
Discrete Optimization: A sample of
Problems

Ngày 29 tháng 12 năm 2010

Discrete Optimization: A sample of Problems



A Brief Introduction to Discrete Optimization

Discrete or Combinatorial Optimization deals mainly with
problems where we have to choose an optimal solution from a
finite (or sometimes countable) number of possibilities.

In this short introduction we shall visit a sample of Discrete
Optimization problems, step through the thinking process of
developing a solution and completely solve one problem.
Let us start with a short list of problems.

Example
You have a collection of 10000 objects. Each object has a
“value” vn (say 44,500 VND).

1 Can you find a subset of objects whose total value is
2,000,000,000 VND?

2 Can you partition the collection into two sub collections of
equal value?

Discrete Optimization: A sample of Problems



A Brief Introduction to Discrete Optimization

Discrete or Combinatorial Optimization deals mainly with
problems where we have to choose an optimal solution from a
finite (or sometimes countable) number of possibilities.

In this short introduction we shall visit a sample of Discrete
Optimization problems, step through the thinking process of
developing a solution and completely solve one problem.
Let us start with a short list of problems.

Example
You have a collection of 10000 objects. Each object has a
“value” vn (say 44,500 VND).

1 Can you find a subset of objects whose total value is
2,000,000,000 VND?

2 Can you partition the collection into two sub collections of
equal value?

Discrete Optimization: A sample of Problems



A Brief Introduction to Discrete Optimization

Discrete or Combinatorial Optimization deals mainly with
problems where we have to choose an optimal solution from a
finite (or sometimes countable) number of possibilities.

In this short introduction we shall visit a sample of Discrete
Optimization problems, step through the thinking process of
developing a solution and completely solve one problem.
Let us start with a short list of problems.

Example
You have a collection of 10000 objects. Each object has a
“value” vn (say 44,500 VND).

1 Can you find a subset of objects whose total value is
2,000,000,000 VND?

2 Can you partition the collection into two sub collections of
equal value?

Discrete Optimization: A sample of Problems



A Brief Introduction to Discrete Optimization

Discrete or Combinatorial Optimization deals mainly with
problems where we have to choose an optimal solution from a
finite (or sometimes countable) number of possibilities.

In this short introduction we shall visit a sample of Discrete
Optimization problems, step through the thinking process of
developing a solution and completely solve one problem.
Let us start with a short list of problems.

Example
You have a collection of 10000 objects. Each object has a
“value” vn (say 44,500 VND).

1 Can you find a subset of objects whose total value is
2,000,000,000 VND?

2 Can you partition the collection into two sub collections of
equal value?

Discrete Optimization: A sample of Problems



A Brief Introduction to Discrete Optimization

Discrete or Combinatorial Optimization deals mainly with
problems where we have to choose an optimal solution from a
finite (or sometimes countable) number of possibilities.

In this short introduction we shall visit a sample of Discrete
Optimization problems, step through the thinking process of
developing a solution and completely solve one problem.
Let us start with a short list of problems.

Example
You have a collection of 10000 objects. Each object has a
“value” vn (say 44,500 VND).

1 Can you find a subset of objects whose total value is
2,000,000,000 VND?

2 Can you partition the collection into two sub collections of
equal value?

Discrete Optimization: A sample of Problems



Remark
Both problems are very simple and easy to understand.

Both seem to have a very “simple” mathematical solution:
Try all possibilities.
The solutions are not practical even with the fastest computers.

Remark
This situation is typical of many discrete optimization problems.
The number of options from which an optimal solution to be
chosen is way to big.

For instance, both problems can be solved by testing all
possible subsets of objects.

There are “only” 210000 subsets... :-(

Discrete Optimization: A sample of Problems



Remark
Both problems are very simple and easy to understand.

Both seem to have a very “simple” mathematical solution:
Try all possibilities.
The solutions are not practical even with the fastest computers.

Remark
This situation is typical of many discrete optimization problems.
The number of options from which an optimal solution to be
chosen is way to big.

For instance, both problems can be solved by testing all
possible subsets of objects.

There are “only” 210000 subsets... :-(

Discrete Optimization: A sample of Problems



Remark
Both problems are very simple and easy to understand.
Both seem to have a very “simple” mathematical solution:
Try all possibilities.

The solutions are not practical even with the fastest computers.

Remark
This situation is typical of many discrete optimization problems.
The number of options from which an optimal solution to be
chosen is way to big.

For instance, both problems can be solved by testing all
possible subsets of objects.

There are “only” 210000 subsets... :-(

Discrete Optimization: A sample of Problems



Remark
Both problems are very simple and easy to understand.
Both seem to have a very “simple” mathematical solution:
Try all possibilities.
The solutions are not practical even with the fastest computers.

Remark
This situation is typical of many discrete optimization problems.
The number of options from which an optimal solution to be
chosen is way to big.

For instance, both problems can be solved by testing all
possible subsets of objects.

There are “only” 210000 subsets... :-(

Discrete Optimization: A sample of Problems



Remark
Both problems are very simple and easy to understand.
Both seem to have a very “simple” mathematical solution:
Try all possibilities.
The solutions are not practical even with the fastest computers.

Remark
This situation is typical of many discrete optimization problems.
The number of options from which an optimal solution to be
chosen is way to big.

For instance, both problems can be solved by testing all
possible subsets of objects.

There are “only” 210000 subsets... :-(

Discrete Optimization: A sample of Problems



Remark
Both problems are very simple and easy to understand.
Both seem to have a very “simple” mathematical solution:
Try all possibilities.
The solutions are not practical even with the fastest computers.

