Lecture 2.

Reading: Chapter 1: sections 1.1 - 1.4 (skip the rest of the chapter)

 Chapter 2: 2.1 – 2.4

The Assignment Problem (not in the text): n companies bid on n jobs. Each company is to be assigned exactly one job. Which assignment minimizes the total cost?

The “cost” matrix is an nxn matrix of positive numbers.

	
	Job #1
	Job #2
	Job #3
	Job #4

	Co. #1
	35
	67
	29
	41

	Co. #2
	43
	55
	31
	44

	Co. #3
	32
	73
	37
	40

	Co. #4
	39
	63
	29
	45

An assignment can be represented by a 4-permutation. For instance, the permutation [1,2,3,4] means that job #k is assigned to company #k. The cost of this assignment is 174.

The permutation [3,1,4,2] means that co #1 is assigned job #3, co. #2 job #1 etc. the cost of this assignment is: 175.

	
	Job #1
	Job #2
	Job #3
	Job #4

	Co. #1
	6
	38
	0
	12

	Co. #2
	43
	55
	31
	44

	Co. #3
	32
	73
	37
	40

	Co. #4
	39
	63
	29
	45

This instance is “equivalent” to the previous instance. The cost of two identical assignments (Companies ((jobs) will differ by exactly 29. Thus an optimal assignment for the second instance will be an optimal assignment for the first instance.

	
	Job #1
	Job #2
	Job #3
	Job #4

	Co. #1
	6
	38
	0
	12

	Co. #2
	12
	24
	0
	13

	Co. #3
	0
	41
	15
	18

	Co. #4
	10
	34
	0
	16

Similarly, this instance is equivalent to the previous two instances.

	
	Job #1
	Job #2
	Job #3
	Job #4

	Co. #1
	6
	14
	0
	0

	Co. #2
	12
	0
	0
	1

	Co. #3
	0
	17
	15
	6

	Co. #4
	10
	10
	0
	4

Also this instance is equivalent to the previous instances. But this instance has an obvious optimal solution: [4, 2, 1, 3] its cost is 0. Hence this assignment is the optimal assignment for the original problem. Its cost is 157.

Concepts:

1. Algorithm

2. Step

3. Instance

4. Size

5. Equivalent Instances

6. Easy instance

Summary: In the assignment problem we executed a sequence of “reductions” through equivalent instances until we reached an “easy instance”. We solved the easy instance and converted it to a solution of the original problem.

Permutations: Review Discrete Math book page 250 – 251, algorithms for generating permutations: Lexicographic order (page 296 – 298), Cantor Digits (page 300 problem 10), Arrow Algorithm (lecture notes).

Comments: the “naïve” solution calls for generating all permutations, interpreting each permutation as an assignment (or a tour for the TSP), evaluate the permutation and track the optimal. Since the number of permutations becomes too large rather quickly, this is not a practical solution. If no better solution is available, one may try to generate say 10,000 random permutations and select the best among them.

How can one “randomly” generate permutations?

Drill: Can you solve the following assignment problem:

162 134 159 121 142 147 192 121
150 159 179 178 156 184 185 157
159 196 172 121 105 113 112 192
147 186 117 155 129 108 143 115
105 179 148 126 105 193 140 196
110 157 167 126 105 170 164 163
149 152 104 191 102 193 159 147
104 133 184 129 119 150 189 113
Note: you can use Excel to reduce this instance to an easy instance.

Generic Objects in Java.
Consider the problem of finding the largest member in a collection. In pseudocode this may look as follows:

largest = first(collection);

while !Empty(collection) {

 item = collection.next();

 if (item > largest)

 largest = item;

}

Two basic steps are executed repeatedly: produce the next element and compare two elements. Is it possible to write one method that can be used for all types of Objects?

Java provides the mechanism to do it. The following scheme describes this mechanism:

We wish to develop a single method, focus on its correctness without being bothered by the details of the objects under consideration. The classes Comparable and Iterator provide this mechanism.

Remark: the instances

 And

 Are equivalent instances.

They will also be equivalent instances for a sorting method.

Recursion (section 1.3):

Recursion is a very powerful problem solving method. A method calling itself (direct recursion) or method A calling method B method B calling method A (indirect recursion).

Examples:

1. public static int getDig(int n, int k) {

a. if (k = = 1)

b. return n%10;

c. else

d. return getDig(n/10, k -1); //method calls itself

e. }

(Extract the k-th least significant digit from the integer n)

2. public static int print_vertical(int n) {

3. if (n < 10)

4. System.out.println(n);

5. else {

6. print_vertical (n/10); //method calls itself

7. System.out.println(n%10);

8. }

}

//Print numbers in “accounting” format, 2300560098 (2,300,560,098

static void Decimal(long Num) {

 if (Num < 1000)

 System.out.print(Num);

 else {

 Decimal(Num / 1000);

 System.out.print(",");

 PrintProper(Num % 1000);

 }

 }//Decimal

Correctness of recursive methods can usually be established by mathematical induction.

The following two principles should be carefully addressed when designing a recursive method:

1. Base case(s) aka exit condition. This must be solved without recursion.

2. Make progress: the recursive call must always be a case that makes progress towards a base case.

Two additional important rules:

· Design rule: assume that all recursive calls work

· Compound interest rule: avoid duplications.

Example: Fibonacci numbers: f0 = 0; f1 = 1; fn = fn-1 + fn-2
Code:

 static int Fibonacci(int k) {

 if (k == 0)

 return 0;

 else if (k == 1)

 return 1;

//two base cases

 else

 return (Fibonacci(k-1) + Fibonacci(k-2));

 }

Drill: How many times a call to Fibonacci() will be executed when calling Fibonacci(5)? Fibonacci(10) ?

static int Binomial(int n, int k) {

 if (k > n)

 return 0;

 else if ((k == n) || (k == 0)

 return 1;

//three base cases

 else

 return (Binomial(n-1, k-1) + Binomial(n-1,k));

 }

Drill: How many times a call to Binomial() will be executed when calling

 Binomial(7, 5)? Binomial(10,6)?

