
Paying a price
for the open-source
advantage

 2 Security Trends and Events of the Last Six Months

 6 Good Intentions Gone Awry

 13 Money Changes Everything

 21 Open-Source Software in Windows Rootkits

JULY 2006

Vol. 1 • Issue 1

 26 Building Better Bots

 36 Is Open Source Really So Open?

 38 Vulnerability Bounties

 40 Will the Worm Eat the Apple?

Security Vision from McAfee® Avert® Labs

™

CONTENTS

pg.6

pg.13

pg.26

Editor’s note

W elcome to the premier issue of Sage—a
semi-annual objective forum of leading-edge
security research, analysis, trends, and opinion.

In this issue, we examine the darker side of open source.
By open source, we refer to the free and unconditional
sharing of source code and ideas. We look at how the
social norms and tools of the open-source movement
have been usurped by the malware-writing community
and applied to the development of ever-more dangerous
and virulent creations.

If one trend in security research has emerged in recent
years, it is the rise of data. Data are everywhere, from
ubiquitous security surveys to monthly or semi-annual
vendor security-threat reports. This shift from fear,
uncertainty, and doubt (FUD) to quantitative justifi cation
is a positive step, but reporting data is not the same as
presenting information. In fact, the abundance of data
only underscores the lack of crisp analysis that takes the
data and turns them into truly useful information that can
support sound decisions.

The goal of Sage is to help rectify this drought. We will
publish predictive and incisive security research that helps
you understand the current and evolving threat environment
and, ultimately, empowers your security decisions. Whether
you are a security decision-maker or a researcher, we hope
you fi nd Sage insightful and compelling.

Kevin J. Soo Hoo
Editor

For comments and inquiries, please contact the editorial staff at Sage-feedback@McAfee.com.

The views and opinions expressed in Sage are strictly those of the individual authors and in no way represent
the views and opinions of McAfee, Inc.

McAfee and/or additional marks herein are registered trademarks or trademarks of McAfee, Inc. and/or its affi liates
in the US and/or other countries. McAfee Red in connection with security is distinctive of McAfee brand products. All
other registered and unregistered trademarks herein are the sole property of their respective owners. © 2006 McAfee,
Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or through any information storage and retrieval system,
without written permission from McAfee, Inc.

Cover illustration by Mack Jolley.

SSGood Intentions
Gone Awry
Open source was supposed to hinder malware.
So what happened?

Money Changes
Everything
Malware authors leverage open-source model for profi t.

Building Better Bots
Open-source processes enable production-grade malware.

FEATURES

TECHNICAL

Security Trends and Events of the
Last Six Months

Open-Source Software in
Windows Rootkits

Will the Worm Eat the Apple?

pg.2

pg.21

pg.40

OPINION/EDITORIAL

Is Open Source Really So Open?

Vulnerability Bounties

pg.36

pg.38

Open-Source Software in
Windows Rootkits

Security Vision from McAfee® Avert® Labs • Vol. 1 • Issue 1

 Sage JULY 2006

1

The fundamental tenets of the movement are
quite simple:

“When programmers can read, redistribute, and
modify the source code for a piece of software, the
software evolves. This rapid evolutionary process
produces better software than the traditional
closed model at a speed that, if one is used to the
slow pace of conventional software development,
seems astonishing.” 1

Belief in the open source philosophy approaches an almost
religious zeal in its most ardent proponents. However,
like any powerful tool, open source can also be used for
malicious purposes, particularly in security. Whether posting
a terrorist training manual or a how-to guide for attacking
infrastructure, there are consequences to the free and
open sharing of information—especially in the realm of
computer and network security, where the desirable degree
of openness in the sharing of vulnerability and threat
information and the role of open source in the production of
malware are signifi cant points of contention.

As Dmitry Gryaznov explains in “Good Intentions Gone
Awry,” malware authors have been collaborating and sharing
source code, using books and bulletin board systems and,
eventually, ftp sites and the Web, since soon after the fi rst
computer viruses appeared in the late 1980s. Gryaznov also
quantifi es the signifi cant impact that such sharing has had
on the production and proliferation of malware.

Igor Muttik continues the narrative in “Money Changes
Everything,” in which he presents ample evidence of a
vibrant and sophisticated open-source community actively
engaged in the development and dissemination of both
new and repackaged malware. The bundling of threats and
the use of obfuscating tools (to thwart security scanners)
offer clear evidence that modern malware is the product of
collaborative efforts.

The advent of bot herders and their botnets, however,
signals a change in the character of and intent of malware.
Though malware authors started sharing and collaborating
20 years ago, the degree of process maturity and quality of
code in those early threats was never comparable to that of
commercial software products. As a result, most malware
was, by comparison, poorly written, prone to failure, and
ultimately ineffective. Michael Davis’ “Building Better Bots”
confi rms that this situation has changed. Bot malware is
now developed with the same methodologies and tools used
to produce marquee open-source products such as Firefox,

In this Issue:
The Open Sourcing of Threats

Apache, and MySQL. Driving this charge toward professional-
quality code are the fi nancial rewards that a large botnet can
earn for its master, whether from sending spam, injecting
adware, participating in a Distributed Denial of Service (DDoS)
attack, or performing some other contracted nefarious activity.

Today’s threat environment has materially changed from
years past. The professionalization of malware coupled with
the powerful open-source model is creating a formidable,
profi table, and criminal adversary for security professionals.
The fundamentals are in place for this new industry to thrive,
virtually guaranteeing that malware will continue to become
more robust, more sophisticated, more plentiful, harder to
combat, and more dangerous.

Reactive security measures are unlikely to keep pace as these
trends unfold. Though patching processes are improving and
the window of malware opportunity between a patch’s release
and its widespread adoption is shrinking, targeted exploits
that capitalize on previously undisclosed vulnerabilities
are already uncomfortably common. Remediation—which
by defi nition occurs after the fact—is also becoming more
diffi cult. Mike Danseglio, a security program manager at
Microsoft,® shocked many at the InfoSec World Conference
in April 2006 by stating fl atly, “When you are dealing with
rootkits and some advanced spyware programs, the only
solution is to rebuild from scratch. In some cases, there really
is no way to recover without nuking the systems from orbit.”2

There are no easy solutions. Thankfully, current security
measures have thus far managed to contain many of these
threats. However, as malware continues evolve and proliferate,
prevention and proactive security may become the only ways
to stop infections before they cause irreparable damage to
systems and businesses.

Open source is not to blame for the current security trends,
though it is a critical enabler for malware. In light of the ways
malefactors use open source, perhaps the time has come
to re-evaluate long-standing beliefs about full disclosure
and absolute adherence to the open-source creed. Similarly,
the security community may need to revise its traditional
strategy of containing threats by controlling and restricting
information, as it tries to compete with an open-source
malware community that is becoming better organized, better
funded, and more effective than ever.

1 http://www.opensource.org/

2 Ryan Naraine, “Microsoft Says Recovery from Malware Becoming Impossible,”

eWeek, April 4, 2006. http://www.eweek.com/article2/0,1895,1945808,00.asp

O pen source is an important and powerful force in today’s networked world. From basic tools
and utilities to applications and operating systems to the foundation of the Internet itself, open-
source products have created tremendous value.

 Sage JULY 2006

2 Sage JULY 2006

Security Trends
and Events
of the Last Six Months | By Monty Ijzerman

 TRENDS

T he following descriptions cover promi-

nent vulnerability and malware trends

during the last six months (December

 2005 through May 2006).

Monetization of Malware
For-profi t malware emerged in 2003 and is now

the overarching threat trend. Viruses, Trojans, bots,

rootkits, worms, phishing attacks, spyware, spam,

and other exploits are all used in criminal activity.

Exploits
A New Marketplace
Vulnerability bounty programs and the growing

interest of criminals in the online world have created

an army of for-profi t vulnerability researchers and

an increase in targeted zero-day attacks. Non-public

vulnerabilities and exploit toolkits are for sale,

enabling anyone to build these directed attacks,

including companies that want to test their compli-

ance levels and defenses.

Vulnerabilities
Increasing Numbers and
Improving Patch Management
Discovered vulnerabilities are increasing about 30

percent annually. Vulnerabilities in Web applications

comprised over two-thirds of total vulnerabilities

disclosed in the second half of 2005.

Vulnerabilities are also growing in new areas. In the

fi rst fi ve months of 2006, more than 80 vulnerabilities

in Apple products were disclosed, compared to

about 120 for all of 2005 and about 60 for all of 2004.

The numbers of Firefox and Mozilla vulnerabilities

are also increasing.

Fortunately, as vulnerabilities have increased,

vendors’ patch release cycles have shortened,

reducing the vulnerability window. In the fi rst half

of 2005, the time between a vulnerability’s disclo-

sure and patch availability was 64 days; in the second

half of 2005, the window shrank to 49 days. For

Windows® vulnerabilities, the window in 2005 was

46 days, slightly shorter than the aforementioned

industry average. The time between vulnerability

disclosure and the availability of an exploit was

almost constant in 2005 at around seven days.

Tre
nd

s Events

3 Sage JULY 2006

Several events in the last
six months demonstrate
the growing market
for vulnerabilities
and exploits:

3 Two for-profi t zero-day attacks involved
non-public vulnerabilities. One exploited
the Internet Explorer WMF vulnerability;
the other exploited the Microsoft Word
Code Execution vulnerability. The under-
ground knew of both vulnerabilities, and
the WMF vulnerability was put up for sale
before it was used in an attack

3 In December 2005, an attempt was made to
auction an undisclosed Excel vulnerability
on eBay. eBay pulled the listing before the
auction ended

3 The Zero Day Initiative vulnerability
bounty program was launched at the end
of 2005, joining iDefense in their efforts to
purchase vulnerabilities from independent
researchers and work with the affected
vendors to fi x and disclose them

3 Argeniss Information Security recently
launched an exploit toolbox with canned
exploits, joining a handful of vendors
in this market. Several exploit toolbox
vendors offer a two-tiered service that, for
a premium, provides zero-day exploits

The time that companies need to patch systems

is falling as well. One study found that the time to

patch half of a sample of externally facing systems

was about 19 days in the second half of 2005. In

2003, the length was 30 days. This roughly corre-

sponds with a November 2005 study that found 19

percent of survey respondents took one week

or more to patch their systems after the release of

a patch.

Finally, Oracle joined Microsoft® and began a

monthly patch-release cycle in 2005. Apple,

however, has not yet established a regular patch-

release cycle.

Rootkits
Growth of Stealth Techniques in Malware
Due to increases in quantity and quality of stealth

technology (rootkits), malware has a higher

chance of remaining unnoticed.

The number of malware samples that use stealth

techniques increased four-fold from the fi rst quarter

of 2005 to the first quarter of 2006. Possible

explanations for the increase include the general

availability of rootkit code and ready-to-use rootkit

executables. McAfee found that, in a random

sample of 24 generally available rootkits, at least

12 were found in malware samples collected from

the wild.

In 2005, rootkits began migrating from Trojans

(non-replicating malware) to viruses, bots, and

potentially unwanted programs (or PUPs, which

include adware and spyware). In the fi rst quarter

of 2006, McAfee® Avert® Labs found that one-quarter

 of submitted malware samples incorporating

stealth techniques were viruses, bots, and PUPs.

Vulnerability bounty programs and the
growing in terest of criminals in the online
world have created an army of for-profi t
vulnerability researchers and an increase
in targeted zero-day attacks.

Tre
nd

s Events

 Sage JULY 2006

Bots
Leveraging Open-Source Techniques
Yields Higher Infection Rates
Botnets can be easily rented for Denial of Service

(DoS) attacks, spam distribution, and pay-for-

click scams. Without protective measures, your

systems could become part of an active botnet, or

your company could be targeted by a DoS attack

launched from a botnet.

Mytob, the most recent bot family to emerge,

launched in February 2005, is estimated to have

increased the number of bot-infected machines by

150 percent. Four older bot families—Sdbot, Agobot

(Gaobot), and Spybot—saw fewer new variants in

2005; however, they still accounted for more than

7,000 new variants in the second half of 2005.

Bot authors are increasingly using open-source

development techniques, such as multiple con-

tributors, releases driven by bug fi xes, paid feature

modifi cations, and module reuse. This form of

collaboration is expected to make botnets more

robust, creating a more reliable ROI for botnet

customers.

Phishing
Still Growing, More Sophisticated
In May 2006, the Anti-Phishing Working Group

reported a 90-percent increase in new unique phishing

sites since the second half of 2005. The group says

it has received an all-time high of more than 17,000

phishing reports per month in 2006, most of which

were related to scams involving fi rst- and second-tier

fi nancial institutions. The number of phishing Web

sites that host keystroke loggers grew by 130 percent

from January 2006 to April 2006.