Remark
This situation is typical of many discrete optimization problems.
The number of options from which an optimal solution to be
chosen is way to big.

For instance, both problems can be solved by testing all
possible subsets of objects.

There are “only” 210000 subsets... :-(

Discrete Optimization: A sample of Problems



Remark
Both problems are very simple and easy to understand.
Both seem to have a very “simple” mathematical solution:
Try all possibilities.
The solutions are not practical even with the fastest computers.

Remark
This situation is typical of many discrete optimization problems.
The number of options from which an optimal solution to be
chosen is way to big.

For instance, both problems can be solved by testing all
possible subsets of objects.

There are “only” 210000 subsets... :-(

Discrete Optimization: A sample of Problems



A sample of solvable scheduling problems

Question (Scheduling to minimize lateness)
A single resource is available to process jobs (for instance a
printer in an office, a big crane in a building site, etc.). n jobs
are to be processed by the resource. Once a job starts, it
cannot be interrupted. Processing jobs starts at time 0. Each
job has a deadline di and processing time pi . We need to
schedule the jobs so that the lateness (fi − di ), the difference
between the finishing time and deadline will be minimized.

Question (Scheduling to minimize the number of late jobs)
We can have different objectives for the same problem. For
instance, we wish to schedule the same jobs so that the
number of late jobs will be minimized.

Discrete Optimization: A sample of Problems



A sample of solvable scheduling problems

Question (Scheduling to minimize lateness)
A single resource is available to process jobs (for instance a
printer in an office, a big crane in a building site, etc.). n jobs
are to be processed by the resource. Once a job starts, it
cannot be interrupted. Processing jobs starts at time 0. Each
job has a deadline di and processing time pi . We need to
schedule the jobs so that the lateness (fi − di ), the difference
between the finishing time and deadline will be minimized.

Question (Scheduling to minimize the number of late jobs)
We can have different objectives for the same problem. For
instance, we wish to schedule the same jobs so that the
number of late jobs will be minimized.

Discrete Optimization: A sample of Problems



Solution candidates

Discussion
The solution to both problems looks mathematically simple:

1 Generate all possible orderings (permutations) of the jobs.
2 For each ordering calculate the maximum lateness (or the

number of late jobs).
3 Note that it is very easy to write a program that will

calculate these number very fast.
4 Select the optimal ordering.
5 So what is the problem?
6 There are “only” n! permutations to consider!
7 If n = 100 then there are only 100! possibilities and 100! is

so huge, it does not have a name in any language. It is
“only” 158-digits long.

Discrete Optimization: A sample of Problems



Solution candidates

Discussion
The solution to both problems looks mathematically simple:

1 Generate all possible orderings (permutations) of the jobs.

2 For each ordering calculate the maximum lateness (or the
number of late jobs).

3 Note that it is very easy to write a program that will
calculate these number very fast.

4 Select the optimal ordering.
5 So what is the problem?
6 There are “only” n! permutations to consider!
7 If n = 100 then there are only 100! possibilities and 100! is

so huge, it does not have a name in any language. It is
“only” 158-digits long.

Discrete Optimization: A sample of Problems



Solution candidates

Discussion
The solution to both problems looks mathematically simple:

1 Generate all possible orderings (permutations) of the jobs.
2 For each ordering calculate the maximum lateness (or the

number of late jobs).

3 Note that it is very easy to write a program that will
calculate these number very fast.

4 Select the optimal ordering.
5 So what is the problem?
6 There are “only” n! permutations to consider!
7 If n = 100 then there are only 100! possibilities and 100! is

so huge, it does not have a name in any language. It is
“only” 158-digits long.

Discrete Optimization: A sample of Problems



Solution candidates

Discussion
The solution to both problems looks mathematically simple:

1 Generate all possible orderings (permutations) of the jobs.
2 For each ordering calculate the maximum lateness (or the

number of late jobs).
3 Note that it is very easy to write a program that will

calculate these number very fast.

4 Select the optimal ordering.
5 So what is the problem?
6 There are “only” n! permutations to consider!
7 If n = 100 then there are only 100! possibilities and 100! is

so huge, it does not have a name in any language. It is
“only” 158-digits long.

Discrete Optimization: A sample of Problems



Solution candidates

Discussion
The solution to both problems looks mathematically simple:

1 Generate all possible orderings (permutations) of the jobs.
2 For each ordering calculate the maximum lateness (or the

number of late jobs).
3 Note that it is very easy to write a program that will

calculate these number very fast.
4 Select the optimal ordering.

5 So what is the problem?
6 There are “only” n! permutations to consider!
7 If n = 100 then there are only 100! possibilities and 100! is

so huge, it does not have a name in any language. It is
“only” 158-digits long.

Discrete Optimization: A sample of Problems



Solution candidates

Discussion
The solution to both problems looks mathematically simple:

1 Generate all possible orderings (permutations) of the jobs.
2 For each ordering calculate the maximum lateness (or the

number of late jobs).
3 Note that it is very easy to write a program that will

calculate these number very fast.
4 Select the optimal ordering.
5 So what is the problem?

6 There are “only” n! permutations to consider!
7 If n = 100 then there are only 100! possibilities and 100! is

so huge, it does not have a name in any language. It is
“only” 158-digits long.

Discrete Optimization: A sample of Problems



Solution candidates

Discussion
The solution to both problems looks mathematically simple:

1 Generate all possible orderings (permutations) of the jobs.
2 For each ordering calculate the maximum lateness (or the

number of late jobs).
3 Note that it is very easy to write a program that will

calculate these number very fast.
4 Select the optimal ordering.
5 So what is the problem?
6 There are “only” n! permutations to consider!