Some algorithms we encountered:

1. GCD

2. ExtendedGCD

3. Exponentiation

4. Search a list

5. Binary Search

6. Sorting algorithms

7. Conversion to other bases

8. Primality testing

9. Arrow Algorithm

10. ???

Guiding principles for writing recursive routines: (Page 10).

1. Base case, or exit condition.

2. Making progress.

3. Design rule: all recursive calls work. (let the computer work out the details, not you).
4. Compound interest rule. (Avoid duplications, i.e. Fibonacci, Binomials).
Relative growth of Functions. (pages 29 – 32)

Recall: T(n) = ((f(n))

T(n) = ((f(n))

T(n) = ((f(n))

The functions f(n) in the right side are “simple functions”

T(n) = ((1) means that T(n) is bounded by a constant.

For example: 1.
[image: image1.wmf])

1

(

2

1

1

O

=

å

=

n

i

i

 (very easy)

2.
[image: image2.wmf])

1

(

2

1

O

=

å

=

n

i

i

i

 (tricky and not obvious).

3. 1 + 2 + 3 + …. + n = O(n2).

 If T(n) is a polynomial in n of degree k then T(n) = O(nk).

Rules: (i) T1(n) = O(f(n)) T2(n) = O(g(n)) (T1(n) + T2(n) = max(O(f(n)) O(g(n)))

Example:
T1(n) =
[image: image3.wmf]å

=

n

i

i

1

 = O(n2) T2(n) =
[image: image4.wmf]å

=

n

i

i

1

2

= O(n3)

T1(n) + T2(n) =
[image: image5.wmf]å

=

+

n

i

i

i

1

2

= O(n3)

(ii) T1(n) *T2(n) = O(f(n)*g(n))

Example:
T1(n) =
[image: image6.wmf]å

=

n

i

i

1

 = O(n2) T2(n) =
[image: image7.wmf]å

=

n

i

i

1

2

= O(n3)

T1(n) * T2(n) = O(n5)

Analyze this… (what to analyze).

Rule 1: for loops:

The running time is at most the running time of the statements inside the loop times the number of iterations. Frequently, we shall consider the running time of a statement inside a for loop as a “unit” time, especially if its execution time is independent of the value of the for counter.

Example:

Sum = 0;

for(k = 1; k <= n, k++)

sum += k*k*k;

This loop executes n times. The time it takes to calculate k*k*k is one “unit” (we do not care how long).

Nested for loops:

 Analyze nested for loops “inside-out”. The running time of a statement inside a group of nested for loops can be usually expressed as a sum.

Example:

 Sum = 0;

 for (k = 0; k < n; k++)

 for(j = 0; j < k; j++)

 sum++;

Hint: in this example at the end of execution, sum will tell you exactly how many times the loop was executed.

The answer (without looking at sum) is 0 + 1 + 2 + … + (n – 1) = O(n2)

Sum = 0;

 for (k = 0; k < n; k++)

 for (j = 0; j < k; j++)

 for (m = 0; m < j; m++)

 sum++;

Inside out processing: the inner two loops execute O(j2) times. The outer loop executes n times for a total of n.O(j2) = O(n3).

Consecutive statements:

 for (k = 0; k < n; k++)

 for(j = 0; j < k; j++)

 sum++;

 for (k = 0; k < n; k++)

 for (j = 0; j < k; j++)

 for (m = 0; m < j; m++)

 sum++;

Running time will be O(n2) + O(n3) = O(n3).

Log in the running time:

Recall: 2k = m ((log2 m = k.

 Thus log2 128 = 7 (27 = 128) log2 200 = 7.643856

 (7.643856(= 8

Usually in algorithm analysis we are concerned with counting steps, hence our results are integers, so frequently we shall use the “ceiling” or “floor” functions: (log2 m (which can be defined in a manner more suitable for analysis:

 (log2 m(= # of times that m can be repeatedly divided by 2 until we reach a number

(1.

 (log2 600(= 10 {300, 150, 75, 37.5, 18.725, 9.8…, 4.9…, 2.9…, 1.4…, 0.7…}

Binary search: running time : (log2 m(.

Euclid’s algorithm: (iterations)

public static long gcd(long m, long n) {

while (n != 0) {

 long rem = m%n;

 m = n;

 n = rem;

}

return m;

}

Recursive version:

public static long gcd(long m, long n) {

if(n*m == 0)

 return n + m;

else

 return gcd(n, m%n);

}

It is not obvious how many iterations or recursive calls will be made before the execution terminates. For instance:

A call to gcd(1234, 543) yields the following sequence of executions (remainders):

1. n = 543

2. n = 148

3. n = 99

4. n = 49

5. n = 2

6. n = 1

7. n = 0

Can we estimate the number of remainders given n and m?

YES! After every two executions the remainder is reduced by ½ of its original value.

Theorem: if m > n then m%n < m/2.

Proof: if n (m/2 then m%n < n < m/2 (the remainder is always less than the quotient).

If n > m/2 then m = n + (m – n) and m – n < m/2.

This implies that the running time is at most 2log n = O(log n).

Find_Max Method

Leo Tiger Chicken Pig Ox Goat

123 543 276 678 367 349

23.89 45.67 27.87 37.65

Tiger

678

45.67

123 543 276 678 367 349

1 5 2 6 4 3

_1047372601.unknown

_1063713264.unknown

_1047372501.unknown

_1047372521.unknown

_1047372150.unknown

