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Abstract— We consider the problem of controlling a discrete-
time piecewise affine (PWA) system from a specification given as
a Linear Temporal Logic (LTL) formula over linear predicates
in its state variables. We present a computational framework for
finding initial states and feedback control strategies guarantee-
ing the satisfaction of such a specification by all the trajectories
of the closed loop system. Our solution is based on abstracting
the system to a finite transition system and on controlling the
abstraction from an LTL specification.

I. INTRODUCTION

Temporal logics and model checking [6] are customarily
used for specifying and verifying the correctness of digital
circuits and computer programs. However, due to their re-
semblance to natural language, expressivity, and existence of
off-the-shelf algorithms for model checking, temporal logics
have the potential to impact several other areas. Examples
include analysis of systems with continuous dynamics [7],
control of linear systems from temporal logic specifications
[22], [14], task specification and controller synthesis in
mobile robotics [17], [8], [15] and specification and analysis
of qualitative behavior of genetic networks [2], [4], [3].

In this paper, we focus on piecewise affine systems (PWA)
that evolve along different discrete-time affine dynamics in
different polytopic regions of the (continuous) state space.
PWA systems are widely used as models in many areas. They
can approximate nonlinear dynamics with arbitrary accuracy,
and are proven to be equivalent with several other classes of
hybrid systems [11]. In addition, there exist computationally
efficient techniques for the identification of such models
from experimental data, which include Bayesian methods,
bounded-error procedures, clustering-based methods, Mixed-
Integer Programming, and algebraic geometric methods (see
[12] for a review).

We consider the following problem: given a discrete-time
PWA system with polytopic control constraints, and a specifi-
cation in the form of a Linear Temporal Logic (LTL) formula
over linear predicates in its state variables, find initial states
and feedback control strategies such that all trajectories of
the closed loop system satisfy the specification. Our approach
is based on partitioning both the state space and the control
space of the system to construct an abstraction in the form
of a finite transition system. The states and inputs of the
abstraction are equivalence classes induced by state and
input space partitions. A state feedback control strategy is
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constructed for the abstraction by using techniques inspired
from LTL model checking and Büchi games, and it is then
adapted to the initial PWA system. The particular partitioning
of the input space guarantees language equivalence between
the closed-loop abstraction and the closed-loop PWA system.
Although the method is conservative, the feedback control
strategy specifies a set of allowed control values at a region
in the state space, and it is therefore robust with respect to
uncertainty in state measurements and applied controls. The
computation involves polyhedral operations, which can be
performed efficiently [16], and control of transitions systems
from LTL specifications, which we developed in our previous
work [14], [18].

This paper can be seen in the context of literature focused
on the construction of finite quotients of infinite systems
(see [1] for an earlier review), and is related to [20],
[22], [14]. The embedding of discrete-time systems into
transition systems is inspired from [20], [22], where the
existence of bisimulation quotients and control strategies
under the assumption of controllability for linear systems is
characterized. In this work, we focus instead on developing
algorithmic procedures for the computation of quotients and
control strategies for the more general class of PWA systems.
The related problem of controlling Mixed Logical Dynamical
(MLD) systems has been considered in [13] by representing
LTL specifications as mixed-integer linear constraints but a
finite horizon assumption is imposed. The main contribution
of this paper is to show that, for PWA systems, finite
quotients can be constructed through polyhedral operations
only and can be used for designing control strategies in lieu
of the original (infinite) PWA system. This paper extends
recent results on formal analysis of PWA systems [9], [24],
[23] to a control framework.

The method presented in this paper was implemented as
the user friendly software package conPAS and is freely
available. The remainder of the paper is organized as follows.
In Sec. II we provide some preliminaries used throughout
the paper. The problem is formulated in Sec. III. In Sec.
IV we define the control transition system (Sec. IV-A),
describe its computation (Sec. IV-B) and show how it can
be used to generate the control strategy (Sec. IV-C). In Sec.
V we briefly describe the implementation of the method and
present results from its application.

