Discrete Mathematics Midterm

Friday, 21 Oct. 2010

Answer all questions. Your answers will be evaluated on correctness and clarity. Start by reading **all questions** first. Select the question you feel most comfortable with and start by answering it.

Name:

1. Recall: " $p \to q$ " (p implies q) is **False** only when $p = \mathbf{True}$ and $q = \mathbf{False}$. A conjunction is a Boolean expression of the form $(a \land b \land (\neg c) \land \ldots)$. Also written as $(a \cdot b \cdot \overline{c} \ldots)$

A disjunction is a similar boolean expression: $(a + b + \overline{c}...)$

- (a) construct the truth table for: $(p \to q) \land (\neg p \to \neg q)$
- (b) Construct an equivalent conjunction of disjunctions.
- 2. Draw the Venn diagram for: $(A \setminus B) \cup (C \setminus A) \cup (B \setminus C)$
- 3. Let $A = \{1.2, 3, 4\} \times \{1, 2, 3, 4, 6\}$. A relation on A is defined by: $(x, y) \propto (s, t)$ if $x \cdot t = y \cdot s$.
 - (a) Show that \propto is an equivalence relation.
 - (b) For each equivalence class list one memebr belonging to it.

Name

- 4. Let X be a set. Prove that there is an injunction $f: P(X) \to X$ but there is no injunction $g: X \to P(X)$.
- 5. Prove that $5^{n+1} + 2 \cdot 3^n + 1$ is divisible by $8 \ \forall n \ge 1$.
- 6. Prove that if p > 3 is a prime then $p^2 \mod 12 = 1$.
- 7. (a) Prove that for every finite set A it is possible to construct n subsets $A_1, A_2, \ldots, A_n, (n = |A|)$ such that $|A_i \cap A_j| = 1$ if $i \neq j$.
 - (b) Prove that it is not possible to construct more than n subset such that each two different subsets have exactly one element of A in common.
- 8. (a) What is the line in the Projective Plane PG(5) through the point (2,0,1) and (0,1,2)
 - (b) Give a brief explanation how we can partition a set of 31 players into 31 teams such that each team has six players and every two teams have exactly one player in common.