Drill #3:

1. The following pseudo-code will sort an array with 3 elements:

CEX(a, 1,2);

CEX(a, 1,3);

CEX(a, 2,3);

Let us call it 3-sort(a,j) //3 sorts the 3 elements a[j], a[j+1], a[j+2]

Let a be an array with 6 elements.

Consider the following algorithm:

3-sort(a,0);

3-sort(a,3);

merge(a, 0, 3); //merge merges the 2 sorted sub arrays

Execute this code on the array 4, 1, 5, 9, 2, 6. Show the resulting array after each call to CEX.

How many CEX calls will be made to sort an array with 6 elements using the above code.

Can you design a recursive algorithm to sort an array with n elements using this scheme?

2. Convert the following infix expression to postfix:

 (26 + 89*6)*(54 – 3*(57 – 32*2)) – 288/(35 – 11*(13 – 12)) + 193.

3. Evaluate the postfix expression.

4. Evaluate the infix expression.

5. The correctness proof of recursive algorithms is usually accomplished by induction on “size”.

 Your first task is to identify what is to be used as the “size”.

 Then you prove the base case, which will usually involve the exit condition.

 Next you have to ascertain that the recursive calls indeed reduce the size of sub-problems and that

 eventually the exit condition is reached.

 Finally you establish the induction step.

a. Prove that the following recursive algorithm computes 3n – 2n
//n is a non-negative integer

static int tt(int n) {

 if (n <= 1) return n;

 else return (5*tt(n – 1) – 6*tt(n – 2));

}

 b Prove the correctness of the following algorithm

static int max(int [] a, n) {

//Return the maximum element in an array with n integers

 if (n = 0) return a[n];

 else return (a[n-1] > max(a, n – 1) ? a[n – 1] : max(a, n – 1));

}

b. Convert the following pattern matching pseudo-code algorithm to a Java method and prove its

correctness:

// find the pattern P[0..m – 1] in the string S[1..n]

j (0; matched (false;

while (j <= n – m) and (not matched)

 begin

 j (j + 1;

 r (0; matched (true;

 while (r , m) and matched

 begin

 matched <- matched and (P[r] = S[j+r]);

 r (r + 1;

 end;

 end;

 return(j);

Sorting:

1. You have a stack of pancakes. You wish to sort them so no bigger pancake lies on top of a smaller one. You can stick a spatula any where in the stack and flip it. For instnce, if the stack of pancakes is 6, 7, 12,