II. NOTATION AND PRELIMINARIES

A. Polytopes

A full dimensional polytope X in RN can be described
in either its V-representation X = hull{v | v ∈ V(X )} or
its H-representation X = {x ∈ RN |Hx ≤ K}, where hull



denotes the convex hull, V(X ) represents the set of vertices
of X , and H,K are matrices of appropriate dimensions.
Given a full dimensional polytope X , there exist algorithms
for translation between its V- and H-representations [19].
Given a matrix A ∈ RN×N and a polytope X we use AX to
denote the image of X through A i.e. AX = hull{Av | v ∈
V(X )}.

B. Transition Systems

Definition 1: A transition system is a tuple T =
(Q,Σ, δ, O, o), where Q and Σ are (possibly infinite) sets
of states and inputs, δ : Q×Σ → 2Q is a (nondeterministic)
transition map (2Q is the powerset of Q), O is a set of
observations and o : Q → O is an observation map.

A subset of the state set X ⊆ Q is called a state region
and a subset of the input set U ⊆ Σ is called an input region
of T . A (nondeterministic) transition δ(x, u) = X ′ indicates
that, while the system is in state x it can make a transition
to any state x′ in region X ′ under input u. We denote the
set of inputs available at a state x ∈ Q by Σx. A transition
δ(x, u) = X ′ is deterministic if the set X ′ is a singleton and
the transition system T is deterministic if all its transitions
are deterministic. Transition system T is finite if both its set
of states Q and set of inputs Σ are finite. T is non-blocking
if, for every state x ∈ Q, there exists X ′ ⊆ Q and u ∈ Σ
such that δ(x, u) = X ′.

An input word of the system is defined as an infinite
sequence u1, u2, u3, . . ., where ui ∈ Σ. A trajectory or run
of T produced by input word u1, u2, u3, . . . and starting
from state x1 ∈ Q is an infinite sequence x1, x2, x3 . . .
with the property that xi ∈ Q, and xi+1 ∈ δ(xi, ui), for
all i ≥ 1. A trajectory of the system x1, x2, x3 . . . defines a
word o(x1), o(x2), o(x3) . . .. The set of all words generated
by the set of all trajectories starting at state x ∈ Q is
called the language of T originating at x and is denoted
by LT (x) (similarly, we use LT (X) to denote the language
of T originating in region X).

For an arbitrary state region X and input region U , we
define the set of states PostT (X, U) that can be reached
from X in one step by applying an input in U as

PostT (X, U) = {x′ ∈ Q | ∃x ∈ X, ∃u ∈ U, x′ ∈ δ(x, u)}
(1)

The observation map o of a transition system T induces
an equivalence relation ∼ over the set of states Q. We say
that states x1, x2 ∈ Q are equivalent (written as x1 ∼
x2) if and only if o(x1) = o(x2). Then, the equivalence
relation naturally induces a quotient transition system T/∼ =
(Q/∼,Σ, δ∼, O, o∼), where Q/∼ is the set of all equivalence
classes formed in Q and transitions are defined as X ′ ∈
δ∼(X, u) if and only if there exist x ∈ X and x′ ∈ X ′ such
that x′ ∈ δ(x, u) (we abuse the notation and use the symbols
X, X ′ to indicate states in Q/∼ as well as regions of Q but
the precise meaning is clear from the context). The sets of
inputs Σ and observations O of T/∼ are preserved from T .
Since all states x ∈ Q in an equivalence class X ∈ Q/∼

have the same observation, o∼(X) is well defined and given
by o∼(X) = o(x), x ∈ X .

