Lecture 5.

Exponentiation: (code page 46).

Calculate x37:   
 x
x2
x4
x8
x16
x32
(5 multiplications)


x37 = 
x32 x4 x     for a total of 7 multiplications.

Note: x16 can be computed by 4 multiplications while x15 will require 6 multiplications.

The code in the book gives:

 M(n) ( M(n/2) + 2 

Or:    M(n) ( 2 (log n(  

Applications of fast exponentiation:  Primality testing.

Fermat’s theorem (DM Page 145)

If p is prime then ap – a = 0 (mod p)    or ap-1 mod p = 1.

Algorithm:  Input p. Randomly select 1 < a < p. Calculate t = ap-1 mod p. If t ( 1, stop p is not a prime number. Else select another a (randomly of course). If after say 100 random tests you get t = 1 for each test, almost surely p is prime.

This type of algorithm is called a probabilistic algorithm. It does not guarantee the correctness of the output but its failure rate is very small.

On the other hand, if p is “huge” (100 – 200  digits in cryptographic applications the calculation of  ap-1 mod p takes ( 2 (log p(  multiplications (< 700).

In general, a recurrence relation of the form    T(n) = T(n/2) + c  (c a constant) yields

T(n) = O(log2 n)   (more precisely,   T(n) ( c.log2 n.

T(n) = T(n/2) + c = T(n/4) + c + c = T(n/8) + 3c = … =  c.(log2 n)

The following may help you understand the process of counting the number of steps: the “cost”  (number of steps) to reduce the size of the next instance to n/2 is c steps. Each time we reduce the size by a factor of ½ the cost is c. The number of steps of an instance of size ( 1 is usually 0 or 1. It takes log2 n reduction to reduce an instance of size n to an instance of size ( 1. Hence the total number of steps is clog2 n.

Conclusion: every time you have a divide and conquer solution that reduces the size of the input by 50% after a fixed number of steps the time complexity of this algorithm will be O(log2 n).

A couple more examples of recursive solutions:

Example 1.

Recall “Hotel Infinity”  f: NxN ( N.

This function can be calculated by a very simple recursive computation. Here is a Mathematica implementation:

In[3]:= hotel[k_,n_]:=If[k+n==2,1,k + hotel[n+k-2,1]]

In[4]:= hotel[1,1]

Out[4]= 1

In[5]:= hotel[2,2]

Out[5]= 5

In[6]:= hotel[56,4]

Out[6]= 1767   

Example 2

BubbleSort(A, n)      

//Buuble sort the array A with n entries, n used for the recursive call.

if  (n > 0) {

   for(j = 1; j < n; j++)

   comp_exc(A[j-1], A[j]);

BubbleSort(A, n –1);

Analysis:   B(n) = B(n-1) + (n-1)

By induction:  B(n) = n(n-1)/2.     

· B(1) = 0 = 1(1-1)/2

· B(n) = n(n-1)/2.  

· B(n+1) = (n+1)n/2

· B(n+1) = B(n) + n = n(n-1)/2   + n = (n2 – n + 2n)/2 = (n+1)n/2

B(n) = O(n2).

Data structures and Algorithms:

Polynomials:  Horner’s method (page 51 #2.14)

Let p(x) = 4x4 + 8x3 + x + 2

(7 multiplications,   3 additions)

p(x) = ((4x + 8)x2 + 1 )x + 2

(4 multiplications).

In general:  p(x) = anxn + an-1xn-1 + … + a1x + a0 can be evaluated at a specific x by only n multiplications:


p(x) =  ((…(anx + an-1)x + an-2)x + …a2)x + a1)x + a0
Representation of polynomials

Array:  4x4 + 8x3 + x + 2 ( [2, 1, 0, 8, 4]

Analysis of space time operations:

· Space: O(n)

· Add:
O(n)

· Multiply O(n2)

“Disaster” for sparse polynomials. 4x40098 + 8x3765 + x56 + 2

A better representation:


A polynomial with k terms will take O(k) space regardless of its degree. Additions and multiplications will be done in O(k+m) and O(km) respectively for two polynomials of degrees k and m.

Application of linked lists:

Radix Sort. 