7 If n = 100 then there are only 100! possibilities and 100! is
so huge, it does not have a name in any language. It is
“only” 158-digits long.

Discrete Optimization: A sample of Problems



Solution candidates

Discussion
The solution to both problems looks mathematically simple:

1 Generate all possible orderings (permutations) of the jobs.
2 For each ordering calculate the maximum lateness (or the

number of late jobs).
3 Note that it is very easy to write a program that will

calculate these number very fast.
4 Select the optimal ordering.
5 So what is the problem?
6 There are “only” n! permutations to consider!
7 If n = 100 then there are only 100! possibilities and 100! is

so huge, it does not have a name in any language. It is
“only” 158-digits long.

Discrete Optimization: A sample of Problems



solution cndidates

Question
Can we try to suggest a solution to the minimum lateness
problem?

How about scheduling the jobs in order of increasing
processing time ?

The idea: get rid of the short jobs first.
Won’t work! Consider 2 jobs:
J1(p1 = 100, d1 = 1000) J2(p2 = 500, d2 = 500).
In this schedule J2 will finish at time 600 or 100 minutes late.
On the other hand, if we schedule J2 first it will finish on time at
time 500 and J1 will finish at time 600 with no lateness.
Seems like the problem is that we ignore the finish time.

Discrete Optimization: A sample of Problems



solution cndidates

Question
Can we try to suggest a solution to the minimum lateness
problem?

How about scheduling the jobs in order of increasing
processing time ?

The idea: get rid of the short jobs first.
Won’t work! Consider 2 jobs:
J1(p1 = 100, d1 = 1000) J2(p2 = 500, d2 = 500).
In this schedule J2 will finish at time 600 or 100 minutes late.
On the other hand, if we schedule J2 first it will finish on time at
time 500 and J1 will finish at time 600 with no lateness.
Seems like the problem is that we ignore the finish time.

Discrete Optimization: A sample of Problems



solution cndidates

Question
Can we try to suggest a solution to the minimum lateness
problem?

How about scheduling the jobs in order of increasing
processing time ?
The idea: get rid of the short jobs first.

Won’t work! Consider 2 jobs:
J1(p1 = 100, d1 = 1000) J2(p2 = 500, d2 = 500).
In this schedule J2 will finish at time 600 or 100 minutes late.
On the other hand, if we schedule J2 first it will finish on time at
time 500 and J1 will finish at time 600 with no lateness.
Seems like the problem is that we ignore the finish time.

Discrete Optimization: A sample of Problems



solution cndidates

Question
Can we try to suggest a solution to the minimum lateness
problem?

How about scheduling the jobs in order of increasing
processing time ?
The idea: get rid of the short jobs first.
Won’t work! Consider 2 jobs:
J1(p1 = 100, d1 = 1000) J2(p2 = 500, d2 = 500).

In this schedule J2 will finish at time 600 or 100 minutes late.
On the other hand, if we schedule J2 first it will finish on time at
time 500 and J1 will finish at time 600 with no lateness.
Seems like the problem is that we ignore the finish time.

Discrete Optimization: A sample of Problems



solution cndidates

Question
Can we try to suggest a solution to the minimum lateness
problem?

How about scheduling the jobs in order of increasing
processing time ?
The idea: get rid of the short jobs first.
Won’t work! Consider 2 jobs:
J1(p1 = 100, d1 = 1000) J2(p2 = 500, d2 = 500).
In this schedule J2 will finish at time 600 or 100 minutes late.

On the other hand, if we schedule J2 first it will finish on time at
time 500 and J1 will finish at time 600 with no lateness.
Seems like the problem is that we ignore the finish time.

Discrete Optimization: A sample of Problems



solution cndidates

Question
Can we try to suggest a solution to the minimum lateness
problem?

How about scheduling the jobs in order of increasing
processing time ?
The idea: get rid of the short jobs first.
Won’t work! Consider 2 jobs:
J1(p1 = 100, d1 = 1000) J2(p2 = 500, d2 = 500).
In this schedule J2 will finish at time 600 or 100 minutes late.
On the other hand, if we schedule J2 first it will finish on time at
time 500 and J1 will finish at time 600 with no lateness.

Seems like the problem is that we ignore the finish time.

Discrete Optimization: A sample of Problems



solution cndidates

Question
Can we try to suggest a solution to the minimum lateness
problem?

How about scheduling the jobs in order of increasing
processing time ?
The idea: get rid of the short jobs first.
Won’t work! Consider 2 jobs:
J1(p1 = 100, d1 = 1000) J2(p2 = 500, d2 = 500).
In this schedule J2 will finish at time 600 or 100 minutes late.
On the other hand, if we schedule J2 first it will finish on time at
time 500 and J1 will finish at time 600 with no lateness.
Seems like the problem is that we ignore the finish time.

Discrete Optimization: A sample of Problems



Question
How about scheduling by the shortest difference di − pi , these
are the jobs that look to have less time to wait. This schedule
does consider all data.

Discussion
Once again we can show that this rule fails.

To do this we need to show an example where this rule fails to
produce the smallest lateness.
Assume that J1(p1 = 100,d1 = 100), J2(p2 = 5,d2 = 10).
The suggested schedule will schedule J1 first causing J2 to
finish at time 110, 100 minutes delay. On the other hand if we
schedule J2 first J1 will finish at time 105 with a delay of only 5
minutes.

Discrete Optimization: A sample of Problems



Question
How about scheduling by the shortest difference di − pi , these
are the jobs that look to have less time to wait. This schedule
does consider all data.