C. LTL, Model Checking, and LTL Control

To specify temporal logic properties for trajectories of
PWA systems, in this paper we use Linear Temporal Logic
[6]. Informally, LTL formulas are recursively defined over
the set of observations O, by using the standard Boolean
operators (e.g., ¬ (negation), ∨ (disjunction), ∧ (conjunc-
tion)) and temporal operators, which include © (“next”),
U (“until”), � (“always”), ♦ (“eventually”). LTL formulas
are interpreted over infinite words, as are those generated
by the transition system T from Definition 1. Given a finite
transition system T = (Q,Σ, δ, O, o) and an LTL formula φ
over O, checking whether the words of T starting from each
state satisfy φ is called LTL model checking, or simply model
checking in this paper. An off-the-shelf model checker, such
as NuSMV [5] takes as input a finite transition system T and
a formula φ, and returns the states of T at which the formula
is satisfied (i.e., the states for which the language originating
there satisfies the formula). For the non-satisfying states, a
model checker returns a non-satisfying run as a certifying
counter-example. We write T (X) � φ if LT (X) satisfies φ.

As a dual to the model checking problem, one can
formulate an LTL control problem: for a finite transition
system T , find a set of initial states X0 and a control strategy
such that T (X0) � φ. If T is deterministic, then off-the-
shelf model checking can, in principle, be used to solve the
control problem. Indeed, one can model check T from every
initial state against ¬φ. If there is a violating run at a state
(i.e., a run satisfying φ), it is returned as a counter-example
by the model checker. Since the system is deterministic, a
sequence of inputs producing the run can be found, which
will give the control strategy. We followed this approach
in [14], where we redesigned the model checking process
such that the produced runs were optimal with respect to
a predefined cost (this method has been implemented in a
tool called LTLCon1). If T is non-deterministic, the problem
is more difficult. In [18], we proposed a solution inspired
from Büchi games and implemented it as the software tool
BüCon. The control strategy takes the form of a “feedback
automaton”, which reads the current state of T and produces
the control to be applied at that state. The solution to this
control problem is complete if the specification is restricted
to an LTL formula whose satisfying language is generated
by a deterministic Büchi automaton.

III. PROBLEM FORMULATION AND APPROACH

Let X ,Xl, l ∈ L be a set of open polytopes in RN , where
L is a finite index set, such that Xl1

⋂
Xl2 = ∅ for all l1, l2 ∈

L, l1 6= l2 and
⋃

l∈L X̄l = X̄ , where X̄ is the closure of X .
A discrete-time piecewise affine (PWA) control system is

1In [14], LTLCon was designed for the synthesis of control strategies
for continuous time, linear systems, where the LTL X segment of LTL was
used to formulate specifications. In this work, we apply LTLCon directly
to finite transition systems and formulate specification over the full LTL



defined as:

xk+1 = Alxk + Bluk + cl, (2)
xk ∈ Xl, uk ∈ U , l ∈ L, k = 0, 1, 2, . . . ,

where xk ∈ RN is the state of the system, uk is the
control input restricted to a polytopic set U ⊆ RM , and
Al ∈ RN×N , Bl ∈ RN×M , cl ∈ RN are the system
parameters for each mode l ∈ L. We assume that X is an
invariant for the trajectories of (2). In Sec. IV-B we will
show that polyhedral control constraints guaranteeing this
condition can be computed.

We are interested in properties of (2) specified in terms of
the polytopes from its definition. Intuitively, a trajectory of
the system x1x2x3 . . . where xk ∈ Xlk produces an infinite
word l1, l2, l3, . . . by listing the index of the polytope visited
at each step. An LTL formula can then be interpreted over
trajectories of system (2).

We consider the following problem:
Problem 1: Given a PWA system (2) and an LTL formula

φ over L, find a set X0 ⊆ X and a control strategy, such
that all trajectories of the closed loop system originating in
X0 satisfy formula φ.

Formally, we define the satisfaction of LTL formulas by
the trajectories of system (2) through an embedding into a
transition system:

Definition 2: The embedding transition system Te =
(Qe,Σe, δe, Oe, oe) for system (2) is defined as:
• Qe =

⋃
l∈L Xl,

• Σe = U ,
• δe(x, u) = x′ if and only if there exist l ∈ L and u ∈ U

such that x ∈ Xl and x′ = Alx + Blu + cl,
• Oe = L,
• oe(x) = l if and only if x ∈ Xl.

