Assignment #1:





Due; Tuesday, Oct. 3

Write a program that will read a sequence of integers from a text file and determine the length of the longest monotone sub-sequence.

Data:  assign_1.txt

Example:   Assume that the file contains the following sequence:

23 27  11  19  17  29  345  41  33 77

23, 19, 17 is monotone subsequence of length 3

11, 17, 29, 345 is a monotone subsequence of length 4 

(Note: the first subsequence is an increasing sequence while the second is a decreasing sequence).

Submit a diskette with executable code. The file to be read will be c:\tcss342\assign_1.txt

Assignment #2:





Due: Thursday, Oct. 12

Submitting assignments: FINAL VERSION!
All future assignments may include two parts: a program and a “paper/pencil” (P/P) part. Submit your assignments on a diskette. Place all your files in a folder called Assign2, Assign3, Assign4,  etc. each assignment will have its own folder. Keep a copy of your diskette on a separate diskette or your own hard drive. For the programming part, include a readme file that will instruct me how to run your program. Do not forget to include in the readme file the name of the data file. If a program needs to read a file (most will do), make it read the file from the same directory where the program is. Include both the source code and the executable (the class file in case of a Java program, the .exe if you use C++). Include a sample of a data file.

Use word for the “paper/pencil” portion, usually problems from the book. I’ll post sample answers. Emphasize the process that led you to the answer.

1) (Programming) Modify your monotone program as follows:

The program should read the integers from a file (you may assume that the file will contain at most 10,000 integers).

Display the data.

Display answer in a nice format:  (your design).

Give the user (read from the keyboard) the option to:

Display a longest increasing subsequence.

Display a longest decreasing subsequence.

Paper/pencil problems:

2) How many comparison does your program make?  (use Big-Oh notation)

3) Can you design a better algorithm?

4) Problem C-3.8

5) Problem C-3.14

6) Problem C-3.20 

Assignment #3:





Due: Thursday, Oct. 19

Note: The file Tools.java contains I/O methods. If you choose to use it copy it to your working directory, compile it and use it. The file ReadIntegers.java demonstrates how to open a file of integers and load it into an array. It also uses some simple I/O methods included in the class Tools.java.  Both files can be viewed in my home page (under construction) http://faculty.washington.edu/moishe/index.html.

1) (Programming goal: application of the STACK) One of the classical applications of the stack is for evaluating RPN arithmetic expressions. Write a program using a stack to evaluate RPN expressions. Write a program to evaluate RPN expressions. The program should read expressions from a file. Each expression will be on a single line. The program should echo the expression and its value according to the following format:

13 15 8 + * 15 5 / 3 * -  =  290

In case the expression is not syntactically correct the program should throw an exception. 

When the exception is caught echo the expression and alert the user.

2) Extra credit. (Programming goal: Implement an ADT using interface). The sous chef was just promoted to be the pancake stack flipper. The chef places a large stack of pancakes of various sizes. The sous chef inserts the spatula somewhere into the stack  and flips the pancakes. See a demonstration of this operation below. The sous chef’s mission is to arrange the pancakes so that the largest pancake is on the bottom, the second largest next, and so on. A stack of pancakes will be represented by a list of integers. The following demonstrates a stack of pancakes and a flip:

      





22   5   7   2   23   10   15   21   3   17


executing Flip(5) will result in the stack: 
23   2   7   5   22   10   15   21   3   17.

     Your class Pancakes should use the following interface:


public  interface Pancakes {

         public  int  size(); // Return the size of the stack of pancakes


   public  int   pancake_size(int k); //Returns the size of the pancake at location number k


   public  void display()// display the stack of pancakes

         public  void  flip(Obj pan, int k); //flips the stack of pancakes pan at location k

    }

   (keywords to look for in your Java books:   interface, implements).

Paper/pencil problems:
1) Show that a pancake stack of size n can be sorted in no more than 2n flips.

2) R-4.1

3) R-4.3

4) What will be the RPN equivalent of the following expressions:

a.  x*y^2 – 6 *6   (Note: ^ represents exponentiation, it has the highest priority).

b. –B + (B^2 – 4*A*C)^3

Assignment #4:





Due: Thursday, Oct. 26

1) (Programming goal: Recursive solution of problems) Write a program that accepts a positive long integer from the keyboard and prints it in “monetary” form:

For example:   1436438765869  should be printed as $1,436,438,765,869  

2) (Problem solving) the numbers 1,2,3,….,18 are partitioned into two sets: for instance:

                          1  5  6  9  11  12  15  16  17   and   2   3  4  7  8  10  13  14  18


Your goal is to “match” the numbers from both sets as follows:

1 5    6    9  11  12  15  16  17

18  14  13  10    8    7    4    3    2


This “matching” has the following property: 

all differences {(ai – bi) Mod 19 and (bi-ai) Mod 19} are distinct! Note that the mathematical meaning of Mod 19 is always an integer in the range 0,…,19. To make Java behave mathematically correct just modify all your Mod operations as follows:



(a – b) Mod 19 ( (19 + a – b) % 19;

So, scanning our sequence we get: (1 – 18) Mod 19 = 2; 18 – 1 Mod 19 = 17; 

5-14 Mod 19 = 10; 14 –5 Mod 19 = 9 (and so on… you can check that indeed all differences are distinct).