Discussion
Once again we can show that this rule fails.

To do this we need to show an example where this rule fails to
produce the smallest lateness.
Assume that J1(p1 = 100,d1 = 100), J2(p2 = 5,d2 = 10).
The suggested schedule will schedule J1 first causing J2 to
finish at time 110, 100 minutes delay. On the other hand if we
schedule J2 first J1 will finish at time 105 with a delay of only 5
minutes.

Discrete Optimization: A sample of Problems



Question
How about scheduling by the shortest difference di − pi , these
are the jobs that look to have less time to wait. This schedule
does consider all data.

Discussion
Once again we can show that this rule fails.

To do this we need to show an example where this rule fails to
produce the smallest lateness.
Assume that J1(p1 = 100,d1 = 100), J2(p2 = 5,d2 = 10).
The suggested schedule will schedule J1 first causing J2 to
finish at time 110, 100 minutes delay. On the other hand if we
schedule J2 first J1 will finish at time 105 with a delay of only 5
minutes.

Discrete Optimization: A sample of Problems



Question
How about scheduling by the shortest difference di − pi , these
are the jobs that look to have less time to wait. This schedule
does consider all data.

Discussion
Once again we can show that this rule fails.
To do this we need to show an example where this rule fails to
produce the smallest lateness.

Assume that J1(p1 = 100,d1 = 100), J2(p2 = 5,d2 = 10).
The suggested schedule will schedule J1 first causing J2 to
finish at time 110, 100 minutes delay. On the other hand if we
schedule J2 first J1 will finish at time 105 with a delay of only 5
minutes.

Discrete Optimization: A sample of Problems



Question
How about scheduling by the shortest difference di − pi , these
are the jobs that look to have less time to wait. This schedule
does consider all data.

Discussion
Once again we can show that this rule fails.
To do this we need to show an example where this rule fails to
produce the smallest lateness.
Assume that J1(p1 = 100,d1 = 100), J2(p2 = 5,d2 = 10).
The suggested schedule will schedule J1 first causing J2 to
finish at time 110, 100 minutes delay. On the other hand if we
schedule J2 first J1 will finish at time 105 with a delay of only 5
minutes.

Discrete Optimization: A sample of Problems



The best schedule for minimizng lateness

There is a somewhat surprising schedule that minimizes the
lateness. The surprise is that it ignores the processing time.

Theorem
Performing the jobs by increasing deadline will produce the
minimal lateness.

In other words, by presorting the jobs by their deadline di we
get the optimal schedule. Clearly this can be easily
accomplished very fast even for millions of jobs!

Discrete Optimization: A sample of Problems



Chứng minh.

1 Let J1 J2 . . . Jn be a schedule.
2 For this schedule we have:

fm =
m∑

i=1

pi

.
3 Assume that for some index k , dk > dk+1. (An inversion in

the permutation).
4 Let us compare the lateness of this schedule with the

schedule: J1, J2, . . . , Jk−1, jk+1, Jk . . . , Jn.
5 It is easy to see that fi − di remains the same for all jobs

different from Jk and Jk+1.

Discrete Optimization: A sample of Problems



Chứng minh.
1 Let J1 J2 . . . Jn be a schedule.

2 For this schedule we have:

fm =
m∑

i=1

pi

.
3 Assume that for some index k , dk > dk+1. (An inversion in

the permutation).
4 Let us compare the lateness of this schedule with the

schedule: J1, J2, . . . , Jk−1, jk+1, Jk . . . , Jn.
5 It is easy to see that fi − di remains the same for all jobs

different from Jk and Jk+1.

Discrete Optimization: A sample of Problems



Chứng minh.
1 Let J1 J2 . . . Jn be a schedule.
2 For this schedule we have:

fm =
m∑

i=1

pi

.

3 Assume that for some index k , dk > dk+1. (An inversion in
the permutation).

4 Let us compare the lateness of this schedule with the
schedule: J1, J2, . . . , Jk−1, jk+1, Jk . . . , Jn.

5 It is easy to see that fi − di remains the same for all jobs
different from Jk and Jk+1.

Discrete Optimization: A sample of Problems



Chứng minh.
1 Let J1 J2 . . . Jn be a schedule.
2 For this schedule we have:

fm =
m∑

i=1

pi

.
3 Assume that for some index k , dk > dk+1. (An inversion in

the permutation).

4 Let us compare the lateness of this schedule with the
schedule: J1, J2, . . . , Jk−1, jk+1, Jk . . . , Jn.

5 It is easy to see that fi − di remains the same for all jobs
different from Jk and Jk+1.

Discrete Optimization: A sample of Problems



Chứng minh.
1 Let J1 J2 . . . Jn be a schedule.
2 For this schedule we have:

fm =
m∑

i=1

pi

.
3 Assume that for some index k , dk > dk+1. (An inversion in

the permutation).
4 Let us compare the lateness of this schedule with the

schedule: J1, J2, . . . , Jk−1, jk+1, Jk . . . , Jn.

5 It is easy to see that fi − di remains the same for all jobs
different from Jk and Jk+1.

Discrete Optimization: A sample of Problems



Chứng minh.
1 Let J1 J2 . . . Jn be a schedule.
2 For this schedule we have:

fm =
m∑

i=1

pi

.
3 Assume that for some index k , dk > dk+1. (An inversion in

the permutation).
4 Let us compare the lateness of this schedule with the

schedule: J1, J2, . . . , Jk−1, jk+1, Jk . . . , Jn.
5 It is easy to see that fi − di remains the same for all jobs

different from Jk and Jk+1.