The embedding transition system Te is non-blocking and
deterministic but both its set of states Qe and set of inputs
Σe are infinite.

Definition 3: Trajectories of system (2) originating in X0

satisfy formula φ if and only if Te(X0) satisfies φ.
Remark 1: We capture only the reachability of open full

dimensional polytopes in the semantics of the embedding.
This is enough for practical purposes, since only sets of
measure zero are disregarded, and it is unreasonable to
assume that equality constraints can be detected in real-
world applications. In addition, the specification is given
over the polytopes Xl but arbitrary linear inequalities can
be accommodated simply by refining the polytopic partition.

If Te was finite and deterministic then Problem 1 can be
solved by applying the software tool LTLCon as described
in Sec. II-C. If, on the other hand, Te was finite but nondeter-
ministic a solution can be obtained by applying BüCon (see
Sec. II-C). Since Te is infinite, neither of the two approaches
can be used directly. Our approach (illustrated in Fig. 1)
is based on the construction of a finite control transition
system Tc, the generation of a control strategy for Tc, and
the adaptation of the control strategy to the original PWA
system (or, equivalently, the infinite embedding Te). The two
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Fig. 1. Overview of our approach to Problem 1

closed loop systems will produce the same language, and
therefore will be equivalent with respect to the satisfaction
of the specification. The method is conservative and finding a
solution is not guaranteed but if a satisfying control strategy
is found, it is robust with respect to uncertainty in state
measurements and applied controls.

IV. CONTROL STRATEGY

In this section, we first define the control transition system
(Sec. IV-A). Then, we show that its computation reduces to
polyhedral operations only (Sec. IV-B). Finally, we develop
a control strategy for the control transition system and adapt
it to the original PWA system (Sec. IV-C).

A. Control Transition System

Let ∼ denote the equivalence relation induced on Qe by
the output map oe. Let Te/∼ = (Qe/∼,Σe, δe∼, Oe, oe∼)
denote the corresponding quotient transition system (see Sec.
II-B). Note that, while the set of states Qe/∼ of Te/∼ is
finite (Qe/∼ = L), the set of inputs Σe is infinite. Also note
that Te/∼ is, in general nondeterministic, even though Te is
deterministic.

The transition map δe∼ can be related to the transitions of
Te by using the Post operator defined in Eqn. (1):

δe∼(l, u) = {l′ ∈ Qe/∼ | PostTe
(Xl, u) ∩ Xl′ 6= ∅}, (3)

for all l ∈ Qe/∼ and u ∈ Σe.
For each state l ∈ Qe/∼, we define an equivalence relation

≈l over the set of inputs Σe as follows:

(u1, u2) ∈≈l iff δe∼(l, u1) = δe∼(l, u2) (4)

In other words, inputs u1 and u2 are equivalent at l if they
produce the same set of transitions in Te/∼. Let US

l , l ∈ L,
S ⊆ Qe/∼ denote the equivalence classes (regions) of Σe in
the partition induced by the equivalence relation ≈l:

US
l = {u ∈ Σe | δe∼(l, u) = S} (5)

We are now ready to define the control transition system:



Definition 4: The control transition system Tc =
(Qc,Σc, δc, Oc, oc) is defined as:
• Qc = Qe/∼ = L;
• Σc ⊆ {US

l | l ∈ L, S ⊆ Qc}. For any l ∈ Qc, US
l ∈ Σl

c

if and only if
– US

l is large enough,
– PostTe

(Xl, U
S
l ) ⊆ X ,

– For any S′ such that S′ ⊆ S, US′

l 6∈ Σl
c;