Approximately 40 percent of phishing attacks are in

languages other than English. Even small geographic

regions, such as Catalan, have been targeted. The

practice of incorporating knowledge about phishing

recipients to target attacks is known as “spearphishing.”

Phishing attacks are also becoming more sophis-

ticated, moving beyond the traditional spoofed

e-mail and simple Web link to submit confi dential

information. One recent phishing email enticed

victims to call a telephone number affi xed to a Voice

over IP (VOIP) system that was set up by attackers.

Last year, Netcraft reported 450 phishing attempts

using HTTPS sites and security certifi cates. In one

highly publicized phishing attempt this year, attack-

ers managed to obtain a valid certifi cate from a

certifi cate signing authority.

Unfortunately, a recent Harvard study found that

90 percent of the participants did not identify well-

constructed, real-world phishes. Nearly one-quarter

of the participants ignored security indicators, and

more than half dismissed pop-up warnings about

fraudulent certifi cates.

EVENTS
EXPLOITS, VULNERABILITIES, AND MALWARE
The events below were selected based on the signifi -

cant damage they caused, or could have caused, or

because they were indicative of a new trend.

Zero-Day Exploits for
Undisclosed Vulnerabilities

Internet Explorer WMF Exploit
On December 27, 2005, an exploit that used a previ-

ously undisclosed vulnerability in the handling of

WMF fi les in Internet Explorer was published. That

same day, malware exploiting the WMF vulnerability

appeared on Web sites. In the following weeks, it

became clear that the vulnerability had been for sale

since mid-December 2005. After its acquisition by

cyber-criminals, the vulnerability was exploited in

the wild. On December 31, 2005, a third-party patch

became available. Due to public pressure and the

ongoing exploitation of the vulnerability, Microsoft

released an out-of-cycle patch on January 5, 2006.

Tre
nd

s Events

Monetization of Malware

“CSI/FBI Computer Crime and
Security Survey,” 10th edition,
Computer Security Institute, 2005,
http://www.usdoj.gov/criminal/
cybercrime/FBI2005.pdf

“McAfee Virtual Criminology
Report,” McAfee, Inc., 2005,
http://www.mcafee.com/us/local_
content/misc/mcafee_na_virtual_
criminology_report.pdf

Exploits: A New Marketplace

“eBay Pulls Bidding for
MS Excel Vulnerability,”
eWeek, 12/09/2005,
http://www.eweek.com/
article2/0,1759,1899697,00.
asp?kc=EWRSS03129TX1K0
000614

Zero Day Initiative, http://www.
zerodayinitiative.com

“Argeniss Ultimate 0day
Exploits Pack,” Argeniss
Information Security,

http://www.argeniss.com/
products.html

Vulnerabilities: Increasing
Numbers and Improved
Patch Management

“Symantec Internet Security
Threat Report,” July 2005–
December 2005, Symantec,
http://www.symantec.
com/enterprise/threatreport/
index.jsp

Brian Krebs, “A Time to
Patch,” The Washington Post

Technology Blog, 01/11/2006,
http://blog.washingtonpost.
com/securityfi x/2006/01/a_time_
to_patch.html

“The Laws of Vulnerabilities:
Six Axioms for Understanding
Risk,” Qualys, 2/13/2006,
http://www.qualys.com/docs/
Laws-Report.pdf

“The Window of Vulnerability,”
McAfee, Inc., November 2005
(not available online)

“SANS Top 20 Internet Security

Vulnerabilities—2006 Spring
Update,” SANS Institute, http://
www.sans.org/top20/2005/
spring_2006_update.php

Francois Paget, “Open Source—
Will the Worm Eat the Apple?,”
Sage, Vol. 1, Issue 1, McAfee, Inc.,
July 2006, http://www.mcafee.
com/us/threat_center/white_
paper.html

REFERENCES

4

5 Sage JULY 2006

Internet Explorer “createTextRange” Exploit
On March 22, 2006, an exploit targeting the Internet

Explorer “createTextRange” vulnerability was

released. This original exploit caused Internet

Explorer to crash, but within a day an exploit

that resulted in code execution was released.

The vulnerability was disclosed to Microsoft on

February 13, 2006, but no patch had been issued

by the time the exploit surfaced. Two third-party

patches were released prior to the release of the

offi cial Microsoft patch on April 11, 2006.

Mac OS X and Safari 0-Day Exploits
On April 19, 2006, nine previously undisclosed

vulnerabilities and corresponding exploit code were

published for Mac OS X and the Safari browser.

Apple remedied most of these vulnerabilities in its

May 2006 security patch.

Firefox Deleted Object Reference Exploit
On April 24, 2006, a proof-of-concept showing

JavaScript parsing problems in Firefox was published.

The original code caused Firefox to crash; however,

experts did not rule out the possibility of arbitrary

code execution. The vulnerability was patched on

May 2, 2006.

Microsoft Word Code Execution Exploit
On May 16, 2006, employees of a large, unnamed

company received emails with Word attachments

that, when opened, installed a Trojan. The exploit

used a previously unknown vulnerability in

Microsoft Word. The vulnerability and corresponding

exploit were not publicly known until Microsoft

released a patch on June 13, 2006.

Zero-Day Vulnerabilities with No
Corresponding Zero-Day Exploits

Oracle PL/SQL Gateway
Unauthorized Database Access
On January 25, 2006, a researcher posted details of

a vulnerability in the Oracle PL/SQL Gateway. This

vulnerability allows unauthorized administrative

access to an Oracle database. A canned exploit has

not yet surfaced, but details in the researcher’s

post make exploitation possible. Oracle released

its patch on April 19, 2006.

Permissive Windows Services DACLs
On January 31, 2006, an academic paper detailing

the improper confi guration of several Windows

services was published. This vulnerability allows

local attackers to elevate their privileges. The

corresponding exploit was not diffi cult to construct

and appeared on February 3, 2006. Microsoft

released a patch on March 14, 2006.

Malware Events

Nixum/MyWife/Blackworm
This virus began spreading in mid-January 2006.

A Web site counter updated by the virus recorded

more than 300,000 infections by the end of that

month. The virus was programmed to erase fi les on

the third day of every month. On February 3, 2006,

it did just that. However, the predicted global data

meltdown failed to materialize.

OSX/Leap, OSX/Inqtana
In February 2006, two viruses for OS X emerged.

OSX/Leap propagated initially through image

archive downloads and subsequently through the

AIM/iChat messaging system. OSX/Inqtana prop-

agated via an old vulnerability in the fi le exchange

service that uses Bluetooth.

About the author

Monty Ijzerman is a Senior Intelligence Communications
Manager at McAfee Avert Labs. He has been involved in the
security fi eld since 2000.

Tre
nd

s Events

Rootkits: Growth of Stealth
Techniques in Malware

Aditya Kapoor, “Rootkits, Part
1 of 3: The Growing Threat,”
McAfee, Inc., April 2006, http://
www.mcafee.com/us/local_
content/white_papers/threat_
center/wp_akapoor_rootkits1.pdf

Aditya Kapoor, “Open-Source
Software in Windows Rootkits,”
Sage, Vol. 1, Issue 1, McAfee,
Inc., July 2006, http://www.
mcafee.com/us/threat_center/
white_paper.html

Bots: Leveraging Open-
Source Techniques Yields
Higher Infection Rates

Igor Muttik, “Money Changes
Everything,” Sage, Vol. 1, Issue
1 McAfee, Inc., July 2006, http://
www.mcafee.com/us/threat_
center/white_paper.html

Michael Davis, “The Bot
Development Life Cycle:
Production Grade Malware,”
Sage, Vol. 1, Issue 1, McAfee,
Inc., July 2006, http://www.

mcafee.com/us/threat_center/
white_paper.html

Phishing: Still Growing,
More Sophisticated

“Phishing Activity Trends
Report—April 2006,” Anti-
Phishing Working Group, http://
www.antiphishing.org/reports/
apwg_report_apr_06.pdf

“More than 450 Phishing
Attacks Used in SSL in
2005,” Netcraft, 12/28/2005,
http://news.netcraft.com/

archives/2005/12/28/more_
than_450_phishing_attacks_
used_ssl_in_2005.html

Brian Krebs, “The New
Face of Phishing,” The
Washington Post Technology
Blog, 2/13/2006, http://blog.
washingtonpost.com/
securityfi x/2006/02/the_new_
face_of_phishing_1.html

John Leyden, “Phishing Goes
International,” The Register,
4/26/2006, http://go.theregister.
com/feed/http://www.

theregister.co.uk/2006/04/26/
international_phishing_survey/

Antone Gonsalves, “Phishers
Catch Victims with VoIP,”
InternetWeek, 4/25/2006,
http://internetweek.cmp.
com/news/186701099

Rachna Dhamija, J. D. Tygar,
Marti Hearst, “Why Phishing
Works,” Harvard University and
UC Berkeley, http://people.deas.
harvard.edu/~rachna/papers/
why_phishing_works.pdf

6 Sage JULY 2006

By Dmitry Gryaznov

Open source was
supposed to hinder malware.

So what happened?

P roponents of the free and unrestricted

dissemination of malware samples and

source code argue that ready access to

this information speeds the development of

countermeasures. Reviewing the history of

computer viruses, however, it is clear that exactly

the opposite is true. Wide and open distribution

of malware samples—especially source code—is

a problem, not a solution.

MS-DOS Viruses
Twenty years ago, the computing and virus

landscape was very different. Few institutions

and companies had Internet access, and they

typically connected at no faster than 9,600 bits

per second.

Back then, viruses spread from one computer to

another almost exclusively via infected fl oppy

diskettes. Infections spread when users either

booted from an infected diskette (boot/MBR

infectors) or when they ran or copied an infected

program from it (fi le infectors). As Dr. Alan

Solomon noted at the time, the fastest speed at

which a virus could spread around the world was

that of a commercial jet.

Yet even during this early era, the distribution

of virus samples and source code exacerbated,

rather than alleviated, threats. Figure 1 shows

the cumulative growth of malware from 1988

to 1998.

77 Sage JULY 2006
Illustration by M

ack Jolley.

8 Sage JULY 2006

The fi rst personal-computer viruses appeared in

the mid-1980s. In 1986, a boot-sector infector called

Brain and the VIRDEM “demo” virus were discov-

ered. In 1987, Vienna, Lehigh, and others emerged.

Figure 2 shows a family breakdown of MS-DOS fi le

viruses by 1994.

In 1987, Ralf Burger published Computer Viruses:

A High Tech Disease, a book that detailed the

operation of computer viruses and contained

source code for the Vienna (a.k.a. DOS-62) virus,

which was prominent that year, and for several

other viruses.

Many virus authors used the book’s Vienna source

code as the foundation for their own creations.

Many more modifi ed the Vienna code, thus

producing over 500 Vienna variants by the mid-

1990s. At a time when all known viruses numbered

in the low thousands, these new variants

represented a dramatic increase.

In 1991, the infamous Bulgarian virus writer Dark

Avenger created and released the Mutation Engine,

called MtE or Dark Avenger’s Mutation Engine

(DAME). It was advanced for its time. For the fi rst

virus he built using MtE (called Dedicated:MtE), Dark

Avenger modifi ed the Vienna source code slightly by

adding polymorphic capabilities.

Other viruses from Burger’s book were also copied,

modifi ed, and released, including a primitive

overwriting virus. Overwriting viruses destroy their

host programs while replicating, making them

easy to spot. The overwriting virus from Burger’s

book was too obvious to succeed on its own.

But after publication of the virus source code,

numerous variants were soon spreading. This

virus family was eventually named after Burger,

and today more than 100 variants are known.

By the end of the 1980s, Virus eXchange Bulletin

Board Systems (VX BBSes) appeared and were

used by virus writers to share their creations,

knowledge of MS-DOS, infection techniques and

ideas, and source code. With the help of those VX

BBSes, virus writers organized into virus-writing

groups, working together on new viruses and

freely sharing source code and disassemblies.

Some of the most well-known groups were

Association for Really Cruel Viruses (ARCV),

Immortal Riot, Youth Against McAfee (YAM),

Phalcon-Skism (PS), and 29A (hexadecimal for

666). Some groups still exist, having moved from

VX BBSes to VX FTP and VX WWW sites.

Some virus writing groups also published e-zines to

share expertise and source code. Well-known e-zines

included Infected Voice, 40hex, and Insane

Reality. VX BBSes and e-zines published source

code for early widespread viruses such as

Cascade and Jerusalem, which led to relatively

high numbers of their variants. In fact, most

 Figure 1: Cumulative growth of malware, 1988–1998
Source: McAfee® Avert® Labs

Cumulative Growth of Malware, 1988–1998

C
o

u
n

t
o

f
Th

re
at

s

30,000

25,000

20,000

15,000

10,000

5,000

0
19981997199619951994199319921991199019891988

9 Sage JULY 2006

viruses during this era originated either directly

from virus-writing groups or were based on source

code that was published in e-zines.

