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There are a few rules, or guidelines that help us count various
collections. In many applications we can describe the objects
as tasks and our goal is to count in how many different ways a
task can be performed.

Example
There are 11 female students and 16 male students in our
class. In how many ways can we choose a class leader?

Answer
This task can be performed in 27 different ways.

Rule (The Sum Rule)
If a task can be performed either in m distinct ways or in k other
distinct ways and both ways are mutually disjoint then there are
m + k distinct ways to perform the task.
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Rule (The Product rule)

Suppose that a task has to be performed in two steps, where
the first step can be performed in m different ways and the
second step in k different ways, then there are m × k different
ways to perform the task.

Example
A motorbike license plate has the following format: x-Ay n where
x is a two digit number, A is a letter followed by a single digit
number y, and n is a four digit number. How many distinct
license plates can be formed?

Answer
This task has 3 steps. The first step can be performed in 100
ways (assuming that 00 is O.K.). The second step can be
performed in 260 ways (assuming 26 letters are available) and
the third step can be performed in 10,000. So the total is
26,000,000.

Are there only 26,000,000 motorbikes in Hanoi?
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More product rule examples

Question
How many distinct functions
f : {1,2,3,4,5,6,7,8,9,0} → {1,2,3,4} are there?

Answer
Each function is built in 10 steps: choose a value for
f (1), f (2), . . . , f (0).
Each step can be performed in 4 different ways.
So the number of functions is:

410.

Question
How many 1− 1 functions
f : {a,b, c} → {0,1,2,3,4,5,6,7,8,9} are there?

Answer: Each function requires 3 steps: select a value for f (a)
then f (b) and f (c). f (a) can be chosen in 10 different ways,
f (b) in 9 and f (c) in 8. So the total number of functions is 720.
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The Inclusion-Exclusion Principle

Rule
If a task can be performed either in m distinct ways or in k other
distinct ways and there are n ways common to both then there
are m + k − n distinct ways to perform the task.

Example

How many bit strings of length 10 start with a 1 or end with 10?

Answer

There are 29 bit strings that begin with a 1. There are 28 bit
strings that end with 10. There are 27 bit strings that start with 1
and end with 10. Therefore the number of bitstrings of length 10
that start with a 1 or end with 10 is 29 + 28 − 27.
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Inclusion-Exclusion Example

Question
How many integers < 1729 are relatively prime to 1729?

Answer

1 Let A1729 denote this set.
2 We first need to find the prime factors of 1729.
3 1729 = 7 · 13 · 19.
4 The following sets include all numbers that are not

relatively prime to 1729: A = {7,14, . . . ,1722}, B =
{13,26, . . . ,1716}, C = {19,38, . . .1710}

5 The set of numbers that are not relatively prime to A1729 is
A ∪ B ∪ C .

6 |A1729| = 1728− 1729
7 − 1729

13 −
1729

19 + 1729
7·13 + 1729

7c1̇9
+ 1729

13·19 =
1296.
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The Inclusion-Exclusion General Principle

Theorem
For a finite family of finite sets {A1,A2, . . .An} we have:
| ∪n

i=1 Ai | =
∑
∅6=I⊂{1,2,...,n}(−1)|I|−1| ∩i∈I Ai |.

We shall give three different proofs of this theorem, one in full
detail and two hints.

Chứng minh.

1 ∀x ∈ ∪n
i=1Ai x contributes 1 to | ∪n

i=1 Ai |.
2 Let x ∈ ∩k

j=1Aij .
3 Since x belongs to every set Aij , it contributes:

∑
∅6=I⊂{1,2,...k}

(−1)|I|−1| ∩∈I Aij | =
k∑

j=1

(−1)j−1
(

k
j

)
= 1

(by the binomial theorem.)
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Remark

1 For two subsets we already know that
|A ∪ B| = |A|+ |B| − |A ∩ B|.

2 We can use induction to prove the inclusion-exclusion
principle, left as an exercise.

3 We can also use the characteristic functions of the sets Ai
with the following identity:

n∏
i=1

(1 + xi) =
∑

A⊂{1,2,...,n}

(
∏
i∈A

xi)
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Two counting problems "saved" by the
inclusion-exclusion principle

Problem 1. n persons check their coats before entering the
theatre. At the end of the play, each selects randomly a coat. In
how many ways can the selection be done so that no person
gets his coat.

An aletrnative formulation using "Tiếng Mathematics:" how
many 1− 1 functions f : {1,2, . . . ,n} → {1,2, . . . ,n} are such
that f (i) 6= i .
Also known as derangements.