• δc(l, US
l ) = S, for US

l ∈ Σc;
• Oc = Oe;
• oc = oe∼.
In other words, the control transition system Tc is the same

as the quotient transition system Te/∼, with the exception
of the set of inputs and the set of transitions, which are both
finite for Tc. The set of inputs Σl

c available at a state l ∈ Qc

is a subset of {US
l , S ⊂ Qc}, which is a finite set. Sets US

l

that are empty or too “small” (see Sec. IV-B) are excluded
to reduce the size of the system and to make it more robust.
In addition, each control u from an allowed set US

l at state
l should keep Te inside X . This guarantees that X is an
invariant for the trajectories of the PWA system, which was
the assumption we made at the beginning of Sec. III. Finally,
we do not include in Tc a nondeterministic transition to a set
of states S for which a transition to a subset S′ ⊆ S exists.
This assumption is motivated by the BüCon algorithm for
the control of a nondeterministic transition system. Roughly,
more “nondeterminism” available at a state does not result
into more winning strategies for the game algorithm that we
described in [18].

B. Computation of the Control Transition System

The states of the control transition system Tc are simply
the labels l ∈ L of the polytopes from the definition of the
PWA system (Eqn. (2)). To complete its construction, we
need to be able to compute the set of controls Σl

c available
at each state l ∈ Qc. In this section, we show that this can be
achieved through polyhedral operations. Given two polytopes
Xl and X ′, where Xl is a polytope from the definition of the
PWA system (Eqn. (2)) and X ′ is an arbitrary polytope, let

UXl⇒X ′
= {u ∈ Σe | PostTe

(Xl, u) ⊆ X ′} (6)

be the set of all inputs guaranteeing that all states from
Xl transit inside X ′. In other words, regardless which u ∈
UXl⇒X ′

and x ∈ Xl are selected, x will transit inside X ′

under u in Te. Similarly, let

UXl→X ′
= {u ∈ Σe | PostTe

(Xl, u) ∩ X ′ 6= ∅} (7)

denote the set of all inputs under which Te can make a
transition from a state in Xl to a state inside X ′. Equivalently,
applying any input u ∈ U , u 6∈ UXl→X ′

guarantees that Te

will not make a transition inside X ′, from any state in Xl.
Let X ′ = {x ∈ RN | Hx ≤ K}. Then, UXl⇒X ′

is a
polytope with the following H-representation:

UXl⇒X ′
= {u ∈ U | HBlu ≤ K−H(Alv+cl),∀v ∈ V(Xl)}

(8)

Let H and K be the matrices in the H-representation of
the following polytope:

{x̂ ∈ RN | ∃x ∈ Xl, Alx + x̂ + cl ∈ X ′} (9)

Then UXl→X ′
is a polytope with the following H-

representation:

UXl→X ′
= {u ∈ U | HBlu ≤ K} (10)

Proposition 1: Given a state l ∈ Qc and a set of states
S ⊆ Qc, the set US

l from Eqn. (5) can be computed as
follows:

US
l =

⋂
l′∈S

UXl→Xl′ \
⋃

l′′ 6∈S

UXl→Xl′′ (11)

For l, l′ ∈ Qc, the computation of the set of inputs U l′

l ,
inducing a deterministic transition from l to l′, reduces to

U l′

l = UXl⇒Xl′ (12)

In order to guarantee that X is an invariant for all
trajectories of the system it is sufficient to restrict the inputs
available at each state l ∈ Qc as follows:

Σl
c ⊆ UXl⇒X (13)

Then, the set of states reachable from state l under the
allowed inputs is

PostTe/∼(l, Σl
c) = {l′ ∈ Qe/∼ | PostTe(Xl,Σl

c)∩Xl′ 6= ∅}
(14)

and can be computed using polyhedral operations, since

PostTe(Xl,Σl
c) = AlXl + BlU

Xl⇒X + cl (15)

We can guarantee that if a state l′ is not reachable from
state l (i.e. l′ 6∈ PostTe/∼(l,Σl

c)) then UXl→Xl′ = ∅ and
therefore, US

l = ∅ if S 6⊆ PostTe/∼(l,Σl
c) and otherwise

the computation in Eqn. (11) reduces to

US
l =

⋂
l′∈S

UXl→Xl′ \
⋃

l′′∈PostTe/∼ (l,Σl
c)\S

UXl→Xl′′ (16)

All results presented in this section are summarized in
Algorithm 1, which constructs the set of inputs Σc of the
control transition system Tc and can be implemented using
polyhedral operations.