In the 1990s, virus-writing groups produced

construction kits so that “wannabe” virus writers,

who lacked the skill to write malware on their own,

could create viruses in a semi-automated way. The

construction kits, complete with instructions, were

published in e-zines and on VX FTP and VX WWW

sites and led to thousands of new virus variants.

With a typical virus construction kit, a user can

select the type of the virus (overwriting, appending,

etc.), target fi les (*.COM or *.EXE), trigger conditions

(based on current date or time, infection counter,

etc.), and the payload. The kit then produces a

virus-assembly source code, which can be compiled

immediately or further edited.

These kits generate template-based viruses with

easily recognizable code, simplifying identifi cation

and classifi cation. Popular kits included Virus

Construction Set (VCS), Virus Creation Laboratory

(VCL), and Phalcon-Skism Mass-Produced Code

(PS-MPC). In the late 1990s, PS-MPC was responsible

for the creation of nearly 15,000 viruses; all of which

were uploaded both to VX sites and to anti-virus

companies’ submission sites. Subsequent virus

construction kits could produce Windows® viruses,

macro viruses in Microsoft® Offi ce applications, and

script viruses. Figure 3 shows the family breakdown

of MS-DOS viruses discovered by 1999.

Macro and Script Viruses
With the release of Windows 95, MS-DOS was

headed toward oblivion. At fi rst, this seemed to

herald a reduction in the malware threat. Most MS-

DOS viruses—especially the prevalent boot/MBR

infectors—were ineffective on the new operating

system. Malware authors were still unfamiliar with

the inner workings of the new operating system,

and it took them several years to catch up.

By the end of the
1980s, Virus eXchange
Bulletin Board Systems
(VX BBSes) appeared
and were used by virus
writers to share their
creations, knowledge
of MS-DOS, infection
techniques and ideas,
and source code.

4%

4%

66%
15%

11%

MS-DOS File Viruses by 1994

Vienna

Burger

Cascade

Jerusalem

Other

Figure 2: Breakdown of MS-DOS fi le viruses by 1994
Source: McAfee Avert Labs

1%
1%

1%

51%46%

MS-DOS File Viruses by 1999

PS-MPC

Vienna

VCL

Jerusalem

Other

Figure 3: Breakdown of MS-DOS fi le viruses by 1999
Source: McAfee Avert Labs

Unfortunately, around the release of Windows 95,

a new threat appeared that would quickly become

the most prevalent for several years. The Microsoft

Word macro virus WM/Concept A signaled the

beginning of a new era in malware development.

The time had come for viruses that leveraged

macro-capable products such as Microsoft Word,

Excel, and PowerPoint.

Macro viruses, though predicted by the anti-

virus community, posed a revolutionary threat.

Previously “safe” inactive data fi les—documents,

spreadsheets, and slide shows—were now

executable and thus capable of carrying and

spreading malware that was no less dangerous than

traditional executable fi les.

More signifi cant was macro malware’s ability

to spread its own source code. Macro-capable

applications were equipped with macro editors

that could display a macro’s source code (including

malware), modify it, export it as a text fi le, import

a macro from a text fi le, copy macros between

documents, etc. All of this could be accomplished

automatically, using the macros themselves.

Easily created and modifi ed macro malware

effectively contained its own source code. Thus,

it could be used as a virus-writing guide for

inexperienced programmers who lacked an in-

depth knowledge of operating systems or computer

architecture. Macro-capable software quickly

became nirvana for virus writers and a nightmare

for computer users. With the exception of viruses

produced by construction kits, the computing

world had never seen such huge numbers of

variants created in such a short time (See Figure 4).

In spring 1999, macro virus writers discovered

that the Offi ce macro language, Visual Basic for

Applications, which Microsoft also licensed for use

in other applications, enabled control of the Outlook

email client. The resulting worldwide outbreak of the

Melissa mass-mailing virus encouraged copycat virus

writers, and soon hundreds of Melissa variants and

descendants followed.

The next generation of threat arrived with the

advent of scripting languages such as JavaScript

(JS) and Visual Basic Script (VBS). A program in

these scripting languages is simply a text fi le of

its own source code. The VBS Loveletter mass-

mailing virus outbreak in May 2000 paved the way

for hundreds of aspiring virus writers, and the

term script kiddie was born.

Because script viruses were even easier to create and

modify than macro viruses, a middle-school child

Cumulative Growth of Macro Malware, 1995–2004

8,000

6,000

4,000

2,000

0
19991998199719961995

12,000

10,000

2000 2001 2002 2003 2004

C
o

u
n

t
o

f
Th

re
at

s

Figure 4: Cumulative growth of macro malware, 1995-2004
Source: McAfee Avert Labs

10 Sage JULY 2006

with no knowledge of programming could trivially

modify an existing script virus, using nothing more

than the Notepad editor, and create a new variant.

To make virus generation even easier, virus

writers produced construction kits for macro and

script malware. Kits such as Word Macro Virus

Construction Kit (WMVCK), Odysseus Macro VCK,

VicodinES Macro Poppy Construction Kit (VMPCK),

Senna Spy Internet Worm Generator (SSIWG),

and Visual Basic Script Worm Generator (VBSWG)

produced seemingly endless variants, any of which

could cause an outbreak and wreak havoc. For

example, one well-known mass-mailing VBS virus

called Kournikova was created with VBSWG.

Scripts are also easy to embed into HTML. Users

could now infect their computers simply by

browsing to a malicious Web page or by previewing

an email. Email attachments were no longer

required to infect systems.

Present day
Improved security in Offi ce applications, email

clients, Web browsers, scripting hosts, and the

Windows operating system in general would

eventually diminish the number and severity

of macro and script viruses. However, the ever-

resourceful malware developers have, in the

ensuing time, improved their knowledge of

Windows and other widely used Microsoft products,

setting the stage for new generations of malware.

Other articles in this issue of Sage explore how

contemporary malware is being developed,

improved, and disseminated as the result of

collaborative efforts. These modern-day, open-

source projects are simply the latest incarnation of

an enduring culture of sharing that exists among

malware authors. From the time of Vienna and

Burger viruses to the present day, the destructive

cycle of variant outbreaks associated with malware

source-code publication has demonstrated an

acute weakness in the full disclosure security

model. Unfortunately, in the malware world, good

intentions can be just as damaging as bad ones.

Since the early days of personal computing, it is

clear that the widespread dissemination of malware

source code has led to the spread of malware, rather

than its diminishment.

About the author

Dmitry Gryaznov is a Senior Research Architect at McAfee
Avert Labs. He has been involved in anti-virus research since
1987 and is a regular participant and speaker at computer anti-
virus conferences.

11 Sage JULY 2006

Since the early days of personal computing, it
is clear that the widespread dissemination of
malware source code has led to the spread of
malware, rather than its diminishment.

1212 Sage JULY 2006
Ill

us
tr

at
io

n
by

 M
ac

k
Jo

lle
y

13 Sage JULY 2006 13

Malware authors leverage
open-source model for profi t.

Changes Everything
Money

By Igor Muttik

turning point in the evolution

of malicious software occurred

in 2003 and 2004. Prior to

then, unsatisfi ed teenagers, trying to

prove themselves, were responsible for

the development of most viruses and

Trojans. Since then, the spectrum of

questionable and undesirable programs

has expanded to encompass more

than pure malware, and the underlying

motivation has shifted to fi nancial gain.

Adware and spyware, generally

classifi ed as potentially unwanted

programs (PUPs) and not malware,

are among the clearest examples of

this shift in the threat environment. As

the graph in Figure 1 shows, the sheer

number of PUPs families has grown

dramatically since 2003.

Astonishingly, growth in malware

threats has also picked up in the last 18

months. Figure 2 shows the growth in

malware threats since 2002, based on

unique malware samples submitted

to McAfee® Avert® Labs. The sharing of

malicious source code and obfuscating

tools, coupled with fi nancial

incentives, has dramatically affected

the global threat level, increasing both

the number and the complexity of

threats, while decreasing susceptibility

to detection.

A

14 Sage JULY 2006

The prevalence of Internet Relay Chat (IRC)

bots is a substantial component of the malware

growth shown in Figure 2. The term bots is

adapted from robots because bots are typically

automated scripts or programs that execute a

series of instructions based upon pre-defi ned

stimuli. Contemporary malware bots are similar

in that they autonomously crawl the Internet,

looking for vulnerable computers. Once one

has been found, a bot launches a scripted

exploit against it, typically obtaining root-

level privileges. The bot is then able to start

processes, inject malicious code, and turn the

computer into a new drone for its master. Drones

periodically communicate back to the master,

or bot herder, for further instructions. These bot

herds are often used for a variety of nefarious

purposes, including Denial of Service (DoS)

attacks, spamming, disseminating malware, and

collecting confi dential information. IRC bots are

particularly popular because they communicate

through a distributed network of IRC servers that

2000 2001 2002 2003 2004 2005

Adware

C
o

u
n

t
o

f
Fa

m
ili

es

C
o

u
n

t
o

f
Fa

m
ili

es

Year

0

100

200

300

400

500

600

700

2000 2002 2003 2004 2005

Spyware

2001

70

60

50

40

30

20

10

0

Year

Figure 1: Adware and spyware family counts

0

50,000

100,000

150,000

200,000

10
/9

/0
2

12
/9

/0
2

2/
9/

03

4/
9/

03

6/
9/

03

8/
9/

03

10
/9

/0
3

12
/9

/0
3

2/
9/

04

4/
9/

04

6/
9/

04

8/
9/

04

10
/9

/0
4

12
/9

/0
4

2/
9/

05

4/
9/

05

6/
9/

05

8/
9/

05

10
/9

/0
5

12
/9

/0
5

2/
9/

06

4/
9/

06

Date

Unique Malware Submissions to McAfee Avert Labs, 2002 to 2006

C
o

u
n

t
o

f
 T

h
re

at
s

(e
xc

lu
d

es
 P

U
Ps

)

 Figure 2: Number of unique malware submissions

Source: McAfee Avert Labs

Source: McAfee Avert Labs

15 Sage JULY 2006 15

Financial Motivation
There are several
motivations for
bot herders, but
only the last two
in this list are not
implicitly driven by
fi nancial gain.

• Launching a Distributed Denial

of Service (DDoS) attack on a Web

site (for extortion)

• Generating revenue through adware

installations on controlled PCs

• Generating revenue through pay-

per-click schemes and spoofi ng

affi liate schemes

• Installing other malware, such as

backdoors and password- or data-

stealing Trojans (including credit

card data, banking login details,

PayPal, Nochex, etc.)

• Installing SMTP proxy software to

propagate spam

• Stealing data from computers and

networks (often for identity theft)

• Reselling botnets (for DDoS attacks

or spam relaying)

• Using a distributed network of

computers to crack passwords

• Controlling a large number of

computers to participate in a

bot war

these machines are traded in chat

rooms. Virus authors and middle-

men administer payment through

anonymous accounts or by using

Western Union money transfers.

Organized criminals can use these

networks to run huge DoS attacks

or distribute spam with viruses

that steal credit card and/or bank

details from unsuspecting users

• In September 2004, Norwegian

Internet provider Telenor shut

down a botnet consisting of

approximately 10,000 machines.

The botnet was ready to perform

DoS attacks and hacking attempts

on numerous computers and

networks3

• In March 2004, criminal syndicates

operating from Russia targeted

betting Web sites worldwide. The

criminals threatened to launch

DoS attacks on the Web sites

unless the business owners paid

a ransom of up to £30,000 each

(approximately U.S. $57,000). The

bookmakers worked closely with

the United Kingdom’s National

Hi Tech Crime Unit to prevent

these attacks and help secure the

prosecution of the extortionists.

In addition, some bookmakers

invested up to £100,000 (approxi-

mately U.S.$189,000) to increase

the security of their sites3

1. “McAfee Virtual Criminology Report: North American
Study into Organized Crime and the Internet,” July 2005,
http://www.mcafee.com/us/local_content/misc/mcafee_
na_virtual_criminology_report.pdf

2. http://www.heise.de/ct/

3. “McAfee Virtual Criminology Report: The First
Pan-European Study into Organised Crime and the
Internet,” January 2005, http://southwales.bcs.org/docs/
McAfeeCriminologyReportUK.pdf

There is signifi cant
evidence to confi rm
that fi nancial
motivation underlies
bot development.1

• McAfee Avert Labs’ analysis

confi rms that certain variants of

W32/Mytob have been involved in

downloading the following adware:

Adware-ISTbar, Adware-BB,

Adware-Websearch, Adware-RBlast,

Adware-SAHAgent, Adware-WinAd,

Adware-SideFind, Adware-

180Solutions, Adware-DFC, and

Adware-ExactSearch

• Many W32/Sdbot variants are distri-

buted along with SMTP proxies

(Proxy-FBSR and Proxy-Piky)

• The German magazine c’t

reported in February 2004 that it

was able to buy access to a botnet

from Peter White, a.k.a “iss,” a

developer of chat-server software.