Write a program that will read from a file 9 distinct integers in the range 1,…, 18 match them with the remaining 9 integers and display the resulted matching in the following format:

1 5    6    9  11  12  15  16  17

18  14  13  10    8    7    4    3    2

Assignment # 5





Due: Thursday, Nov. 2

The file LoadFromFile contains a class with one constructor and one method. It will facilitate loading integers from a text file to a vector. The method will return the vector to the caller. The file TestReader demonstrates how to use this class.

Your mission is to create a class of data processing tools. We shall simulate our data by numbers. Our data containers will be vectors. Some of the tools are readily available as method members in the Vector class. 

The first two tools to be included are insertion sort and bubble sort. The Tools class can be used as an example of creating a class containing useful tools.

Specifications: create a class called DataTools. This class will include the two sorting methods and anything else you find useful at this point, for instance a user friendly display of the data.

Create a driver to test your tools. Read integers from a file called f:\tcss321\numbers.txt

paper/pencil:  

1) (a) Create a permutation of length 15 with 23 inversions.

            (b) How many inversions will the reverse permutation have?

2) Page 224 C-5.21

Assignment # 6





Due: Thursday, Nov. 9

Part 1:  (a) Write a program that calculates the last 3 digits of nm.

Specifications: 

1) n,m are long integers.

2) User inputs the long integers from the keyboard.

3) Prompt the user to enter the integers, echo them and display the result in the following format:

You entered  :   12345758980       5586589869696

The last 3 digits of   12345758980^5586589869696 are 000

4) User must be allowed to repeat as many times as he likes to run your program.

(b) Write a program that reads integers from a file and stores them in a binary search tree. Include a method to display the Inorder Successor of a node and the postorder successor.

Example: Assume the input is 23  45  12  67 78 34 25

Your binary tree will look as follows:







23






      /                    \

12 45

                                                                                          /             \                      

34 67

       /

25

InorderSuccessor(23) should return 25.    PostorderSuccessor(34)  should return 67.

Paper/Pencil:   Pages 274 – 277

R-6.1,  6.2 , 6.12 

C-6.1  


Assignment # 7





Due: Thursday, Nov. 16

1) Write a program that reads the inorder traversal and the postorder

traversal of a binary search tree and reconstructs the tree. Output the

stats of the tree:

1) Number of nodes.

2) Height of the tree

3) Height of the left tree

4) Height of the right tree.

5) Number of leaves.

6) Its preorder traversal.

Prompt the user to insert new integers and to delete integers from the

tree. Your program should be menu driven. After you show the statistics of

the tree the user should be presented with a menu for showing any one of

the 3 traversal of the tree.

Input:  A text file of integers named f:/tcss342/tree.txt. The inorder traversal will be first. It will be followed by the postorder traversal. The integer –1 will separate the two traversals.

For instance, an input may look as follows:

23  45  67  79  -1  45  23  79  67

Paper/Pencil

R-6.8

Run the program tree test. Cut and paste the inorder and postorder

traversals. Draw  the tree produced by your run.

Here is a drawing sample:  







23






      /                    \

13 45

                                                                                          /             \                      

35 67

       /

25

Assignment # 8





Due: Thursday, Nov. 30

Programming:

The program WriteInteger.java will create a text file of integers. Use it for the 3 programming assignments. Make sure the user interface includes the following steps:

1. Your program should be menu driven.

2. Prompt user for input file.

3. Display portions of data, i.e. 100 numbers per screen starting at a position chosen by

    user.

Instructions: load integers from a file into a Vector.

Methods:  MergeSort,  QuickSort,  RadixSort. Each method should be preceded by loading a file of unsorted integers. Measure and display the time required by each procedure.

Hashing: Assume the keys are the integers in the text file. Count the number of collisions produced by different hashing schemes:  (i) Division method   (ii)  MAD  

Paper/Pencil. Please submit printed paper, not on a diskette.

1-4. Page 373:  R-8.4, R-8.5, R-8.6, R-8.7

5. There is only one proper binary tree with 2 leaves:







O






          /     \






        O      O

There are two with 3 leaves. How many distinct binary trees with 6 leaves exist?

(Extra credit: obtain a recursive description of the number of proper binary trees with n leaves).

6. Modify the program WriteInteger.java and produce 20 random integers in the range 1…99. Discard duplicates, but add more to end up with 20 integers. Insert them as they appeared in the file into a 2-3 tree (hand draw the tree as it is being constructed).

After the tree is completed, delete an item from the root and show the steps executed and the resulting tree. Delete an item from non leaf node that contains only one item. Show the steps and the resulting tree.