In order to construct the control transition system Tc

in accordance with Definition 4, we include the following
operations in Algorithm1:
• On line 2 we ensure that only inputs guaranteeing the

invariance of polytope X are allowed for each state.
• On line 3 we ignore input regions which are known to be

empty or do not lead to additional satisfying strategies.
• On line 11 we only include in Σc input regions that

are large enough. A non-empty input region US
l can

always be represented as a union of polytopes (see Eqn.
(16)). Then, only the polytopes from US

l with radii
of inscribed spheres larger than a certain, predefined
limit are kept. If no polytopes satisfy this condition, the
region US

l is considered empty and excluded from Σc.
Otherwise, applying the center of the inscribed sphere
of any polytope in US

l in a control strategy (as it will
become clear in Sec. IV-C) guarantees its robustness.



Algorithm 1 Construct Σc

1: for each l ∈ Qc do
2: Initialize Σl

c = UXl⇒X

3: for each S ⊆ PostTe/∼(l,Σl
c) such that US′

l 6∈ Σc

for any S′ ⊆ S do
4: if |S| == 1 (i.e. S = l′) then
5: US

l = Σl
c ∩ UXl⇒Xl′

6: else
7: U1 =

⋂
l′∈S UXl→Xl′

8: U2 =
⋃

l′′∈PostTe/∼ (l,Σl
c)\S

UXl→Xl′′

9: US
l = Σl

c ∩ (U1 \ U2)
10: end if
11: if US

l is large enough then
12: Include US

l in Σc

13: end if
14: end for
15: end for

C. Control

So far in Sec. IV we have defined the control transition
system Tc (Sec. IV-A) and showed that it can be efficiently
constructed using only polyhedral operations (Sec. IV-B).
In this section, we formulate a solution to Problem 1 by
generating a control strategy for Tc and adapting it to the
embedding Te or, equivalently, the original PWA system.

The control transition system Tc is always finite but, in
general, nondeterministic. Then, the software tool BüCon
(see Sec. II-C) can be used to generate a control strategy for
Tc, as long as the LTL specification φ can be translated into a
deterministic Büchi automaton (possibly by using tools such
as LTL2BA[10] or MoDeLLA [21]). Since the existence of
a deterministic Büchi automaton cannot be guaranteed, the
application of BüCon might be restrictive with respect to
the specifications that can be formulated. In order to handle
specifications resulting in nondeterministic Büchi automata,
LTLCon can be applied, but only if Tc is deterministic. In
Sec. IV-B (Eqn. (12)), we showed that the computation of
deterministic inputs in Σc can be efficiently performed and
therefore a deterministic Tc can be constructed (alternatively,
a nondeterministic Tc can always be determinized by re-
moving all nondeterministic inputs and transitions). Then,
LTLCon can be applied to a deterministic Tc to generate a
control strategy when the specification can only be translated
into a nondeterministic Büchi automaton, but the overall
method becomes more conservative.

Applying BüCon or LTLCon will result in a set of initial
states L0 ⊆ Qc (L0 ⊆ L) and a control strategy for Tc.
We can translate L0 into a set of initial regions in Te

directly as X0 =
⋃

l∈L0
Xl. The control strategy generated

by BüCon and LTLCon will take the form of a feedback
control automaton C(), which reads the current state of Tc

and provides the next input to be applied (i.e. C(l) ∈ Σl
c).

