Lecture 1.

Introduction. 1-st assignment.

Mathematical review:  (Pages 1-11) 

1. Exponents

2. Logarithm

3. Series

4. Modular arithmetic

5. Factorial and Binomial coefficients

6. Mathematical Induction

7. Recursion

Generic objects:  Ability to write code which can be applied to different objects. Example in book FindMax.

In class problem solving:

Induction:  Evaluate:    
[image: image1.wmf]å

¥

=

0

4

1

i

i

 = 
[image: image2.wmf]
Approach:  From the drills:  
[image: image3.wmf]1

1

-

-

=

+

=

å

a

a

a

a

k

n

n

k

i

i

    

Sample proof by induction.

· Base case: n = k:   
[image: image4.wmf]1

1

)

1

(

1

-

-

=

-

-

=

=

+

=

å

a

a

a

a

a

a

a

a

k

k

k

k

k

k

i

i


· P(n) : 
[image: image5.wmf]1

1

-

-

=

+

=

å

a

a

a

a

k

n

n

k

i

i

    

· P(n + 1) : 
[image: image6.wmf]1

2

1

-

-

=

+

+

=

å

a

a

a

a

k

n

n

k

i

i

    

· 
[image: image7.wmf]1

1

1

2

1

2

1

1

1

1

1

-

-

=

-

-

+

-

=

+

-

-

=

+

=

+

+

+

+

+

+

+

=

+

=

å

å

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

k

n

n

n

k

n

n

k

n

n

n

k

i

i

n

k

i

i


We may apply this to our first sum. Just choose a = ¼ and k = 0. We get:


[image: image8.wmf]å

=

n

i

i

0

4

1

 = 
[image: image9.wmf]1

4

1

1

)

4

1

(

1

-

-

+

n


When n is “very large” this fraction will be very close to 4/3.    Thus:   
[image: image10.wmf]å

¥

=

0

4

1

i

i

 = 4/3

Postage stamps:  getting the feel…

1. Show that any integer postage greater than 7 cents can be formed using only 3-cent and 5-cent stamps.

Try a few values, for instance:  10 = 2.5;   17  =  4.3 + 1.5;    19 =  2.5 + 3.3

How can add 1 cent to the 19 cents postage to get 20?

P(8) :  8 = 1.3 + 1.5

P(n) :  n = a.3 + b.5   (a, b natural numbers, n > 8)

P(n+1) : n + 1 = c.3 + d.5

· n = a.3 + b.5   by the induction hypothesis.

· If b ( 1 then n + 1 = a.3 + b.5 + 1 = a.3 + b.5 + 6 – 5 = (a + 2).3 + (b – 1).5

· If b = 0, since n  ( 9  a ( 3. n + 1 = a.3 + 1 = (a – 3).3 + 9 + 1 = (a – 3).3 + 2.5

Divisibility:

1. Prove that n5 – n is divisible by 5.

· P(1):  15 – 1 = 0 = 0.5

· P(n):  n5 – n = 5.k

· P(n+1): (n+1)5 – (n + 1) = 5.m

· (n+1)5 = n5 + 5.n4 + 10.n3 + 10.n2 + 5.n + 1

· (n+1)5 – (n + 1) = n5 + 5.n4 + 10.n3 + 10.n2 + 5.n + 1 – (n + 1) =

(n5 – n) + 5(n4 + 2n3 + 2n2 + n) = 5.k + 5(n4 + 2n3 + 2n2 + n) = 5.m.

1. The following Java method returns the sum of the digits of the integer n. Prove its

      correctness by induction.

public static int getDig(int n) {

   if (n < 10)

      return n;

   else

      return n%10 + getDig(n/10);

 }

Proof by induction on the number of digits in the integer n. (Note: not an induction on n).

· P(1): n has one digit. This means that n < 10 and the method will return n.

· P(k): If n contains k digits (n = dkdk-1…d1) then getDig(n) returns dk + dk-1+ … + d1
· P(k+1) : If n contains k + 1 digits (n = dk+1dkdk-1…d1) then getDig(n) returns dk+1 + dk + … + d1
· GetDig(n) = getDig(dk+1dkdk-1…d1) = n%10 + getDig(n/10) = d1 + getDig(dk+1dkdk-1…d2) = d1 + dk+1 + dk + … + d2
Note: in this example you had to design the induction hypothesis.

Why bother with analysis, running time? 

Some simple demonstrations illustrating the effect of choosing a different algorithm for solving the same problem (independent of the programming language or computing environment).