White offered the services of his

botnet to distribute spam for U.S.

$28,000 a month2

• The same story also quotes a

Scotland Yard source who said,

“Small groups of young people

are creating a resource of 10,000

to 30,000 computers networked

together and are renting them out

to anybody who has the money.”

According to a Reuters report from

July 2004, the going rate is as low

as U.S. $100 an hour. There is also

evidence that the IP addresses of

16 Sage JULY 2006

effectively cloaks the bot herders from detection.

Since 2004, IRC bots have grown from 3 percent

to 22 percent of all malware threats (see Figure

3). A raw count of active IRC bots is equally

alarming (see Figure 4).

The use of IRC bots in for-profi t ventures,

such as spamming and collecting confi dential

information, has forced malware authors to

improve the quality and features of their code. To

those ends, malicious programmers are adopting

coding practices and controls akin to those in the

legitimate software development world.1 They

are also adapting social and professional norms,

established by the open-source community,

to develop malware, and capitalizing on the

widespread availability of source code for many

of the Internet’s popular malware families.

There is little doubt that this availability has

dramatically increased the general threat level

and pervasiveness of specifi c threats. Ironically,

this same dynamic led to the proliferation of

open-source software and its resulting benefi ts.

IRC-Sdbot
The IRC-Sdbot Trojan demonstrates how a single

piece of malware can have a ripple effect. IRC-

Sdbot originally appeared in the fi rst quarter of

1. See Michael Davis’ “Building Better Bots” in this issue.

2002,2 but its source code has become the basis

for thousands of other IRC bots as programmers

have added functionality.

Although W32/Sdbot began as a non-

propagating Trojan, later strains employed

spreading mechanisms, such as share-hopping,

the use of numerous exploits, and weak

password detection. Some of these strains

received separate names such as Rbot, Forbot,

and Wootbot.

Two other large IRC bot families experienced

similar shared development: W32/Spybot (fi rst

appearance in May 2003) and W32/Gaobot

(fi rst appearance in October 2003, with a latter

strain dubbed Phatbot). New versions of source

code for these families are readily available

on the Internet. By adding new functionality,

programmers fuel the generation of even more

variants. Each of these bot families now includes

thousands of variants.

Bolting Threats Together
There is a growing trend toward compound

threats, or bundled malicious tools. For example,

W32/Mytob was created by bolting a mass-mailing

routine from W32/Mydoom to the W32/Sdbot.

2. http://vil.nai.com/vil/content/v_99410.htm

Figure 3: Malware composition breakdown1

 1. In the graphs, “legacy” denotes DOS, boot-sector, and Windows 3.1 viruses.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2004 2005 2006

PUPs

Trojans

Win32

Scripts

Macros

Legacy

Bots

Malware Composition, 2004–2006

Source: McAfee Avert Labs

17 Sage JULY 2006

In January 2004, the mass-mailing W32/Mydoom

virus created one of the worst virus outbreaks

ever.3 Another virus, W32/Doomjuice, distributed

W32/Mydoom’s source code in February 2004.4

Undoubtedly, when bot writers sought to add a

mass-mailing feature, the fi eld success of W32/

Mydoom and the easy availability of its source

were important factors in its selection. This

started the new W32/Mytob family in March 2005.

Figure 5 illustrates the ebb and fl ow of new

variants in the W32/Mydoom and W32/Mytob

families. The graph shows that the W32/Mydoom

family has hundreds of variants, signifi cantly

more than a typical malware family, and that is

most likely due to the widespread availability of

3. http://vil.nai.com/vil/content/v_100983.htm

4. http://vil.nai.com/vil/content/v_101002.htm

its source code. The graph also shows that the

creation of W32/Mytob (achieved by merging

the W32/Mydoom source into W32/Sdbot)

revitalized the generation of new variants.

Around the spring of 2005, W32/Sdbot went

through yet another incarnation when it

acquired the FURootkit backdoor to cloak

itself from users and from anti-virus scanners.

Statistics from the Microsoft® Malicious Software

Removal Tool show that FURootkit was the most

common non-replicating malware at the end

of 2005,5 due to its inclusion in W32/Sdbot. On

its own, FURootkit does not have a propagation

mechanism; thus, W32/Sdbot served as the

principal springboard for its dissemination.

5. J.Garms, “An Accurate Understanding of On-Going Malware Presence,” AVAR
2005, Tianjin, PRC.

IRC Bots Detected
45,000

2004 2005 2006

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

 0

C
o

u
n

t
o

f
A

ct
iv

e
B

o
ts

Figure 4: IRC bots catalogued as of March 2004, 2005, and 20062

2. These numbers include fi eld reports, samples from honeypots, and submissions from anti-virus companies.
It is not possible to determine if all samples originated from true fi eld infections.

Source: McAfee Avert Labs

has hundreds of variants, signifi cantly more than a
typical malware family, and that is most likely due
to the widespread availability of its source code.

The W32/Mydoom family

18 Sage JULY 2006

Multi-component threats are growing, with

obfuscation tools being the latest added feature.

For example, the Swizzor Trojan was packed with

the packer UPC to protect it from detection. The

perennial Hacker Defender rootkit has a special

relationship with a packing tool called Morphine.

Packing tools, as we shall see, are another

obfuscation technique that is shared within the

malware community. These tools help malware

evade anti-virus scanner detection, extending the

useful life of both new and old malware.

Packers and Security
Envelopes (Protectors)
In general, packers are a class of software that

compress fi les to save disk space, such as Winzip.

Malware developers, however, are not interested

in compression so much as a by-product of

packers’ use. Packed fi les no longer resemble the

originals on a binary level, but are still recoverable

and executable, thus making them effectively

hidden from signature-based anti-virus scanners.

For anti-virus scanners to detect packed malware,

they must be able to inspect compressed data.

Applying a packer to 1,000 worms effectively

creates 1,000 new, undetectable worms, unless the

scanners can see through the packing.

Security envelopes, also known as protectors or

cryptors, are another set of tools used by malware

authors for obfuscation. Though they have

legitimate uses, such as protecting games from

copyright abuses, these tools extend the useful

life of malware by hindering analysis and reverse

engineering of samples through numerous anti-

debugging and anti-emulation tricks.

Applying packers and protectors requires little

skill. Combined with their relative effectiveness,

it is a recipe for rapid malware growth. Malware

authors often employ several layers of packers and

protectors. They also use commercial software

installers such as InstallShield, Wise, and Nullsoft

to obfuscate malware. Figure 6 shows the growth

in the number of packers (counting only major

versions, protectors included) and the proportion of

packed malware. Today, packers and/or protectors

obfuscate more than 50 percent of malware.

Figure 7 shows the life cycle of the Morphine

packer (discussed later). As with other malware,

packers have a predictable life cycle with a

popularity window that eventually tails off as they

become less effective at obfuscating malware.

However, packers have a longer useful lifespan

than most malware because engineering a solution

for each packer is more complex than adding a

malware signature to an anti-virus scanner.

Most packers are used almost exclusively for

malware concealment. Figure 8 shows the

prevalence of seven obfuscating tools (packers and

protectors) as a percentage of all packed malware

samples submitted to McAfee Avert Labs.

40

35

30

25

20

15

10

5

0

Mydoom to Mytob

V
ar

ia
n

ts

4 per Moving Avg. (W32/Mydoom)

4 per Moving Avg. (W32/Mytob)

W32/Mydoom

W32/Mytob

20
04

 J
an

20
04

 M
ar

20
04

 A
pr

20
04

 F
eb

20
04

 M
ay

20
04

 J
ul

20
04

 A
ug

20
04

 J
un

20
04

 S
ep

20
04

 O
ct

20
04

 N
ov

20
04

 D
ec

20
05

 J
an

20
05

 M
ar

20
05

 A
pr

20
05

 F
eb

20
06

 J
an

20
06

 M
ar

20
06

 A
pr

20
06

 F
eb

20
05

 M
ay

20
05

 J
ul

20
05

 A
ug

20
05

 J
un

20
05

 S
ep

20
05

 O
ct

20
05

 N
ov

20
05

 D
ec

Figure 5: Tracking the shift from Mydoom to Mytob

Source: McAfee Avert Labs

19 Sage JULY 2006

Packers on the rise include PE-Compact2, NSPack,

and UPack v>2. Although a few packers experience

stable usage, the most popular packers tend to

gradually vanish as they lose their effectiveness.

Let’s examine an example of how the desire

to prolong the useful life of malware led to

the development of an obfuscating tool and an

entire community to support it.

Malware Development
Communities
One popular Web site devoted to rootkit

development is the Slovakian “Hacker

Defender” site,6 which carries many versions

of the Hacker Defender rootkit source code and

hosts development discussions.

6. http://www.hxdef.org/

Figure 6: Count of packers and prevalence of packed malware

C
o

u
n

t
o

f
Pa

ck
er

s

Pe
rc

en
t

o
f

Pa
ck

ed
 M

al
w

ar
e

0%

10%

20%

30%

40%

50%

60%
Packer count
Packed %

Packer Statistics

2000 2001 2002 2003 2004 2005

80

60

40

20

0

140

120

100

Year

Sa
m

p
le

s

Month

Morphine Evolution

300

250

200

150

100

50

-50

0

450

400

350

20
03

 O
ct

20
03

 D
ec

20
04

 J
an

20
04

 F
eb

20
04

 M
ar

20
04

 A
pr

20
04

 M
ay

20
05

 J
an

20
05

 F
eb

20
05

 M
ar

20
05

 A
pr

20
05

 M
ay

20
06

 J
an

20
06

 F
eb

20
06

 M
ar

20
06

 A
pr

20
06

 M
ay

20
04

 J
un

20
04

 J
ul

20
04

 A
ug

20
04

 S
ep

20
04

 O
ct

20
04

 N
ov

20
04

 D
ec

20
05

 J
un

20
05

 J
ul

20
05

 A
ug

20
05

 S
ep

20
05

 O
ct

20
05

 N
ov

20
05

 D
ec

Morphine 1-1.2
Morphine 1.2+

Figure 7: Evolution of the Morphine packer

Source: McAfee Avert Labs

Source: McAfee Avert Labs

20 Sage JULY 2006

Below is a statement from the Hacker Defender

Web site.

Welcome to www.hxdef.org - home of the

Hacker defender project. This Project was

started in 2002. Many things has [sic] changed

since then. There are two main subprojects on

this page. First is Hacker defender Windows

NT rootkit. The second is PE module encryptor

for Windows NT called Morphine, its purpose

is to protect PE modules against antivirus

detection. Both of these programs are free and

open source but both have their paid versions

which can be ordered in antidetection section

as antidetection service. There are also other

open source programs in download section.

They mostly implement some undocumented

NT stuff for which is hard to fi nd a good source

code on the net.

This statement is revealing. It is a clear example

of an open-source threat development project,

and demonstrates how malware authors

have embraced the open-source model and

are actively sharing and contributing to each

others’ development efforts. It also shows

that this loosely organized community and

its polymorphic Morphine packer project is

engaged in an arms-race style of competition

with commercial anti-virus software vendors.

Conclusion
The growth of bots is due to two factors—

fi nancial motivation and the availability of

source code. Without fi nancial incentives, there

would be far fewer variants. The fi nancially

neutral Mydoom family, for example, has far

fewer variants than any major bot family. Also,

without large-scale source-code sharing, we

would not see the handful of massive families

that we have today. Rather, we would expect

to fi nd many small families, refl ecting the

individual efforts of separate researchers.

But the malware community is no longer a

scattered army of individual hobbyists. The

addition of funding from successful botnet

deployments and the leveraging of open-source

tools and techniques have created a formidable

machine for the creation, modifi cation, and

distribution of threats.

About the author
Igor Muttik is a Senior Research Architect at McAfee Avert
Labs. He speaks regularly at security conferences and has
been researching viruses since 1987. Igor received his PhD in
Physics and Mathematics from Moscow University in 1989.