An infinite word l1, l2, l3, . . ., where lk ∈ Qc, generated by
input word U1, U2, U3 . . ., where Uk ∈ Σlk

c is guaranteed
to satisfy the LTL specification φ, as long as l1 ∈ L0 and

Uk = C(lk) for each k = 1, 2, . . ..
From the definition of Tc it follows that

∀x ∈ Xl,∀u ∈ US
l , δe(x, u) ∈ Xl′ , l

′ ∈ S (17)

and therefore a trajectory x1, x2, x3, . . ., where xk ∈ Qe,
generated by input word u1, u2, u3, . . ., where uk ∈ Σe,
will produce a word l1, l2, l3, . . . that satisfies φ as long
as x1 ∈ X0, where X0 is the set of satisfying initial
regions and uk ∈ C(oe(xk)). As discussed in Sec. IV-B,
only input regions with radii of inscribed spheres larger
than a predefined limit have been included in Σc. Then,
taking uk to be the center of the inscribed sphere of the
input region specified by C(oe(xk)) (or any of the centers
in the case when the control region is given as a union of
polytopes) defines the PWA control strategy and guarantees
its robustness, which solves Problem 1. Note that under
the control strategy defined above, the closed loop control
transition system and the closed loop PWA system have the
same language.

Remark 2: In order to understand the complexity of the
proposed method we focus only on the complexity of con-
structing the control transition system (for a discussion on the
complexities associated with LTLCon and BüCon see [14]
and [18]). Although, the theoretical worst case complexity
for the construction of Tc is O(2|Qc|), on average this can be
significantly reduced through the optimizations described in
Sec. IV-B. Even so, the method is computationally intensive
and might not be applicable to PWA systems defined over
many polytopes (when |Qc| is large). In the case study
described in Sec. V the construction of Tc required less than
15 minutes on a 2.66GHz Intel Xeon Quad-Core machine
with 3 GB memory. Once Tc was constructed, generating
the control strategy required an additional 20 seconds.

V. IMPLEMENTATION AND CASE STUDY

The method described in this paper was implemented in
MATLAB as the user friendly software package conPAS,
where all polyhedral operations were performed by the MPT
toolbox [16]. The tool takes as input a PWA system (as
defined in Eqn. (2)) and an LTL formula, produces a set of
satisfying initial regions and a feedback control strategy for
the system and can simulate runs in the closed loop system.
Since inputs in Tc are constructed locally at each state, the
computation can be distributed efficiently on multi-processor
platforms. The tool is made public and freely downloadable
at http://iasi.bu.edu/software.

A PWA system of dimensions N = M = 2, defined on
polytopes X1, . . . ,X36 (shown in Fig. 2) was analyzed with
conPAS.

The specification of interest was

φ = ♦X1 ∧ ♦X10 ∧ ♦X27 ∧ ♦X36 (18)

or ”eventually visit all corner regions in any order” and was
translated into a 16 state deterministic Büchi automaton.

A control transition system with 36 states was constructed.
Out of the total 4115 nonempty input regions found, 3182
were large enough (the radii of their inscribed spheres were
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Fig. 2. A) Trajectories of the uncontrolled system go towards regions X10 and X27. B) A simulated trajectory (x1, . . . , x10) of the closed loop system.
C) The control strategy used to generate the trajectory shown in B relied on 4 nondeterministic (dotted lines) and 5 deterministic (solid lines) transitions.
States that were not visited by the trajectory but were targets of the nondeterministic transitions are also shown.

larger 0.05) but only 691 were included in Tc (due to the
availability of ”more deterministic” transitions as described
in Sec. IV-A). Considering only the subset of 260 determin-
istic transitions in Tc did not lead to a satisfying control
strategy from any initial region (X0 = ∅), while satisfying
control strategies were found for all regions (X0 = X ) when
nondeterministic transitions were also included.

Starting from random initial conditions x1 ∈ X23, a
trajectory of the closed loop system was simulated until
the specification was satisfied (Fig. 2-B). At each step k =
1, . . . , 10 where xk ∈ Xlk an input region US

lk
was specified

by the control automaton. Then, the next state xk+1 was
generated by applying the center of the inscribed sphere of
any polytope in US

lk
as the input uk. The trajectory of the

control transition system corresponding to the simulation and
the inputs applied at each step are shown in Fig. 2-C.
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