Sorting: the basics

A sequence of integers:

S = {43 65 37 2635 237 2798 783 8963

378 287 290

3547 234 26534

354 876 67 87575

674 8967 786 }

The location of a member in the sequence will be denoted by ak.

a1 = 43, a10 = 287

a15 = ??

Non decreasing sequence:

34 56 67 67 78 98 102 234

Non increasing sequence:

234 102 98 78 67 67 56 34

Sorting: rearrange a sequence in non decreasing order or non increasing order.

In the sequel, we shall sort in non increasing order.

When there is a “natural” order among members of a sequence each member has a “rank”.

The rank of ak is the number members ranked above ak included in the sequence.

If T = {56 74 281 345 452 98}

The rank of a1 in T is 5, the rank of a4 = 1.

T = {56 74 281 345 452 98}

 ranks: 5 4 2 1 0 3

Sorting a sequence means rearranging a sequence so that a member of rank m in the original sequence will be in location m+1 in the sorted sequence.

A compare-exchange (CEX) based sorting algorithm is an algorithm that compares two members of a sequence and exchanges their locations or leaves them intact.

Note that the relative values of the data in the sequence are relevant to sorting not the values themselves. Thus a sorting algorithm will perform the exact sequence of exchanges on the sequence

T = {56 74 281 345 452 98}

As it will on the sequence:

W = {156 374 3281 3345 3452 398}

 ranks: 5 4 2 1 0 3

Conclusion: there are exactly n! different instances of sequences of length n.

From now on we shall concentrate on the sequence of ranks rather than the values stored in the given sequence. Thus a sorting algorithm should rearrange the sequence W:

W* = {3452 3345 3281 398 374 156 }

 ranks: 0 1 2 3 4

5

An inversion in a permutation (= (a1, a2,…,an) is a pair of “out of order locations”. Formally, (ai,aj) where i < j but ai > aj.

The permutation: (5 4 2 1 0 3) contains 12 inversions.
1. The maximum number of inversions in a permutation of length n is:
[image: image1.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

.

2. The “reverse” of (= (a1, a2,…,an) is
 (* = (an, an-1,…,a1).
3. There are n! distinct n-permutations.
4. The number of inversions in (+ (* is
[image: image2.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

.
5. The total number of inversions in all possible n! permutations is
[image: image3.wmf]1/2n!
[image: image4.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

.
6. The average number of inversion in a permutation is 1/2
[image: image5.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

 = n(n-1)/4 = O(n2).
Conclusions: If a CEX based sorting algorithm removes at most one inversion per CEX on the average it will have to perform O(n2) CEX calls. In the worst case it will have to perform also O(n2) calls.

Bubble sort:
Given: A[0…n-1];

for j (0 to n-1

 for k (0 to n-1

 CEX(A[k],A[k+1]);

A “slightly” improved Bubble sort:

 last (n-1;

 while last > 0 do

for j (0 to last

 for k (0 to last {

 last (0;

 if (CEX(A[k],A[k+1]))

last (k;

}

Conclusion: To get a better CEX based sorting algorithm try to execute CEX calls on locations that are “far apart”.

Insertion sort:
Given: A[0…n-1];

for j (0 to n-1

 insert(A[j], 0…j);

method insert(int n,j,k);

 if j = k A[j] (n;

 else

 if A[j] (A[j/2]

 insert (A[j], 0…j/2-1);

else

 insert(A[j], j/2…j);

Note that this sorting algorithm does CEX comparisons on “far apart” locations.
_1033720268.unknown

_1033719819.unknown