20

Morphine
Mew 1.1+

PE-Compact2
UPack v>2

UPX
FSG 2.0
NSPack

Packer Prevalence

%
 o

f
M

al
w

ar
e

30%

25%

20%

15%

10%

5%

0%

2005 Sep 2005 Oct 2005 Nov 2005 Dec 2006 Jan 2006 Feb 2006 Mar

Figure 8: Percentages of malware packed with each packer

Source: McAfee Avert Labs

T he open-source environment has

always offered a wealth of information

to researchers and enthusiasts. It is a

common ground for candid criticism and in-depth

research by beginners and experts. However, like

any other powerful tool, it can be misused.

During the last few years, many security companies

and researchers have turned their attention to the

problem of rootkits, which is a fast-growing real-world

threat.1 Rootkits are malware that employ stealth

techniques to conceal their malicious fi les and

processes from users and, in most cases, from

anti-virus scanners.2 Finding new rootkit techniques

is broadly analogous to fi nding new system vulner-

abilities because a new stealth technique, like a

vulnerability, can be bundled into a threat, making it

more effective and potent. For example, in the case

of FURootkit,3 once the author announced details of

his newly discovered technique for hiding fi les and

processes, malware writers quickly adapted their

software to incorporate this new hiding technique.4

1. Aditya Kapoor, “Rootkits, Part 1 of 3: The Growing Threat”, McAfee Inc., April 2006,
http://download.nai.com/products/mcafee-avert/WhitePapers/AKapoor_Rootkits1.pdf

2. Ibid.

3. Fu, http://rootkit.com/project.php?id=12

4. Furootkit, vil.nai.com/vil/content/v_127131.htm

Security research is a sensitive fi eld, and the public

disclosure of an unsecured environment or of a new

method for breaking into computer systems has a

signifi cant negative impact. As a result, most vulner-

ability researchers reduce the chance that malicious

code will exploit their discoveries by contacting in

advance the vendor whose product has the vulner-

ability. This cautious step gives businesses a chance

to protect their users before a vulnerability is made

public. Unfortunately, on more than one occasion,

such prudent measures were not followed, result-

ing in the release of Trojans or viruses that exploited

unpatched vulnerabilities as soon as the demon-

stration source code was published.5

The McAfee® whitepaper Rootkits, Part 1 of 3: The

Growing Threat discusses how rootkits are

proliferating at a rapid rate and speculates that

their sophistication will increase due to open-source

collaboration. In this article, I will substantiate that

claim by analyzing the prevalence of open-source

rootkits in known malware and also encourage a

5. W32/Mydoom.AH@MM exploited Microsoft Internet Explorer IFRAME buffer overfl ow
vulnerability (KB889293) six days after it was discovered. http://vil.nai.com/vil/content/
v_129631.htm

21

Open-SourceO eftwareSoftSoftwareSoftwarewareoftwaSoftware niniini
WindowsRootkits

By Aditya Kapoor

 Sage JULY 2006

candid discussion of prudent public disclosure

policies for stealth techniques as their role in malware

continues to grow.

Background on Finding Rootkits
in the Wild
Any time an anti-virus company collects a new

malware program or has one submitted for analysis,

it is characterized as found in the wild. One approach

to test the prevalence of publicly available stealth

techniques in malware is to see how closely they

compare to known malware.

Comparing any two programs can be considered

a program equivalence problem.6 Two programs

are considered equivalent if, given a set of identical

input parameters, the two programs produce

identical results. However, because we are dealing

with stealth modules that are generally embedded

within rootkit malware, equivalence is not partic-

ularly applicable.7 Rather, we elect to treat this

problem as a clone detection problem.8

We take two approaches:

1. Compare parts of stealth-
technique source code to
known malware binary fi les.

 2. Compare parts of stealth-
technique compiled in binary
form to known malware
binary fi les.

6. http://www.cs.princeton.edu/introcs/77computability/

7. “The Complexity of the Equivalence Problem for Simple Loop-Free Programs.”
http://locus.siam.org/SICOMP/volume-11/art_0211002.html

8. Evaluating Clone Detection Techniques. http://prog.vub.ac.be/FFSE/Workshops/
ELISA-submissions/04-VanRysselberghe-full.pdf

Comparing a piece of source code with a binary, or

two binaries, using static-analysis techniques may

seem trivial, but the ease is deceptive. Most binaries

today are compiled with modern-day compilers

that employ various optimization techniques, such

as instruction reordering, live variable analysis,

and inline function analysis. The output binaries

from these compilers can vary greatly for the same

piece of source code, depending upon the settings

and the individual compiler used. Thus, compiling

publicly available rootkit source code may not yield

a binary fi le that is recognized as a clone of a known

malware fi le, even if both share the same original

source. Complicating matters further, malware

 authors sometimes add obfuscations into their

code to make matches unlikely.9 These compiler

issues and obfuscations make the problem of clone

detection time-consuming and challenging.10

In Evaluating Clone Detection Techniques, the

authors explain that using basic string and literal

matching may be a quick and crude, yet effective,

way to compare two programs. Because most anti-

virus scanners base their detections on sequence

or string matching, the scanners are a good starting

point for comparing two binary fi les. However, we fall

back on basic string and literal matching techniques

when dealing with uncompiled source code because

of the issues that surround comparing the binaries

when they are derived from different compilers.

9. Obfuscation of Executable Code to Improve Resistance to Static Disassembly,
http://www.cs.arizona.edu/solar/papers/CCS2003.pdf

10. Evaluating Clone Detection Techniques. Op. Cit.

Fifty percent of the studied
open-source rootkits can be found in malware from the wild.

22 Sage JULY 2006

23

Detection, however, does not guarantee that the

sample is malware. Anti-virus scanners often detect

binaries that are not necessarily confi rmed malware,

but that may nevertheless pose a security risk. Such

fi les are generally called applications, as opposed to

Trojans or some other malware category.

In Table 1, we grouped our rootkit samples based

upon the number of anti-virus scanner detections

and classifi cations. We assigned an overall classi-

fi cation from the most severe scanner rating. For

example, if more than two products classifi ed a

sample as a Trojan, then we assumed that the rootkit

was seen as a Trojan in the wild and therefore consi-

dered it a Trojan. When the source code was not

traceable—that is, only binaries were available—we

noted this and used it as a secondary distinguishing

criterion, reasoning that the lack of available source

would make it diffi cult to modify and incorporate

into malware.

Results
Of the 24 packages downloaded and analyzed,

the 12 found in Group 1 are most likely to have

been used in malware because both binaries and

source code are available; 10 or more anti-virus

scanners detected them; and at least two anti-

virus products classifi ed them as a Trojan. These

packages include well-known malware building

blocks, such as AFXrootkit, PWS-Progent, and

HackerDefender, all of which have been found to

be highly prevalent.11

Group 2 contains samples that, though recognized

by several anti-virus scanners, were generally

11. Aditya Kapoor, Op. Cit.

We grouped our
rootkit samples based
upon the number of anti-
virus scanner detections
and classifi cations.

 Sage JULY 2006

 Our Approach
To test rootkits, we visited a number of well-known

sites to gather our open-source collection:

1 http://www.ntkernel.com/wprod.php?ids=3

2 http://www.megasecurity.org/Tools/Nt_rootkit_all.html

3 http://www.hxdef.org/download.php

4 http://www.rootkit.com

5 http://yythac.com

6 http://www.tibbar.org

7 http://www.iamaphex.net

8 http://www.egocrew.de

9 http://www.nuclearwinter.mirrorz.com

Most of these Web sites host a subset of rootkits

from other, more popular sites, giving us plenty of

rootkits from which to choose. We downloaded 24

packages containing rootkit code or data, and then

searched for their presence in the wild.

We gathered our results using two methods. We

downloaded compiled binaries from these public

Web sites and scanned them using a number of

popular anti-virus scanners. In the event that a

binary fi le was unavailable, we took the source

code, compiled it, and ran the same battery of anti-

virus tests against the compiled code. If no match

was found, we engaged in a more detailed analysis,

comparing the strings or literals of the source code

with known malware samples from McAfee Avert®

Labs. If we found a match, then we passed the

associated malware sample through a battery of

anti-virus products to see how many and what kind

of detections occurred.

Classifying Compiled Binaries
If a downloaded package contains a binary fi le detec-

ted by more than three anti-virus scanners, it has a

fair chance of being found in malware in the wild.

As shown in Table 1, we can group open-source

rootkit code based upon the numbers of anti-virus

scanners that detect them.

Group 1

FU_Rootkit.zip FURootkit YES YES Trojan 20

hxdef100r.zip HackerDefender.gen YES YES Trojan 20

ntrootkit122.rar AFXrootkit.gen /
Trojan.Win32.Madtol.
a*

YES YES Trojan 20

Rk_044.zip NTRootKit-F /
Backdoor.Win32.
NTRootKit.044*

YES YES Trojan 20

He4Hook215b6.zip He4Hook YES YES Trojan 19

AFXRootkit2005.zip AFXrootkit YES YES Trojan 18

OpPorts12.zip (co-written
by a member of the 29A
group)

HackerDefender YES YES Trojan 18

FUTo_enhanced.zip FURootkit YES YES Trojan 15

HideProcessHookMDL.zip Backdoor-CSS YES YES Trojan 15

JiurlPortHideDir_EN.zip PWS-Progent YES YES Trojan 15

Uay.zip NTRootKit-V YES YES Trojan 15

migbot.zip Backdoor.Win32.
Agent.uq* / Troj/
RKProc-E **

YES YES Trojan 10

Group 2

mjsrkp.zip Generic BackDoor.m YES NO Trojan 15

Procmagic.zip HideApp YES YES Application 16

Vanquish-0.2.1.zip Vanquish YES YES Application 15

faker11.zip Tool-FileFake YES YES Application 10

Ntillusion.zip Application / Generic
PUP.b

YES YES Application 9

Group 3

Kircbot.zip RootKit-KIrcBot YES YES Trojan 1

cfsd.zip Hacktool.Rootkit *** YES YES Application 2

basic_hook_hide_proc.zip New malware.z /
Troj/RKProc-Fam**

YES YES Application 2

phide.zip Demo-ProcHide YES YES Application 1

Group 4

winlogonhijack-v0.3-
src.rar

- NO YES - 0

arcbot.zip - NO YES - 0

Bytehook.zip - YES YES - 0

Package Name Detection Name Binary Available
Source /
Confi guration File

Malware
Classifi cation

Number of
Anti-Virus Detections

Source-fi le analysis

* Kaspersky’s detection name ** Sophos’ detection name *** Symantec’s detection name

Table 1: Classifi cation of 24 open-source rootkits

classifi ed as applications instead of Trojans. This

likely means that though the source code is public, no

malware samples containing them have been found

in the wild. The one exception is mjsrkp.zip, which

was detected as a Trojan, but its lack of generally

available source code calls into question whether it

has been shared broadly for use in malware.

Based upon this approach, the packages in Groups

3 and 4 are unlikely to have been incorporated into

malware. Group 3 consists of those stealth techniques

that are at least recognized by anti-virus scanners, but

for which malware has not yet been detected. Finally,

Group 4 members are not detected by any scanners and

are, in most cases, only available in source-code form.

24 Sage JULY 2006

Table 2 shows examples of four packages that we

successfully traced back to at least one Trojan family

by analyzing their source code and comparing it to

the strings or literals in Trojan samples. The rootkit

code sharing is evident with very similar source code

found in Backdoor-CPX and PWS-Progent variants.

HideProcessHookMDL.zip appears to have been

used as device drivers in Backdoor-CSS. The two

cases have similar strings, both use kernel system

service descriptor table (SSDT) patching techniques,

and both use process-hiding techniques.

Table 2: Publicly available packages traced to

known malware

Conclusion
Fifty percent of the studied open-source rootkits

can be found in malware from the wild. Our

method also shows the relative popularity of the

different rootkits in the wild—that is, the more

scanners that detect a package, the more popular

is it among malware authors.

A researcher gains credit for discovering a new

stealth technique, just as with a new vulnerabil-

ity, by publicizing the fi nding and being gener-

ally recognized as the fi rst to do so. As this study

demonstrates, publicized stealth technologies

are quite common in malware today, and the

trends indicate that this role will only grow. Be-

cause these technologies can be used to enhance

malware, they should be handled with care and

potentially be covered by similar disclosure guide-

lines as those used for vulnerabilities today. The

virulence and invasiveness of rootkits has even

caused Microsoft® to warn that a day may soon

come when the only way to cure an infection is to

reinstall a clean operating system. Given such high

remediation costs, to say nothing of the direct

consequences of an infection, the industry should

quickly establish procedures for the disclosure of

new stealth techniques to preserve security.

About the author

Aditya Kapoor is a Research Scientist at McAfee Avert Labs. He
has expertise in program analysis and disassembly techniques,
and his research interests include program comparison, rootkit
analysis and mitigation, and code behavioral analysis.

