Practice test Chapter 4.

Answer all questions.

Time: 60 minutes.

1. A linked list is composed of objects that each point to _____________________.

The next object in the list

2. In inserting a node in a linked list, the order of operations is crucial. Given that current points to node we wish to insert behind and that element points to the element to be inserted, which of the following is the correct sequence of operations.

B. element.next = current.next

current.next = element

A. current.next = element

element.next = current

B. element.next = current.next

current.next = element

C. none of the above

3. A linked list is _____________ meaning that it may grow as needed.

dynamic

4. The add operation for our linked list implementation of a set assumed that since order does not matter in a set we would always add to the front of the list. Modify the add operation to add to the rear of the list. You must not assume any additional modifications. You may only modify the add operation.

//---

// Adds the specified element to the add.

//---

public void add (T element)

{

 LinearNode node = new LinearNode (element);

 node.next = contents;

 contents = node;

 count++;
//Students should code and test their answers during evaluation process.
5. In inserting a node in the front of a linked list, the order of operations is crucial. Given that front points to the first node in the list and that element points to the element to be inserted, which of the following is the correct sequence of operations.

C. element.next = front

 front = element

A. front.next = element

element.next = front

B. element.next = front.next

front.next = element

C. element.next = front

 front = element

6. A linked list is dynamic meaning that it _______________________________________ while array structures are static meaning they have ___________________.

Virtually unlimited capacity to grow, fixed size

7. How do object references help us define data structures?

An object reference can be used as a link from one object to another. A group of linked objects can form a data structure, such as a linked list, on which a collection can be based.

8. Compare and contrast a linked list and an array.

A linked list has no capacity limitations, while an array does. However, arrays provide direct access to elements using indexes, whereas a linked list must be traversed one element at a time to reach a particular point in the list.

9. What special case exists when managing linked lists?

The primary special case in linked list processing occurs when dealing with the first element in the list. A special reference variable is maintained that specifies the first element in the list. If that element is deleted, or a new element is added in front of it, the front reference must be carefully maintained.

10. What do the LinkedSet<T> and ArraySet<T> classes have in common?

Both the LinkedSet<T> and ArraySet<T> classes implement the SetADT<T> interface. This means that they both represent a set collection, providing the necessary operations needed to use a set. Though they both have distinct approaches to managing the collection, they are functionally interchangeable from the user’s point of view.

11. What would be the time complexity of the add operation if we chose to add at the end of the list instead of the front?

To add at the end of the list, we would have to traverse the list to reach the last element. This traversal would cause the time complexity to be O(n). An alternative would be to modify the solution to add a rear reference that always pointed to the last element in the list. This would help the time complexity for add but would have consequences if we try to remove the last element.

12. What is the difference between a doubly linked list and a singly linked list?

A singly linked list maintains a reference to the first element in the list and then a next reference from each node to the following node in the list. A doubly linked list maintains two references: front and rear. Each node in the doubly linked list stores both a next and a previous reference.