Definition:  A sort is called STABLE if ai = aj and i < j then in the final sort ai will appear before aj.

RadixSort(Data);

Sort the following array:

928   205   714   693   332     13   227   128   

944   773   374   569   207   576   725   548   

761   449   726   748   585   295   194   718   

//Group by last digit:

761   332   693    13   773   714   944   374   

194   205  725   585   295   576   726   227   

207   928   128  548   748   718   569   449  

Each color is a separate linked list. We need 10 lists for this process.

//Group by next digit Broken into linked lists:

205   207     

13   714   718   

725   726   227   

928   128   

332   

944   548   748   449   

761   569   

773   374   576   

585   

693   194   295    

Put back in the array:

205   207     13   714   718   725   726   227   

928   128   332   944   548   748   449   761   

569   773   374   576   585   693   194   295    
//Group by next digit

  13   128   194   205   207   227   295   332     374   449   548   569   576   585   693   714   

718   725   726   748   761   773   928   944 

3 passes required. Each pass takes O(n). If the numbers are 12 digits long, 12 passes will be required. Altogether, if the size of the input is bounded by k we’ll execute kn = O(n) data moves.

RadixSort is a stable sort.  
Recall: abstract data types: extract the k-th digit of an integer.

Sparse tables representations: (Page 68)

40,000 students, 2,500 classes. Need class lists, need personal records. 

40,000 x 2,500 array. Will “occupy” 100,000,000 cells. Most students take only 4 classes so there will be about 10,000 non-empty cells. What a waste!!!

Alternative:   Multilists.  (Figure 3.25 page 68)

Stacks:  Push, Pop, IsEmpty

Applications sample:

1. “reverse a list”

2. “reverse” an integer;  2980078600    (  68700892

3. Balancing parenthesis   {a + [b*( a – [c*(a-b)+e]*{a – b*(c – p)}] + 5)*7}*(c – d)

Properly balanced???

Algorithm: process the expression. 

· Discard everything but parenthesis. 

· Push a left-handed parenthesis on the stack. 

· When you encounter a right-handed parenthesis pop the stack and check whether they match. If not STOP.

· If stack is empty when finished processing the expression is syntactically correct.

4. Evaluate Postfix expressions.   6  5  2  3  +  8  *  +  3  +  *   (pages 82 – 83)

Algorithm:  



while more token do {




if(token is numeric) push on stack;




if(token is = op) a = pop(); b = pop(); c = a op b; push(c);




}



return pop()

6 5  2  3  (3 is at the top of the stack) reading  +

6  5  5  8  (reading *)

6 5  40  (reading +)

6   45  3   (reading +)

6    48   (reading *)

288

return  228

5. Infix ( Postfix.   (page 84)

Algorithm:  Assume infix expression is stored in a string called Infix

a. Read Infix from left to right

b. If current token is numeric append to Postfix
c. If current token read from Infix is ‘(‘  push on stack

d. If current token read from Infix is an operator pop operators (if any) from the stack as long as they have equal or higher precedence than current operator and append to Postfix. Push current operator on the stack.

e. If current token read from Infix is ‘)’ pop operators from the stack and append to Postfix until a ‘(‘ is encountered. Pop ‘(‘ and discard.

f. Pop remaining operators and append to Postfix.

Example:   (12 + 5)*(17 – 3) + 67/5 – 2

Stack





Postfix:

(





12

+  (    (push + rule d.)



12  5

Empty (read ‘)’,  rule e)


12  5  +

* 

(  *

(  * 
(read 17, rule b)


12  5  +  17

–  (  *  

–  (  *  





12  5  +  17  3

*





12  5  +  17  3  –

+  (read +, rule d * higher precedence)
12  5  +  17  3  –  *

+  





12  5  +  17  3  –  *  67

/  +





12  5  +  17  3  –  *  67

/  +





12  5  +  17  3  –  *  67  5

–  +





12  5  +  17  3  –  *  67  5  /

–  +





12  5  +  17  3  –  *  67  5  /  2

Empty





12  5  +  17  3  –  *  67  5  /  2  –  + 

(4, 40098) 40098





(8, 3765) 40098





(1, 56) 40098





(2, 0) 40098