In[1]:= n=1

Out[1]= 1

In[2]:= Timing[For[i=1, i < 1031, i++, n=10^i + n]]

Out[2]= {0.078 Second, Null}

In[6]:= m

Out[6]= 1

In[7]:= Timing[For[i=1, i < 1031, i++, m=m*10+1]]

Out[7]= {0.015 Second, Null}

In[8]:= m-n

Out[8]= 0

In[10]:= Timing[PrimeQ[n]]

Out[10]= {13. Second, True}

Notice:  the running time of the code in In[2] is 1030 + 1029 + … + 1 “multiplications” (depending how smart Mathematica executes the exponentiation) while the code in In[7] is linear, exactly 1030 multiplications.

Even on a relatively small problem size (1031) the time difference is very noticeable!
Learning the lesson…design another algorithm.

In[2]:= Fib[n_]:=If[n<=1,n,Fib[n-1]+Fib[n-2]]

Out[2]= 

(Recursive definition. Note the simple syntax)

In[3]:= Fib[5]

Out[3]= 5

In[4]:= Fib[6]

Out[4]= 8

In[5]:= Timing[Fib[20]]

Out[5]= {0.621 Second, 6765}

In[6]:= Timing[Fib[30]]

Out[6]= {76.64 Second, 832040}

(Takes quite a long time!)

In[7]:= ?Fibonacci

Fibonacci[n] gives the nth Fibonacci number. Fibonacci[n, x] gives the nth Fibonacci

   polynomial, using x as the variable.

In[8]:= Timing[Fibonacci[30]]

Out[8]= {0. Second, 832040}

(Same calculation, same result, much less time! What do they know that we don’t?)

In[9]:= x=0; y = 1; For[i=2, i <=30, i++, y=x+y; x=y-x]

In[10]:= y

Out[10]= 832040

In[11]:= Timing[ x=0; y = 1; For[i=2, i <=30, i++, y=x+y; x=y-x]]

Out[11]= {0. Second, Null}

(Same calculation avoiding recursion, O(n) complexity)

In[12]:= y

Out[12]= 832040

Two classical problems:

The Assignment Problem: n companies bid on n jobs. Each company is to be assigned exactly one job. Which assignment minimizes the total cost?

The “cost” matrix is an nxn matrix of positive numbers. 

	
	Job #1
	Job #2
	Job #3
	Job #4

	Co. #1
	35
	67
	29
	41

	Co. #2
	43
	55
	31
	44

	Co. #3
	32
	73
	37
	40

	Co. #4
	39
	63
	29
	45


An assignment can be represented by a 4-permutation. For instance, the permutation [1,2,3,4] means that job #k is assigned to company #k. The cost of this assignment is 174.

The permutation [3,1,4,2] means that co #1 is assigned job #3, co. #2 job #1 etc. the cost of this assignment is: 175.

To find the cheapest assignment “all” is needed is to check all permutations.

The Traveling Salesman Problem:

A traveling salesman is to visit a list of cities. Each city must be visited exactly once. We know the cost of traveling between any pair of cities. It is given by a table:

	
	Seattle
	Chicago
	Denver
	Boston
	Miami

	Seattle
	0
	345
	235
	542
	605

	Chicago
	363
	0
	423
	412
	509

	Denver
	345
	455
	0
	512
	712

	Boston
	499
	509
	634
	0
	305

	Miami
	587
	427
	563
	299
	0


What is the cheapest way to travel from Seattle, visit all cities and return to Seattle? Again, we can represent each possible tour by a permutation. Thus [1,3,5,2,4] represent a trip Seattle ( Denver ( Miami ( Chicago ( Boston ( Seattle. It is simple to calculate the cost of this tour. Again, to find the cheapest tour all we need to do is evaluate all possible permutations.

In spite of the similar appearance of both problems, they are “world” apart. While there is an efficient algorithm for solving the Assignment problem no such algorithm is known for the TSP problem.

Just imagine, assume that the list consists of say 200 cities. There are 200! Different permutations. Even if we can generate and evaluate 1,000,000 permutations per second, the poor traveling salesman will be long dead before all computers in the universe combined will be able to identify the best tour!

Preparation for lecture 2:   Review permutation, algorithms for generating permutations. 

Read:  Chapter 2.

_1047119588.unknown

_1047119789.unknown

_1047120058.unknown

_1047120345.unknown

_1047120366.unknown

_1047120043.unknown

_1047119666.unknown

_1047045848.unknown