Discrete Optimization: A sample of Problems



End of proof

1 Let us denote the finishing time for this schedule by gi .

2 We have:

gk+1−dk+1 =
k−1∑
i=1

pi +pk+1−dk+1 <
k+1∑
i=1

pi −dk+1 = fk+1−dk+1

Similarly:

gk − dk =
k+1∑
i=1

pi − dk = fk+1 − dk < fk+1 − dk+1

since dk+1 < dk .
3 This means that all delays remain the same except for

gk , gk+1 which are smaller than the delay fk+1 − dk+1
which can only decrease the largest delay.

4 By the exchange, we removed one inversion in the
permutation. Thus by removing all inversions we can only
reduce latenesses.

Discrete Optimization: A sample of Problems



End of proof

1 Let us denote the finishing time for this schedule by gi .
2 We have:

gk+1−dk+1 =
k−1∑
i=1

pi +pk+1−dk+1 <

k+1∑
i=1

pi −dk+1 = fk+1−dk+1

Similarly:

gk − dk =
k+1∑
i=1

pi − dk = fk+1 − dk < fk+1 − dk+1

since dk+1 < dk .

3 This means that all delays remain the same except for
gk , gk+1 which are smaller than the delay fk+1 − dk+1
which can only decrease the largest delay.

4 By the exchange, we removed one inversion in the
permutation. Thus by removing all inversions we can only
reduce latenesses.

Discrete Optimization: A sample of Problems



End of proof

1 Let us denote the finishing time for this schedule by gi .
2 We have:

gk+1−dk+1 =
k−1∑
i=1

pi +pk+1−dk+1 <

k+1∑
i=1

pi −dk+1 = fk+1−dk+1

Similarly:

gk − dk =
k+1∑
i=1

pi − dk = fk+1 − dk < fk+1 − dk+1

since dk+1 < dk .
3 This means that all delays remain the same except for

gk , gk+1 which are smaller than the delay fk+1 − dk+1
which can only decrease the largest delay.

4 By the exchange, we removed one inversion in the
permutation. Thus by removing all inversions we can only
reduce latenesses.

Discrete Optimization: A sample of Problems



End of proof

1 Let us denote the finishing time for this schedule by gi .
2 We have:

gk+1−dk+1 =
k−1∑
i=1

pi +pk+1−dk+1 <

k+1∑
i=1

pi −dk+1 = fk+1−dk+1

Similarly:

gk − dk =
k+1∑
i=1

pi − dk = fk+1 − dk < fk+1 − dk+1

since dk+1 < dk .
3 This means that all delays remain the same except for

gk , gk+1 which are smaller than the delay fk+1 − dk+1
which can only decrease the largest delay.

4 By the exchange, we removed one inversion in the
permutation. Thus by removing all inversions we can only
reduce latenesses.

Discrete Optimization: A sample of Problems



Minimizing the number of delayed jobs

We shall try to explore this problem and try to come up with an
optimal solution.

1 First step: Does the previous algorithm produce an optimal
schedule?

If no, produce a counter example.
If yes, can you prove it?

2 Try another algorithm, any suggestion?
3 What is the best schedule for the following 8 jobs:

J1(15,20), J3(20,40), J4(20,60), J5(10,30),
J6(30,70), J2(5,20), J7(15,50), J8(40,80).

4 What can we learn from this example?
5 Any suggestion? A heuristic?

Discrete Optimization: A sample of Problems



Minimizing the number of delayed jobs

We shall try to explore this problem and try to come up with an
optimal solution.

1 First step: Does the previous algorithm produce an optimal
schedule?

If no, produce a counter example.

If yes, can you prove it?
2 Try another algorithm, any suggestion?
3 What is the best schedule for the following 8 jobs:

J1(15,20), J3(20,40), J4(20,60), J5(10,30),
J6(30,70), J2(5,20), J7(15,50), J8(40,80).

4 What can we learn from this example?
5 Any suggestion? A heuristic?

Discrete Optimization: A sample of Problems



Minimizing the number of delayed jobs

We shall try to explore this problem and try to come up with an
optimal solution.

1 First step: Does the previous algorithm produce an optimal
schedule?

If no, produce a counter example.
If yes, can you prove it?

2 Try another algorithm, any suggestion?
3 What is the best schedule for the following 8 jobs:

J1(15,20), J3(20,40), J4(20,60), J5(10,30),
J6(30,70), J2(5,20), J7(15,50), J8(40,80).

4 What can we learn from this example?
5 Any suggestion? A heuristic?

Discrete Optimization: A sample of Problems



Minimizing the number of delayed jobs

We shall try to explore this problem and try to come up with an
optimal solution.

1 First step: Does the previous algorithm produce an optimal
schedule?

If no, produce a counter example.
If yes, can you prove it?

2 Try another algorithm, any suggestion?

3 What is the best schedule for the following 8 jobs:
J1(15,20), J3(20,40), J4(20,60), J5(10,30),
J6(30,70), J2(5,20), J7(15,50), J8(40,80).

4 What can we learn from this example?
5 Any suggestion? A heuristic?

Discrete Optimization: A sample of Problems



Minimizing the number of delayed jobs

We shall try to explore this problem and try to come up with an
optimal solution.

1 First step: Does the previous algorithm produce an optimal
schedule?

If no, produce a counter example.
If yes, can you prove it?

2 Try another algorithm, any suggestion?
3 What is the best schedule for the following 8 jobs:

J1(15,20), J3(20,40), J4(20,60), J5(10,30),
J6(30,70), J2(5,20), J7(15,50), J8(40,80).

