ECP ’99), vol. 1809, pp. 226–238.

[44] E. Dijkstra, “A note on two problems in connexion with graphs,”
in Numerische Mathematik. Amsterdam, The Netherlands: Mathema-
tisch Centrum, 1959, vol. 1, pp. 269–271.

[45] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA and New York: MIT Press and
McGraw-Hill Book Company, 2001.

[46] F. Torrisi and M. Baotic, “Matlab interface for the CDD solver,” [Online].
Available: http://control.ee.ethz.ch/∼hybrid/cdd.php

[47] C. Belta and L. Habets, “Control of a class of nonlinear systems on
rectangles,” IEEE Trans. Automat. Control, vol. 51, no. 11, pp. 1749–
1759, Nov. 2006.

Marius Kloetzer (S’05) received the B.S. and M.Sc.
degrees in computer science from the Technical Uni-
versity of Iasi, Iasi, Romania, in 2002 and 2003, re-
spectively. He is currently working toward the Ph.D.
degree in systems engineering at the Center for Infor-
mation and Systems Engineering, Boston University,
Boston, MA.

His current research interests include robot motion
planning using discrete abstractions, linear temporal
logic, and hybrid systems.

Calin Belta (S’00–M’03) received the B.S. and
M.Sc. degrees in control and computer science from
the Technical University of Iasi, Iasi, Romania, in
1995 and 1996, respectively, the second M.Sc. degree
in electrical engineering from Louisiana State Uni-
versity, Baton Rouge, in 1999, and the third M.Sc.
and Ph.D. degrees in mechanical engineering from
the University of Pennsylvania, Philadelphia, in 2002
and 2003, respectively.

He is currently an Assistant Professor at the Cen-
ter for Information and Systems Engineering, Boston

University, Boston, MA. His current research interests include planning and
control for formations of robots, hybrid systems, and bio-molecular networks.

Dr. Belta is the recipient of the National Science Foundation CAREER Award
in 2005, the Fulbright Study Award in 1997, and was the Valedictorian of his
class in 1995. He received the Best Paper Award at the International Conference
on Systems Biology in 2004 and was a Finalist for the American Society of
Mechanical Engineers Design Engineering Technical Conference Best Paper
Award in 2002 and for the Anton Philips Best Student Paper Award at the IEEE
International Conference on Robotics and Automation in 2001.

