Discrete Mathematics Midterm

Friday, 21 Oct. 2010

Answer all questions. Your answers will be evaluated on correctness and clarity. Start by reading all questions first. Select the question you feel most comfortable with and start by answering it.

Name:

1. Recall: " $p \rightarrow q$ " (p implies q) is False only when $\mathrm{p}=$ True and $\mathrm{q}=$ False.

A conjunction is a Boolean expression of the form $(a \wedge b \wedge(\neg c) \wedge \ldots)$. Also written as $(a \cdot b \cdot \bar{c} \ldots)$
A disjunction is a similar boolean expression: $(a+b+\bar{c} \ldots)$
(a) construct the truth table for: $(p \rightarrow q) \wedge(\neg p \rightarrow \neg q)$
(b) Construct an equivalent conjunction of disjunctions.
2. Draw the Venn diagram for: $(A \backslash B) \cup(C \backslash A) \cup(B \backslash C)$
3. Let $A=\{1.2,3,4\} \times\{1,2,3,4,6\}$. A relation on A is defined by: $(x, y) \propto(s, t)$ if $x \cdot t=y \cdot s$.
(a) Show that \propto is an equivalence relation.
(b) For each equivalence class list one memebr belonging to it.

Name

4. Let X be a set. Prove that there is an injunction $f: P(X) \rightarrow X$ but there is no injunction $g: X \rightarrow P(X)$.
5. Prove that $5^{n+1}+2 \cdot 3^{n}+1$ is divisible by $8 \forall n \geq 1$.
6. Prove that if $p>3$ is a prime then $p^{2} \bmod 12=1$.
7. (a) Prove that for every finite set A it is possible to construct n subsets $A_{1}, A_{2}, \ldots, A_{n},(n=$ $|A|)$ such that $\left|A_{i} \cap A_{j}\right|=1$ if $i \neq j$.
(b) Prove that it is not possible to construct more than n subset such that each two different subsets have exactly one element of A in common.
8. (a) What is the line in the Projective Plane $\operatorname{PG}(5)$ through the point $(2,0,1)$ and $(0,1,2)$
(b) Give a brief explanation how we can partition a set of 31 players into 31 teams such that each team has six players and every two teams have exactly one player in common.