4 What can we learn from this example?
5 Any suggestion? A heuristic?

Discrete Optimization: A sample of Problems



Minimizing the number of delayed jobs

We shall try to explore this problem and try to come up with an
optimal solution.

1 First step: Does the previous algorithm produce an optimal
schedule?

If no, produce a counter example.
If yes, can you prove it?

2 Try another algorithm, any suggestion?
3 What is the best schedule for the following 8 jobs:

J1(15,20), J3(20,40), J4(20,60), J5(10,30),
J6(30,70), J2(5,20), J7(15,50), J8(40,80).

4 What can we learn from this example?

5 Any suggestion? A heuristic?

Discrete Optimization: A sample of Problems



Minimizing the number of delayed jobs

We shall try to explore this problem and try to come up with an
optimal solution.

1 First step: Does the previous algorithm produce an optimal
schedule?

If no, produce a counter example.
If yes, can you prove it?

2 Try another algorithm, any suggestion?
3 What is the best schedule for the following 8 jobs:

J1(15,20), J3(20,40), J4(20,60), J5(10,30),
J6(30,70), J2(5,20), J7(15,50), J8(40,80).

4 What can we learn from this example?
5 Any suggestion? A heuristic?

Discrete Optimization: A sample of Problems



1 Lets try the following:

Sort the jobs in increasing finishing time.
If there is more than one job with the same finishing time
select first the one with the shorter processing time.
Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.
3 If not, we need a counter example.
4 Lets check what this heuristic does for the 8 jobs sample:
5 It is easy to see that this is not a correct solution.
6 Let the first job be: J1(2000,2000) and let

Jk(20,2010), k = 1, . . . ,100.
7 The algorithm will schedule J1 and there will be 100 late

jobs.
8 On the other hand, we can finish on time 50 jobs and have

only 51 late jobs.

Discrete Optimization: A sample of Problems



1 Lets try the following:
Sort the jobs in increasing finishing time.

If there is more than one job with the same finishing time
select first the one with the shorter processing time.
Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.
3 If not, we need a counter example.
4 Lets check what this heuristic does for the 8 jobs sample:
5 It is easy to see that this is not a correct solution.
6 Let the first job be: J1(2000,2000) and let

Jk(20,2010), k = 1, . . . ,100.
7 The algorithm will schedule J1 and there will be 100 late

jobs.
8 On the other hand, we can finish on time 50 jobs and have

only 51 late jobs.

Discrete Optimization: A sample of Problems



1 Lets try the following:
Sort the jobs in increasing finishing time.
If there is more than one job with the same finishing time
select first the one with the shorter processing time.

Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.
3 If not, we need a counter example.
4 Lets check what this heuristic does for the 8 jobs sample:
5 It is easy to see that this is not a correct solution.
6 Let the first job be: J1(2000,2000) and let

Jk(20,2010), k = 1, . . . ,100.
7 The algorithm will schedule J1 and there will be 100 late

jobs.
8 On the other hand, we can finish on time 50 jobs and have

only 51 late jobs.

Discrete Optimization: A sample of Problems



1 Lets try the following:
Sort the jobs in increasing finishing time.
If there is more than one job with the same finishing time
select first the one with the shorter processing time.
Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.
3 If not, we need a counter example.
4 Lets check what this heuristic does for the 8 jobs sample:
5 It is easy to see that this is not a correct solution.
6 Let the first job be: J1(2000,2000) and let

Jk(20,2010), k = 1, . . . ,100.
7 The algorithm will schedule J1 and there will be 100 late

jobs.
8 On the other hand, we can finish on time 50 jobs and have

only 51 late jobs.

Discrete Optimization: A sample of Problems



1 Lets try the following:
Sort the jobs in increasing finishing time.
If there is more than one job with the same finishing time
select first the one with the shorter processing time.
Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.

3 If not, we need a counter example.
4 Lets check what this heuristic does for the 8 jobs sample:
5 It is easy to see that this is not a correct solution.
6 Let the first job be: J1(2000,2000) and let

Jk(20,2010), k = 1, . . . ,100.
7 The algorithm will schedule J1 and there will be 100 late

jobs.
8 On the other hand, we can finish on time 50 jobs and have

only 51 late jobs.

Discrete Optimization: A sample of Problems



1 Lets try the following:
Sort the jobs in increasing finishing time.
If there is more than one job with the same finishing time
select first the one with the shorter processing time.
Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.
3 If not, we need a counter example.

4 Lets check what this heuristic does for the 8 jobs sample:
5 It is easy to see that this is not a correct solution.
6 Let the first job be: J1(2000,2000) and let

Jk(20,2010), k = 1, . . . ,100.
7 The algorithm will schedule J1 and there will be 100 late

jobs.
8 On the other hand, we can finish on time 50 jobs and have

only 51 late jobs.

Discrete Optimization: A sample of Problems



1 Lets try the following:
Sort the jobs in increasing finishing time.
If there is more than one job with the same finishing time
select first the one with the shorter processing time.
Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.
3 If not, we need a counter example.
4 Lets check what this heuristic does for the 8 jobs sample:

5 It is easy to see that this is not a correct solution.
6 Let the first job be: J1(2000,2000) and let

Jk(20,2010), k = 1, . . . ,100.
7 The algorithm will schedule J1 and there will be 100 late

jobs.
8 On the other hand, we can finish on time 50 jobs and have

only 51 late jobs.

Discrete Optimization: A sample of Problems



1 Lets try the following:
Sort the jobs in increasing finishing time.
If there is more than one job with the same finishing time
select first the one with the shorter processing time.
Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.
3 If not, we need a counter example.
4 Lets check what this heuristic does for the 8 jobs sample:
5 It is easy to see that this is not a correct solution.