Package Maps To:

HideProcessHookMDL.zip Backdoor-CSS

winlogonhijack-v0.3-src.rar HackerDefender

FU_Rootkit.zip Sdbot

JiurlPortHideDir_EN.zip Backdoor-CPX and PWS-Progent

25 Sage JULY 2006

26

Building
Better Bots

Open-source processes enable

production-grade malware.

By Michael Davis

U
ntil recently, Internet threats were chiefl y the domain

of amateur enthusiasts and hobbyists. Most malware

was poorly written and was intended, more than

anything, to establish bragging rights. As Igor Muttik points

out in “Money Changes Everything,” however, this landscape

has changed dramatically. The advent of fi nancial incentives

appears to have altered the character of malware authors and

the malware itself. The newcomers are professionals in the

traditional sense of the word; that is, they are paid to do what

they do. They bring a level of sophistication, organization,

and process to malware development that has traditionally

been observed only in legitimate commercial and open-

source software development. This shift is most visible in the

relatively new class of malware robots, called bots.

26 Sage JULY 2006

2727 Sage JULY 2006
Illustration by M

ack Jolley

28 Sage JULY 2006

These bots are
autonomous agents
that crawl through the
Internet, searching for
vulnerable devices that
they can infect with their
malicious payloads.

When a target machine is identifi ed,

the bot either tricks its user with social

engineering or exploits vulnerabilities

in the platform to gain root-level

privileges. Once that is accomplished,

the bot is free to start processes and

save its payload onto the system, thus

turning the machine into another

drone for its master, the bot herder.

These bot-herding professionals, fueled

by monetary incentives, deploy their

botnets across the Internet, sometimes

28

3 Project resources are
all donated

3 Features are specifi ed and
decided by the same people
writing the code

3 Architecture or system-level
designs are rarely created
before a project is started

3 Multiple contributors donate
to the code base. Some open-
source projects have hundreds
of code contributors with
many working in the same
area of the code

3 Contributors choose the
features or bugs they want to
fi x. No work is assigned by
a manager

3 No direct roles are assigned
to contributors. No one is
necessarily dedicated to quality
assurance or a certain area of
the code base

3 No project plan, milestones, or
deliverables are set. Releases are
ad hoc and normally initiated by
new features and bug fi xes

So what makes open-source
development different? Here are a few keys:

creating networks of more than 100,000

owned nodes, or drones.

Bot herders then use these nodes to

perform various nefarious acts, such

as performing Distributed Denial of

Service (DDoS) attacks, creating spam

gateways, carrying out advertising

fraud, and engaging in other money-

making schemes. Though many

articles and papers have been written

on the technical capabilities of bots—

how they propagate, communicate,

and operate—very little is widely

known of their development processes,

such as their release cycles, contributor

coordination, bug fixing, testing,

and coding practices, and how those

processes support the money-making

operations that enable the

entire venture.

29 Sage JULY 2006 29

Open-Source
Development
Open-source development is a variation

on the standard professional software

development model. Because the

source code in open-source projects is,

by defi nition, open, there are some

notable differences, including the

number and type of project contribu-

tors, how they interact, and what tools

and methodologies they use. Yet the

output of open-source projects is as re-

liable, if not more so, than what is pro-

duced by traditional, closed-source,

commercial software organizations.

Furthermore, because most open-source

 development occurs over the Internet

with contributors distributed across

the world, they often rely on asynchro-

nous communication channels—such

as email and informal documentation—

to maintain the status of the code

base. Most open-source development

projects use rudimentary change

management, version control, and

bug-tracking systems. These systems

are made publicly accessible so that

users can check on a project’s current

status without bothering contributors.

This basic development infrastructure

enables contributors to release

updates quickly—without worrying

about customer support.

Though different from standard

commercial software development,

open source has proven itself to be a

robust and sustainable development

model by building some of the most

popular software in the world,

including the Apache Web server and

the Firefox Web browser. According

to www.netcraft.com, Apache runs

more than 60 percent1 of the world’s

Web servers, while Firefox is steadily

increasing its share of the browser

market and is now the second most used

browser in the world.2

There are four main bot families:

Agobot (a.k.a. Gaobot), Sdbot, GT-

Bot, and Spybot (Spybot, though it is

really an Sdbot variant, has enough

variants to warrant its own family).

Each family contains both functional

variants and bug-fi xing re-releases.

Most variants include small changes

to increase bot stealth, but sometimes

variants contain new functionality,

such as a new exploit vector. For

example, Spybot 1.3 can now propagate

via NetBIOS, which was not possible in

previous versions.

1. http://news.netcraft.com/archives/2006/05/09/may_2006_web_
server_survey.html

2. http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

Bot Development
Life Cycle

Bot authors’
adoption of open-source development
methodologies has no doubt led to the
production of more reliable and robust bots.

30 Sage JULY 2006

The bot development life cycle is quite

different from that of previous malware

such as viruses and Trojans, which

mostly used a write-and-quickly-release

methodology. Bot development, on

the other hand, appears to follow a

very similar process to open-source

development. Multiple contributors

help build the product; developers

pick the feature they want to work

on; module reuse is essential; version

control is enforced; testing is done by

developers; and releases are driven by

bug fi xes. Bot authors’ adoption of open-

source development methodologies has

no doubt led to the production of more

reliable and robust bots. In the following

sections I will compare and contrast

in more detail the botnet development

process with the standard open-source

development methodology for each key

critical area.

Multiple
Contributors
A virus or Trojan is usually written by a

single author who has complete control

of the features and timing of release

updates. Bots, however, are different;

most bots are written by multiple authors.

Looking at RBot, an Sdbot descendant,

we can see that fi ve developers worked

on the code base. We can infer from

the many comments made by various

authors that they used the source code

as a medium to communicate with one

another, potentially displacing the use

of IRC, email, or even telephone. In

Figure 1 below, the comment after this

integer initialization is an example of

their dialogue.

Other comments show that the authors

frequently used source code to ask

questions and even argue with each

other about the proper way to imple-

ment a solution.

After analyzing bot source code for

Spybot and Agobot, it appears that

the fi rst version of a bot is usually

written by a single author with

testing help from friends. After

the fi rst version is released, other

contributors join the effort and

help develop new features, do more

testing, and fi x bugs. For example,

both Spybot and Agobot contain a

fi le that lists the contributors and

what fi xes or features they helped to

develop. Figure 2 contains an excerpt

from Agobot 0.2.1-pre2 contrib.txt fi le:

int current_version=0; //Nils wtf is this?

Figure 1: Example of developer conversations in the RBot source code

Contributions to Agobot3:
Num - Name -What
1. - Ago -Writing Agobot3 base, being the
author/maintainer
2. - Fight -Hosting my testing bots
3. - killer77 -Donating money to make Agobot3 as good as
it is today
4. - dj-fu -Helped me finding bugs
5. - Chrono -Hosting me a site and helping find bugs
6. - harr0 -Hosting me a site
7. - ryan1918 -Hosting me a site or forum too (not yet)
8. - PhaTTy -Implementing new features into Agobot3

Figure 2: Excerpt from pre2.contrib.txt fi le detailing Agobot’s contributors

31 Sage JULY 2006

Clearly, many contributors directly

participated in the development of

this release: dj-fu worked to fi x bugs

within the bot, and other contributors

helped the project by hosting a site

instead of writing code.

This model is similar to that of open-

source projects, which usually start

with one programmer producing an

application that others feel would be

better with a few more features. More

programmers join the project and help

test and develop features. Eventually,

others join in who are not programmers

but help the project by donating

money, resources, and other expertise.

Feature
Modifi cations
The ability to work on what you want,

when you want to—without worrying

about a release date—is one of the

main motivations for open-source

developers. They are not required to

work on features that improve stability

or robustness if they do not want to.

This pick-and-choose methodology also

fuels the innovative development seen

in bots and, consequently, determines

the features that are added or modi-

fi ed. Compared with other malware,

bots have evolved to incorporate far

more advanced and stealthy methods

of command and control, in addition

to using multiple exploit vectors,

advanced propagation techniques, and

advanced programming constructs

(polymorphism, object-oriented

programming, etc.). However, not all

bot development comes solely from

developers’ desires; much of it comes

from the changing environment, or

arms race, in which all malware and

anti-malware authors are engaged.

Money is a second reason that certain

features make it into a release and

others do not. A feature may generate

revenue either by fraud, such as click

fraud, or because the author was paid

to develop it. This method is similar to

open-source sponsorship, in which a

commercial entity pays for developers

to work on a project. Naturally,

the commercial entity will have its

developers work on features that will

not only help the general public but

also itself. A great example is IBM’s

involvement with Linux. IBM has

contributed large amounts of code to

the Linux kernel, including a journal-

based fi le system. IBM has benefi ted by

gaining a more stable version of Linux

for the PC and mainframe servers it

sells. Furthermore, by contributing,

IBM can offer consulting services

based upon the Linux expertise its

developers gained.3 Bot authors

employ the same plan, which is called

the patronage strategy. The arrange-

ment allows bot developers to create

a market for themselves in which they

can be paid to customize the software.

Module
Reuse
The Mythical Man Month, by Fredrick

P. Brooks, is widely considered one of

the best texts on software development.

In it, Brooks says that within software

3. http://www.opensource.org/docs/products.
html http://management.itmanagersjournal.com/
management/04/05/10/2052216.shtml?tid=85

32 Sage JULY 2006

development there is no silver bullet;

there is no one method that produces

reliable, robust, and effi cient code the

fi rst time. However, Brooks states that

there is a brass bullet—module reuse—

which can greatly help software

development projects. By creating

modules and reusing them in different

projects, developers decrease testing

and integration time as well as the

number of bugs.

The premise of open source implies

modular development and reuse of

code. Reusing modular code, however,

was not common in malware until

the introduction of bots. Agobot,

Version 3.0.2.1, for example, uses

multiple open-source modules such

as openssl, pthreads, and adns. Using

each of these modules decreased the

development time by implementing a

specifi c feature (e.g., encryption) while

simultaneously gaining cross-platform

support. Furthermore, because

openssl and pthreads are used in other

projects, the likelihood of running

into bugs that would need to be fi xed

when integrating these modules drops

considerably. Even when there are

bugs, other users of the modules will

likely have documented the problems

on various community forums and

message boards.

A more recent example of module

reuse was the release of the fi rst

Windows® Kernel Mode IRC Bot in

April 2006.4 This bot, though only a

proof of concept, would not have been

developed as quickly without the pre-

existing kernel-level network sockets

code released on www.rootkit.com.

This public code allowed the author

to easily and quickly recreate the func-

tions for interoperating with the IRC

protocol from a Windows kernel driver

without specialized knowledge of the

Windows kernel.

4. http://tibbar.blog.co.uk/2006/04/06/kernel_mode_IRCbot~708256

Beyond integrating pre-existing code, the

author of the Kernel Mode IRC Bot wrote

the code in a way that permitted user

testing. This simple functional enhance-

ment of making the kernel portion of a

bot an easy-to-debug module decreased

the time that other bot authors would

need to adapt their existing code base to

the kernel-mode bot.

Version
Control
Version control systems are very

important to any development

project, open or proprietary source,

but they are particularly vital to

open-source projects because

the contributors are usually

geographically distributed. Version

control tools let developers revert to

previous builds if the latest one is

rendered unusable by new, poorly

written contributions. Furthermore,

version control systems help

contributors track what other

contributors have written into the

code and how a feature or bug was

fixed. Lastly, version control systems

enable new users, such as potential

new contributors, to learn about

the project, its internals, and its

evolution without working directly

with other developers.

As bot development projects grew

in size and scope, the contributors

decided to adopt formal version control

systems to track their source code. For

example, the fi rst bots had one source

fi le, but recent generations of bots, such

as Agobot, contain hundreds of source

fi les. In the case of Agobot, certain

folders and default fi les associated with

CVS (Concurrent Versions System) can

be found in the source code while

Phatbot, an Agobot descendant, appears

to be tracked with Subversion.

33 Sage JULY 2006

Testing
Most security professionals believe

that the majority of malware authors

do not test their software to ensure

that it functions as intended prior to

a release. Perhaps this belief was true

when most malware was produced by

“script kiddies” who generally lacked

the programming skills and expertise

necessary to develop high-quality

software. But this belief is no longer

valid because more and more malware

authors are profi ting from their crea-

tions. As fi nancial incentives come to

dominate, malware authors will be

compelled to test their products for

effi cacy before releasing them.

Open-source testing differs from

commercial development in that code

writers are also the testers. Lack of a

formal quality-assurance (QA) group

results in many bugs being found by

users of the software instead of a QA

team prior to release. Although many

open-source software packages com-

pete head-to-head with commercial

products, such as the Apache Web

server with Microsoft® Internet Infor-

mation Services (IIS), most open-source

software is not known for its quality.

Developers quickly release bug fi xes

and fi nished features so that they

can move on to develop the next

interesting feature.

Bots follow this same quick test-and-

release process. For example, when

a new feature was added to Agobot

that resulted in a bug, the developer

responsible for the feature almost

immediately diagnosed the bug, fi xed

it, tested the fi x, and generated a new

release (see Figure 3).

Bots have a simple release cycle. New

versions appear when a major bug

is fi xed or the author adds a “cool”

feature, such as a new exploit vector. As

with open-source software, bot releases

are interrupt driven. They happen only

when needed or when a developer feels

like working on the software. Open-source

software rarely has product-development

documents, such as timelines and system

designs. Similarly, bot development

also lacks timelines, release schedules,

and design documents.

Viruses and Trojans can have many

variants, but most variants are released

with only simple changes—typically to

avoid detection by anti-virus software

and other security mechanisms. The

Mytob virus illustrates this point. A

new variant with only a single change

to avoid detection was released almost

every day in July 2005.5 There were

neither new features nor additional

bug fi xes in these variants. Even though

5. http://www.virusbtn.com/virusbulletin/archive/2005/09/vb200509-
new-malware-distribution-methods

Figure 3: Bug fi xing comment from Agobot release note

0.2.1-pre4-fix1:

-for users:-

1. Fix for executing commands without login - Ago

- Sorry I didn't notice this, I added an internal

message path for handling topic commands without

login, but due to debugging code left in the code

every message was handled that way :)

Release Intervals
and Bug Fixing

34 Sage JULY 2006

they were released rapidly, the Mytob

variants were not versioned as bots are.

Bot authors, because of the very active

bug fi xing, need an effi cient way to tell

their customers—bot authors and bot

herders—that a new version is available.

Almost all public software that requires

bug tracking uses versioning. The major-

ity of bots that have public source code

provide the same type of versioning as

production-grade software: listing a

version and patch level in the change log

or source code, or by executing a version

command, such as !ver, within the

bot software.

When a new release of a bot becomes

available and bot herders want to

upgrade, they simply use their command-

and-control framework to update their

drone army in the fi eld. Introducing bug

fixing within bots forced bot authors

to build-in upgrade functionality. This

auto-upgrade feature is evident in both

Spybot and Agobot, as well as in many

well-known open-source applications,

such as Mozilla’s Firefox browser.

Open-source projects are distinct from

proprietary development projects in that

the users are often the developers them-

selves. This overlap between user and

developer creates a powerful incentive to

fi x bugs, particularly ones that are visible

and irritating to users. Bots share this

characteristic with open source in that

the bot developers use the bot software

to build their own herds of drones. Thus,

they are motivated to fi x any bugs quickly

that impede their herd building.

Most other malware, such as viruses

and Trojans, are generally released

with bugs or architectural defects

that cause them to fail. For example,

the IP address-generation routine in

the SQL Slammer worm prevented

it from infecting a large portion of

the Internet because the routine

was entirely random and gave

no preference to local subnets of

reachable, populated addresses.6

Bot development efforts even track

changes and authors with formal

change logs, typically found inside the

source code. For example, both Agobot

and Sdbot contain change logs within

the source code packages that list what

bugs were fi xed and by whom. In other

bots, the changes are sometimes cred-

ited to the person who reported and

fi xed them. See Figure 4 for an Sdbot

change log example.

Change logs are a standard feature in

commercial product development. In

many open-source applications, the

change logs are simple text fi les.

Knowing when a bug was fi xed helps

other developers, such as botnet

authors building variants, decide if and

when they should merge their code

bases. More importantly, change logs

tell bot herders when to recompile and

update their bots and botnets. This

process is very similar to customers

of legitimate commercial software

checking for a new software update.

6. http://vil.nai.com/vil/content/v_99992.htm

Figure 4: Excerpt from the readme fi le for Sdbot Version 0.5b

changes since last release

fixed 3 letter nick bug in spy
fixed c_privmsg and c_action
fixed clone acting like spy bug
fixed random nick generator (now includes the letter 'z')
fixed login/logout issues with private messages

34

35 Sage JULY 2006

Conclusion
Botnets are a new type of threat that

should be managed differently than

past threats, such as viruses and

Trojans. Aside from being controlled

by human bot herders, bot malware is

being developed with methodologies

similar to those used in open-source

software development. The use of a

professional development methodo-

logy represents a critical change in

malware evolution.

Bots will continue to push the malware

engineering envelope. The methods

described here—multiple contributors,

active bug fi xing, versioned releases,

and module reuse—are what make

open-source products reliable, robust,

and successful. Because these same

methods are used in the development

efforts of the largest bot families, we

can predict that the same quality,

robustness, and specifi c features will

make bots technically superior to all

other types of malware the industry

has seen thus far. As bots improve in

reliability and robustness, bot herders

will be able to demonstrate to their

customers a solid return on investment

(ROI). Offering customers a guaranteed

ROI will cause the bot and overall

malware market to grow explosively

within the next few years.

About the author

Michael Davis is a Research Scientist at
McAfee Avert Labs. He is an active developer
and installer of intrusion detection systems,
contributes to the Snort Intrusion Detection
System, and is a founding member of the
Honeynet Project.

0

200

400

600

800

1,000

1,200

1,400

12
/24

/05

12
/31

/05

1/7
/06

1/1
4/0

6

1/2
1/0

6

1/2
8/0

6

2/4
/06

2/1
1/0

6

2/1
8/0

6

2/2
5/0

6

3/4
/06

3/1
1/0

6

3/1
8/0

6

3/2
5/0

6

4/1
/06

4/8
/06

4/1
5/0

6

Life Cycle of Botnet Release

C
o

u
n

t
o

f
D

ro
n

es

Evolution of a botnet

35

McAfee® Avert® Labs discovered a control Web site
that contained data about a particular botnet
release. The graph below shows the number of unique
compromised computers on each day from December
25, 2005, to April 21, 2006.

The fi rst bot in this network appeared on Christmas

Day, 2005. For about two weeks, there were very few

infections scattered all over the world. On January 9,

2006, the botnet rapidly expanded, with most infections

occurring in the U.S., Italy, Russia, and Brazil. By mid-January,

there were approximately 1,000 active compromised systems,

with the U.S. hosting the most (about 35 percent) and Italy in

second place (about 9 percent).

In the last week of January, the botnet began to disintegrate.

Most infections occurred between January 10 and February

10, so the effective lifetime of this botnet release was about

one month.

Note that the curve has a long tail, which implies that some

computers were never cleaned. As might be expected, the

countries that had the most infections (U.S. and Italy) also

had the most computers that were not cleaned.

This botnet release helped distribute adware and could push

advertisements to users’ machines, which might be one of

the reasons why its lifetime was only one month. A bot that

displays ads is much easier to spot than a bot that furtively

participates in a DDoS attack or pay-per-click scheme.

This botnet release demonstrates a typical pattern in

malware deployment—a fairly rapid initial propagation

followed by a period of malicious activity and then,

eventually, subsidence. Presumably, when returns from

a deployment stop satisfying bot herders, they generate

yet another bot release to circumvent security measures

that blocked the last release, enabling them to sustain

their overall numbers.
Source: McAfee Avert Labs

36 Sage JULY 2006

By Jimmy Kuo

A dvocates of open source evangelize its merits

with the fervor of the converted. What could

be wrong with a movement that promises collegial

cooperation, collective improvements, and freedom

from proprietary restrictions? Don’t many hands make

quick work in software development?

They do indeed, but there’s a big drawback to a system

that’s always open, all the time. There are times when

the community needs to show some restraint, some

public responsibility, before sharing with the world.

When it comes to disclosing security vulnerabilities, for

example, it is not hard to see the advantage of allowing

the developer time to patch holes before making a public

announcement. Doing so places the greater good ahead

of an individual seeking fame for being the fi rst to spot

a threat. Granted, for some people, it’s asking a lot to

hold back—and pass up a chance for self-promotion—

while letting others quietly save the day.

Ultimately, open source’s effectiveness depends on people.

Some support the concept, others support the alternative.

We cannot say that either is right or wrong; both have pros

and cons. However, it is a fallacy to assume that all members

of the open-source community insist on immediate publi-

cation of all vulnerability research results.

Share and Share Alike
The open-source position—for better or worse—is that

research should be shared throughout the community.

How people use and build upon the results shows the

extent to which they demonstrate their responsibility to

that community.

The Organization for Internet Safety (OIS; www.oisafety.org)

was founded on the idea that “standardized, widely

accepted processes will allow security vulnerabil-ities to

be handled in a way that reduces the dangers they pose

and will help security vendors and researchers to more

effectively protect Internet users and critical

infrastructures.” In September 2004, OIS released Version

2.0 of its Guidelines for Security Vulnerability Reporting

and Response Process, providing researchers and

organizations with a method to follow if they believe

it is better not to publicly divulge vulnerabilities until a

patch is available. This gives developers time to produce a

fi x and requires members to keep their discoveries secret

until the fi x is available. Those who do not support

responsible disclosure guidelines, such as those from OIS,

will sometimes post their discoveries immediately and

share their research.

Is Open Source
Really so Open?

 Sage JULY 2006 37

C
o

u
n

t
o

f
V

u
ln

er
ab

ili
ti

es
Windows Vulnerabilities Announced Prior to Patch

C
u

m
u

la
ti

ve
 %

 P
u

b
lis

h
ed

 B
ef

o
re

 P
at

ch

0

5

10

15

20

25

0%

5%

10%

15%

20%

25%

30%

35%

40%

2004
Oct

2004
Nov

2004
Dec

2005
Jan

2005
Feb

2005
Apr

2005
May

2005
Jun

2005
Jul

2005
Aug

2005
Sep

2005
Oct

2005
Nov

2005
Dec

2006
Jan

2006
Feb

2006
Mar

2006
Apr

2006
May

Vulnerabilities published before patch

Total vulnerabilities in patch

Cumulative % published before patch

About the author

Jimmy Kuo is a Senior Fellow of McAfee® Avert® Labs. He speaks internationally at security conferences and
universities. Jimmy is the technical representative for McAfee at government and industry consortia.

Microsoft vulnerabilities publicized prior to patch release

Let’s examine
the popularity
of these two
positions.
Which Side of the Fence Are You On?
Microsoft® has a well-documented history of reported

Windows® vulnerabilities for which it consistently provides

patches on a mostly consistent basis. Here’s where we can

determine how many believe in responsible disclosure and

how many believe in immediate publication. I studied the

count of Windows vulnerabilities and how many were

publicized prior to the release of the appropriate patch.

The line graph shows the cumulative percentage of security

researchers who believe their research—whether positive

or negative—should be released immediately to all.

The bar chart shows the number of vulnerabilities for

which Microsoft released patches each month (red bars)

and the number of those made public prior to the patch

release by the discovering researchers (blue bars).

Here we have results of actual behavior, not an opinion

poll, and we see that only 30 percent of researchers

practice unrestrained open-source behavior, which

means approximately 70 percent act more cautiously.

Though many researchers voice support for open source,

more than two-thirds of them are willing to keep a secret

and let developers prepare their fi xes when it comes to

Windows vulnerability disclosures. Clearly, belief in open

source does not equate to engaging in irresponsible disclosure.

Source: McAfee Avert Labs

38 Sage JULY 2006

T here are few controversies as volatile in the security

world as vulnerability discovery. From discovering

and reporting the vulnerability to paying researchers to

fi nd specifi c fl aws in popular software—the gamut of

discovery, acknowledgement, fi xing, and crediting runs amok

with ego, publicity, and negative fi nancial impact.

The stakeholders in this debate include the customer (the

one who is supposed to benefi t most from all of this hubbub

and who wants only to be protected), the vendor (who just

wants to sell more products), and the researcher (who often

has multiple motives: protecting people, fueling his or her

own ego, and, now, making money). As you would imagine,

each of these parties has needs that are not always aligned.

The customer wants no security holes at all; but if vulner-

abilities do exist, then customers want to know about

them as quickly as possible so that they can either apply a

patch or mitigate the problem.

Most vendors are motivated to protect their customers

(though it wasn’t always that way), but their side motiva-

tion is to spend their scarce resources building and selling

products, not patching them up. They are also anxious

to avoid the negative publicity that inevitably surrounds

vulnerability reports.

Finally, the researcher wants to protect the customer

by fi nding vulnerabilities, but researchers are driven

primarily by ego. Most want the vendor to acknowledge

the vulnerability, so that they can claim credit for their

accomplishment (the bragging rights). And now we have

an added incentive for these researchers: cold, hard cash.