6 Let the first job be: J1(2000,2000) and let
Jk(20,2010), k = 1, . . . ,100.

7 The algorithm will schedule J1 and there will be 100 late
jobs.

8 On the other hand, we can finish on time 50 jobs and have
only 51 late jobs.

Discrete Optimization: A sample of Problems



1 Lets try the following:
Sort the jobs in increasing finishing time.
If there is more than one job with the same finishing time
select first the one with the shorter processing time.
Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.
3 If not, we need a counter example.
4 Lets check what this heuristic does for the 8 jobs sample:
5 It is easy to see that this is not a correct solution.
6 Let the first job be: J1(2000,2000) and let

Jk(20,2010), k = 1, . . . ,100.

7 The algorithm will schedule J1 and there will be 100 late
jobs.

8 On the other hand, we can finish on time 50 jobs and have
only 51 late jobs.

Discrete Optimization: A sample of Problems



1 Lets try the following:
Sort the jobs in increasing finishing time.
If there is more than one job with the same finishing time
select first the one with the shorter processing time.
Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.
3 If not, we need a counter example.
4 Lets check what this heuristic does for the 8 jobs sample:
5 It is easy to see that this is not a correct solution.
6 Let the first job be: J1(2000,2000) and let

Jk(20,2010), k = 1, . . . ,100.
7 The algorithm will schedule J1 and there will be 100 late

jobs.

8 On the other hand, we can finish on time 50 jobs and have
only 51 late jobs.

Discrete Optimization: A sample of Problems



1 Lets try the following:
Sort the jobs in increasing finishing time.
If there is more than one job with the same finishing time
select first the one with the shorter processing time.
Run through your sorted list. If a job is going to be late,
remove it from the list.

2 This is a heuristic. If correct, we need a proof.
3 If not, we need a counter example.
4 Lets check what this heuristic does for the 8 jobs sample:
5 It is easy to see that this is not a correct solution.
6 Let the first job be: J1(2000,2000) and let

Jk(20,2010), k = 1, . . . ,100.
7 The algorithm will schedule J1 and there will be 100 late

jobs.
8 On the other hand, we can finish on time 50 jobs and have

only 51 late jobs.

Discrete Optimization: A sample of Problems



Final proposed solution:

Current list = jobs sorted by processing time.

Select the first job.

Remove from the list all jobs that cannot be completed on time
to form the new current list.

We shall address this algorithm in assignment No. 9.

Discrete Optimization: A sample of Problems



Final proposed solution:

Current list = jobs sorted by processing time.

Select the first job.

Remove from the list all jobs that cannot be completed on time
to form the new current list.

We shall address this algorithm in assignment No. 9.

Discrete Optimization: A sample of Problems



Final proposed solution:

Current list = jobs sorted by processing time.

Select the first job.

Remove from the list all jobs that cannot be completed on time
to form the new current list.

We shall address this algorithm in assignment No. 9.

Discrete Optimization: A sample of Problems



Final proposed solution:

Current list = jobs sorted by processing time.

Select the first job.

Remove from the list all jobs that cannot be completed on time
to form the new current list.

We shall address this algorithm in assignment No. 9.

Discrete Optimization: A sample of Problems



Belady’s scheduling problem

You decide to build your own xe may. You carefully study plans,
tools needed. You come up with a list of 20 different tools that
you will need. You also figure out that there will be 500 steps to
complete the job. Unfortunately you do not have the tools. But
Mr. Nguyen is renting tools. Every time you check out a tool,
you have to pay Mr. Nguyen 20,000 VND. Unfortunately he has
an irritating policy: he will not allow you to check out more than
5 tools at a time. this means that if you have 5 tools and you
need another tool, you’ll have to choose one of your current
tools, return it and check out the tool you need.

You carefully look over your plan, redesign each step, make
sure that in each step you will not need more than 5 tools. You
ilst the tools.

Discrete Optimization: A sample of Problems



Belady’s scheduling problem

You decide to build your own xe may. You carefully study plans,
tools needed. You come up with a list of 20 different tools that
you will need. You also figure out that there will be 500 steps to
complete the job. Unfortunately you do not have the tools. But
Mr. Nguyen is renting tools. Every time you check out a tool,
you have to pay Mr. Nguyen 20,000 VND. Unfortunately he has
an irritating policy: he will not allow you to check out more than
5 tools at a time. this means that if you have 5 tools and you
need another tool, you’ll have to choose one of your current
tools, return it and check out the tool you need.

You carefully look over your plan, redesign each step, make
sure that in each step you will not need more than 5 tools. You
ilst the tools.

Discrete Optimization: A sample of Problems



Now you are facing another problem. Design which tools to
exchange every time you need a tool you do not have. Your
goal of course is to minimize the amount of money you’ll have
to spend renting the tools.

For example, how much will you have to pay Mr. Nguyen for
renting out the following list of tools (that will only manage to
finish 1

5 of the job):

11, 5, 4, 12, 15, 8, 8, 16, 3, 1, 2, 6, 1, 1, 19, 7, 15, 6, 19, 9, 5, 6,
18, 15, 14, 16, 18, 20, 9, 16, 5, 6, 14, 16, 13, 4, 4, 6, 17, 4, 7,
11, 19, 18, 5, 2, 8, 7, 20, 14, 17, 17, 4, 15, 2, 4, 9, 17, 19, 5, 4,
14, 9, 18, 19, 2, 20, 15, 7, 19, 11, 12, 1, 9, 16, 3, 1, 4, 14, 7, 18,
12, 7, 17, 1, 6, 3, 17, 10, 17, 7, 6, 9, 15, 16, 8, 9, 13, 9, 19

For instance, in the first stage you rent tools number
{11, 5, 4, 12, 15}. Then you need to rent tool number 8.
Which of the current 5 tools are you going to return?