Two Views of Security
Vulnerability discovery is complicated by two competing

views of best practice: what we call security by obscurity

and full disclosure. In the fi rst case, we keep information

close to the vest until the vendor can offer a fi x. In the

second, we assume that the bad guys already know this

stuff, so we need the good guys (administrators) to know

about these weaknesses as soon as possible—before the

bad guys attack.

The anti-virus and, largely, the government and military

worlds have fallen on the security by obscurity side of the

fence. These fi elds have a long-standing maxim to trust

no one when it comes to virus code and samples. The logic

has always been that the fewer people who have this stuff

(viruses), the less likely the problem will grow. So vendors

have long held their research close to their chests in an

attempt to restrict accessibility and, in theory, reduce the

potential exposure of that threat in the wild. As a result,

the groups of vendors who do share their collections and

samples are often closed to new members. In many cases,

the anti-virus researchers’ paranoia has been justifi ed

because malefactors have tried numerous times to

infiltrate this closed world. The upside of this model is

obvious: the fewer people who have guns, the fewer

bullets that will be used. The downside is that this

knowledge is kept to only a select few and therefore

cannot be disseminated to help the masses.

The full-disclosure movement comes from the pioneers of

whitehat hacking who exposed the techniques and tools

used by the bad guys in an effort to educate the masses

before they became victims. The argument for immediate

By Stuart McClure

 Vulnerability
 Bounties

 Do they really protect customers?

39 Sage JULY 2006

About the author

Stuart McClure is the Senior Vice President of Global Research and Threats at McAfee® Avert® Labs.
He is the lead author of several books, including the popular Hacking Exposed series. He has been a security
professional since 1989.

full disclosure is that it gets the information out to the

people who need it most and motivates vendors to

react quickly and provide patches for the problem. The

downside is that it can put the masses it seeks to protect

in a compromising position if the bad guys have a quicker

turnaround than the vendors.

Commercializing Discoveries
Once solely the domain of benevolent researchers, vulner-

ability discovery and disclosure has now taken on a fi nancial

motive. The security companies that have jumped on the

vulnerability discovery pay-to-play bandwagon include

VeriSign’s “Vulnerability Contributor Program”

(http://www.idefense.com/methodology/vulnerability/vcp.php),

which was developed by VeriSign subsidiary iDefense;

3Com’s TippingPoint “Zero Day Initiative” (http://www.

zerodayinitiative.com/); and Mozilla’s “Mozilla Security Bug

Bounty Program” (http://www.mozilla.org/security/bug-

bounty.html).

Although the intended outcome of Mozilla’s program

appears to be straightforward—to fi nd bugs in their own

software before bad people do—both iDefense’s and

TippingPoint’s programs may produce ethically confl icted

consequences. If companies provide a cash reward for bugs

found in their own software, that’s a good thing. After all,

if a researcher has invested his or her time fi nding a bug,

it’s fi tting for the benefi ting vendor to pay for the work.

But when security companies pay for fi nding bugs in other

vendors’ software, the results may not be so benefi cent.

By using the research of others to publicize vulnerabilities,

for example, these companies may sell more subscriptions

to their threat intelligence services and gain publicity from

it—in other words, they will make money.

From the customer’s perspective, the disadvantages of

such a vulnerability discovery program are many. The more

vulnerabilities that are found, the more you must fi x to

protect yourself; and the more you must fi x, the fewer you

inevitably will. Further, the more people involved with a

particular fi nding, the more likely that information about the

vulnerability will leak out. And a leak means that someone

can build a worm that will affect customers before they are

patched or prepared. The last point strongly undermines the

expressed goal of the program: to protect people.

Want more bad news? We’ve read that some of the

researchers who report these vulnerabilities to commercial

programs, such as iDefense, are often associated with real

hacking events. For example, look at a Distributed Denial

of Service (DDoS) attack that occurred last year: “Security

Web Sites Taken Down by Unhappy Hackers” (http://www.

techworld.com/security/news/index.cfm?NewsID=3465).

In this case, a Web site was hit by a group of hackers who

reportedly were unhappy when Web site members criticized

the group and a particular researcher, ATmaCA. What

followed, according to the article, was a series of extortion

emails from the associated hackers to the Web site owners.

In the debacle that followed, ATmaCA was ultimately

tied, either directly or indirectly, to the attack.

Fast-forward to May 11, 2006, when the “Zero Day Initiative”

released an advisory with credit to ATmaCA (http://www.

zerodayinitiative.com/advisories/ZDI-06-015.html). Was

this ATmaCA the same person who sparked and perhaps

launched the DDoS attacks on the Web sites in 2005? If

these companies are paying known hackers—and ultimately

funding real hacking efforts against legitimate companies,

perhaps these programs warrant further refl ection.

Nonetheless, there are advantages to proactive vulnerability

discovery, regardless of the sponsor. We know that there are

countless undiscovered vulnerabilities in all products made.

Whom would you rather fi nd these vulnerabilities: malicious

profi teer hackers or good guys who work with the vendor

to get them patched?

Between Extremes
Clearly, full disclosure, and its related incentives, can cause

problems. But security by obscurity may not always be the

best practice. Perhaps somewhere between these extremes

is the right position, but fi nding that position is diffi cult.

If an organization offers payment to motivate individuals to

report their fi ndings and uses that information to improve

its own products, then who can blame them? Or if a vendor

discovers vulnerabilities as part of its everyday fi ght against

threats and wants to incent its team members to report their

fi ndings, then such a program benefi ts everyone. But if

payment programs simply fi ll the coffers of malicious hackers

who look hard for more and more vulnerabilities, then

vendors, customers, and legitimate researchers are all hurt.

In the fi rst case, vulnerability disclosure means everyone

wins; but in the second case, we all lose.

What’s your view on vulnerability disclosure? Let us know

at Sage-feedback@McAfee.com.

 Sage JULY 2006

Until recently, the Apple Macintosh OS X operating
system stood as something of an anomaly. With
a unique blend of proprietary and open-source
technologies, Apple sought to create a modern
operating system. By leveraging the advantages
of both development approaches, Apple aimed
to build a more secure and robust platform than
either of its two main rivals, wholly proprietary
Windows® and wholly open-source Linux. Did
Apple get the recipe right? Was Apple’s claim to
better security justifi ed? For the fi rst few years, the
answer seemed to be yes. Few vulnerabilities were
discovered in OS X, and Apple addressed them
quickly and with little fanfare.

As 2006 began, the situation changed dramatically
for Apple and OS X. In early February, someone
with the pseudonym r3d3pshun posted a fi le
several times on an underground Internet forum.
The clearly suspicious fi le sometimes appeared
under the guise of a photo of Britney Spears’ baby.
When this effort failed to provide any notoriety
for its author, r3d3pshun posted the same fi le,
but this time labeled it as screenshots of Leopard
Version 10.5, the next release of the Mac OS X
operating system. This attempt worked; three days

later, the code was named OSX/Leap. Designed
to propagate through the AIM/iChat instant
messaging system, it became the fi rst known virus
to attack the Mac OS X platform. This episode was
the fi rst in what was to be an eventful February.

A short time after OSX/Leap, OSX/Inqtana.A and
its variants appeared. Arriving a few days too
late, the authors did not get the publicity that
they likely hoped for. This virus family exploits an
old vulnerability in the Mac OS X 10.3.9 service
that handles directory traversal in Bluetooth fi le
and object exchanges, allowing remote attackers
to read arbitrary fi les.

During this unprecedented week, two more
vulnerabilities appeared, one in Apple’s Safari
Web browser and the other in Apple’s Mail
application. Both vulnerabilities were linked to
the ability of these applications to run certain
scripts without asking for permission. For Safari,
the vulnerability affects ZIP archives; for Mail,
it concerns the AppleDouble MIME format.
When exploited, these vulnerabilities enable
any application to run, theoretically enabling a
remote user to control a machine.

40

By François Paget

Will the Worm Eat the Apple?

 Sage JULY 2006

When these two extremely critical weaknesses were
announced, Apple quickly set to work. On March 3,
the company distributed an initial series of patches.
Ten days later, a second series of patches was
distributed. In less than two weeks, Apple had fi xed
more than two dozen weaknesses.

Vulnerabilities: The Real Threat
Vulnerabilities are not the same as viruses. Vulner-
abilities alone are benign, but they are weaknesses
that could open the door to malicious actions. A
recent tally by McAfee® Avert® Labs demonstrated
that vulnerabilities in the Apple environment today
are being discovered at a markedly increased rate
over that in prior years. All reporting organizations—
NIST, FrSIRT, or Secunia—are seeing a sharp increase.
Two of these organizations report an increase
exceeding 200 percent between 2003 and 2005.

However, the number of new viruses in OS X has
remained almost zero since January 2004, and the
bugs and limitations encountered in the various
versions of OSX/Leap and OSX/Inqtana.A ensure
that they will not propagate. Though OS X users
are not immediately at risk from known malware,
the danger has not yet passed. The source code
for these viruses is available on the Internet and
is likely being studied and optimized for future
release. A blog site offering commented code of
OSX/Leap saw more than 8,500 downloads since it
became available. It is almost certain that one day
the source code will serve as the basis for another,
perhaps more effective attack.

Some specialists now claim the Mac OS X platform
might be more fragile than Windows XP. In his
ZDNet blog, George Ou recently compared Secunia’s
assessments. For the three highest threat levels
(extreme, high, and moderate), he classifi ed the
vulnerabilities associated with the two operating
systems for the months from February 2004 to
February 2006. For the 25-month period, Secunia
counted 238 vulnerabilities in Mac OS X, compared
with just 95 vulnerabilities in Windows XP.

No End in Sight
Between January 1 and May 11 of 2006, Apple
corrected more than 80 vulnerabilities. In April
2006, two days after Apple released its Security
Update 2006-002, independent researcher Tom

Ferris announced seven previously non-public
fl aws. Ferris also released proof-of-concept code
on the Internet. He said he had sent his research
to Apple Support at the start of 2006 and was
assured that they would “be fi xed in the next
security release.” But as of April, only one
weakness had been patched, and the fi x was
done with a silent update in the transition to
Version 10.4.6. The other six—judged “highly
critical” by Secunia—affect all Mac OS X versions,
including the most recent. On May 11, 2006,
Ferris thanked Apple for the new Security Update
2006-003, which fi xed almost all of the issues he
had reported previously. Four days later, however,
he moderated his tone and message. Apple’s
“fi xes” apparently did not address the root cause
of the fl aws. Ferris easily re-exposed them with
slight modifi cations of his original exploit fi les.
On his blog, Ferris also offers hints of several
other image-fi le-related vulnerabilities that he is
reporting to Apple.

Despite these developments, OS X still faces
signifi cantly fewer known malware threats
than Windows. Many would argue that this is
more a result of smaller market share than of
any architectural security choices or use of open
and proprietary source code. Regardless, Apple
faces a formidable foe in the open-source threat
community, and that community’s propensity
for combining tools and code in blended threats
may one day result in OS X exploit code being
added to an existing piece of malware to
enhance its virulence.

About the author

François Paget is a Senior Research Scientist at McAfee Avert
Labs. He has been involved in virus research since 1990. François is
a regular conference speaker at French and international security
events, author of numerous articles and a book, and General
Secretary of the French Information Security Club (CLUSIF).

1. Apple’s Macintosh OS X is based upon Free BSD and incorporates a number at well-known
open-source technologies, such as Samba, Apache, and MySQL.

2. http://vil.nai.com/vil/content/v_138578.htm

3. http://vil.nai.com/vil/content/v_138608.htm

4. For more information about the vulnerability (CVE-2005-1333), see http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2005-1333

5. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0848

6. Vulnerability ratings were given by Secunia, http://secunia.com/advisories/19064/

7. Security pack 2006-001: http://docs.info.apple.com/article.html?artnum=303382 and
Security pack 2006-002: http://docs.info.apple.com/article.html?artnum=303453

8. National Vulnerability Database: http://nvd.nist.gov/statistics.cfm French Security Incident
Response Team: http://www.frsirt.com/search.php Secunia: http://secunia.com/vendor/

9. Vulnerability statistics for Mac and Windows: http://blogs.zdnet.com/Ou/?p=165

10. http://docs.info.apple.com/article.html?artnum=61798

11. Mac OS X Multiple Potential Vulnerabilities: http://secunia.com/advisories/19686/

12. http://www.security-protocols.com/

41

McAfee, Inc. 3965 Freedom Circle, Santa Clara, CA 95054, 888.847.8766, www.mcafee.com

McAfee and/or additional marks herein are registered trademarks or trademarks of McAfee, Inc. and/or its affi liates in the US and/or other countries. McAfee Red in connection with security is distinctive of

McAfee brand products. All other registered and unregistered trademarks herein are the sole property of their respective owners. © 2006 McAfee, Inc. All rights reserved. 11-avert-sage-rpt-0706

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