Discrete Optimization: A sample of Problems



Now you are facing another problem. Design which tools to
exchange every time you need a tool you do not have. Your
goal of course is to minimize the amount of money you’ll have
to spend renting the tools.

For example, how much will you have to pay Mr. Nguyen for
renting out the following list of tools (that will only manage to
finish 1

5 of the job):

11, 5, 4, 12, 15, 8, 8, 16, 3, 1, 2, 6, 1, 1, 19, 7, 15, 6, 19, 9, 5, 6,
18, 15, 14, 16, 18, 20, 9, 16, 5, 6, 14, 16, 13, 4, 4, 6, 17, 4, 7,
11, 19, 18, 5, 2, 8, 7, 20, 14, 17, 17, 4, 15, 2, 4, 9, 17, 19, 5, 4,
14, 9, 18, 19, 2, 20, 15, 7, 19, 11, 12, 1, 9, 16, 3, 1, 4, 14, 7, 18,
12, 7, 17, 1, 6, 3, 17, 10, 17, 7, 6, 9, 15, 16, 8, 9, 13, 9, 19

For instance, in the first stage you rent tools number
{11, 5, 4, 12, 15}. Then you need to rent tool number 8.
Which of the current 5 tools are you going to return?

Discrete Optimization: A sample of Problems



Now you are facing another problem. Design which tools to
exchange every time you need a tool you do not have. Your
goal of course is to minimize the amount of money you’ll have
to spend renting the tools.

For example, how much will you have to pay Mr. Nguyen for
renting out the following list of tools (that will only manage to
finish 1

5 of the job):

11, 5, 4, 12, 15, 8, 8, 16, 3, 1, 2, 6, 1, 1, 19, 7, 15, 6, 19, 9, 5, 6,
18, 15, 14, 16, 18, 20, 9, 16, 5, 6, 14, 16, 13, 4, 4, 6, 17, 4, 7,
11, 19, 18, 5, 2, 8, 7, 20, 14, 17, 17, 4, 15, 2, 4, 9, 17, 19, 5, 4,
14, 9, 18, 19, 2, 20, 15, 7, 19, 11, 12, 1, 9, 16, 3, 1, 4, 14, 7, 18,
12, 7, 17, 1, 6, 3, 17, 10, 17, 7, 6, 9, 15, 16, 8, 9, 13, 9, 19

For instance, in the first stage you rent tools number
{11, 5, 4, 12, 15}. Then you need to rent tool number 8.
Which of the current 5 tools are you going to return?

Discrete Optimization: A sample of Problems



There seem to be some reasonable options. For instance, we
can remove the tool least frequently needed in the future.

It is also possible that there is no single algorithm that will
produce the optimal solution for every input.

In the 1960’s L. Belady suggetsed the following procedure:

Evict the tool that will be needed the furthest away in the
future.

Surprisingly, this strategy will produce an optimal schedule for
any given sequence.

Discrete Optimization: A sample of Problems



There seem to be some reasonable options. For instance, we
can remove the tool least frequently needed in the future.

It is also possible that there is no single algorithm that will
produce the optimal solution for every input.

In the 1960’s L. Belady suggetsed the following procedure:

Evict the tool that will be needed the furthest away in the
future.

Surprisingly, this strategy will produce an optimal schedule for
any given sequence.

Discrete Optimization: A sample of Problems



There seem to be some reasonable options. For instance, we
can remove the tool least frequently needed in the future.

It is also possible that there is no single algorithm that will
produce the optimal solution for every input.

In the 1960’s L. Belady suggetsed the following procedure:

Evict the tool that will be needed the furthest away in the
future.

Surprisingly, this strategy will produce an optimal schedule for
any given sequence.

Discrete Optimization: A sample of Problems



summary

This was a very brief introduaction to discrete optimization
problems.

We saw a sample of problems, experienced the thinking
process that led us to a complete solution of one problem.

A solution to another problem left as an exercise.

And we are still pondering about building our own xe-may.

Time permitting, we will study more discrete optimization
problems in this class.

Discrete Optimization: A sample of Problems



summary

This was a very brief introduaction to discrete optimization
problems.

We saw a sample of problems, experienced the thinking
process that led us to a complete solution of one problem.

A solution to another problem left as an exercise.

And we are still pondering about building our own xe-may.

Time permitting, we will study more discrete optimization
problems in this class.

Discrete Optimization: A sample of Problems



summary

This was a very brief introduaction to discrete optimization
problems.

We saw a sample of problems, experienced the thinking
process that led us to a complete solution of one problem.

A solution to another problem left as an exercise.

And we are still pondering about building our own xe-may.

Time permitting, we will study more discrete optimization
problems in this class.

Discrete Optimization: A sample of Problems



summary

This was a very brief introduaction to discrete optimization
problems.

We saw a sample of problems, experienced the thinking
process that led us to a complete solution of one problem.

A solution to another problem left as an exercise.

And we are still pondering about building our own xe-may.

Time permitting, we will study more discrete optimization
problems in this class.

Discrete Optimization: A sample of Problems



summary

This was a very brief introduaction to discrete optimization
problems.

We saw a sample of problems, experienced the thinking
process that led us to a complete solution of one problem.

A solution to another problem left as an exercise.

And we are still pondering about building our own xe-may.

Time permitting, we will study more discrete optimization
problems in this class.

Discrete Optimization: A sample of Problems