We shall count the number of permutations for which f (i) = i for
some i .
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Continued

41 Let Ai be the set of permutations for which f (i) = i . To
apply the inclusion-exclusion theorem we need to find the
size of the intersections ∩i∈JAi .

2 Clearly, |Ai | = (n − 1)!.
3 |Ai ∩ Aj | = (n − 2)!
4 And generally, | ∩k

j=1 Aij | = (n − k)!.
5 Applying the inclusion-exclusion theorem we get:

| ∪n
i=1 Ai | =

n∑
j=1

(−1)(j−1)

(
n
j

)
(n − j)! =

n∑
j=1

(−1)j−1 n!
j!

So the number of derangements is:

Dn = n!−
n∑

j=1

(−1)j−1 · n!
j! = n! ·

n∑
j=0

(−1)j 1
j!
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Euler’s function φ(n)

Euler’s function is very important in many applications, in
particular in computer security applications.

Definition
Euler’s function: φ(n) = |{m | 0 < m < n ∧GCD(m,n) = 1}|.

Example

1 φ(p) = p − 1 when p is a prime number.
2 If n = pk then φ(n) = pk − pk−1 = pk · (1− 1

p )

3 If n = p · q, p,q distinct primes then
φ(p · q) = (p − 1)(q − 1).

Any integer n has a prime factorization: n = pr1
1 · p

r2
2 . . . p

rk
k .

Our goal is to calculate φ(n).
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Calculating φ(n)

Theorem

For n = pr1
1 · p

r2
2 . . . p

rk
k φ(n) = n(1− 1

p1
)(1− 1

p2
) . . . (1− 1

pk
)

Chứng minh.

Let Ai = {s| 1 < s < n, pi |s}. Then:

1. |Ai | = n
pi

2. φ(n) = n − | ∪k
i=1 Ai |

Recall that:

| ∪k
i=1 Ai | =

∑
I⊂{1,2,...,k}

I 6=∅

(−1)|I|−1| ∩i∈I Ai |.

Ai ∩Aj is the set of all integers ≤ n that are divisible by pi and pj
that is divisible by pi · pj . It follows that |Ai ∩ Aj | = n

pi pj
.
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continued.
Similarly,

| ∩i∈I⊂{1,2,...,k} Ai | = n/
∏
i∈I

pi

Hence:

φ(n) = n −
∑

I⊂{1,2,...,k}
I 6=∅

(−1)|I|−1| ∩i∈I Ai | =

n -
∑

I⊂{1,2,...,k}
I 6=∅

(−1)|I|−1(n/
∏

i∈I pi) = n(1− 1
p1
) . . . (1− 1

pk
)

The last equality is an instance of the general useful identity
that embodies the Sum-Product rule:

n∏
i=1

(1 + xi) =
∑

A⊂{1,2,...,n}

(
∏
i∈A

xi)
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Tree Diagrams

How many bead strings of length four, composed of green and
blue beads without two consecutive green beads can be
constructed?
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The Pigeonhole Principle

Rule (Pigeonhole Principle)

1 If k + 1 pigeons are placed in k pigeonholes then at least
one hole contains more than one pigeon.

2 If n pigeons are placed in k pigoenholes then there is at
least one hole with dn

k e pigeons.
3 If n pigeons are placed in n pigeonholes and no hole is

empty then every hole holds exactly one pigeon.

Remark
The four rules are simple, self explanatory and obvious, Yet
they exhibit a surprising power to solve some intricate counting
problems.

We shall next visit some examples.
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Example
In a previous exercise you were asked to produce an integer n
and find an integer k such that n · k = 111 . . . 1.
Some had the idea to produce the numbers 111 . . . 1, check
whether they are divisible by n and if so, find k.

Did any one bother to ask whether the program will ever stop?

Theorem
For any odd positive integer n that is relatively prime to 5 one
can find an integer k such that n · k = 11 . . . 1.
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Chứng minh.

1 Let h0,h1, . . . ,hn−1 be n pigeonholes.
2 Let 1{j} = 11 . . . 1 (j-ones).
3 Now place the integer k = 1{j} mod n in hk .
4 If k is placed in h0 then n divides 1{j}.
5 Else if j = n one hole will have to contain two pigeons.
6 But this means that n divides 1{j} − 1{m} = 11 . . . 10 . . . 0.
7 Since n is odd, and GCD(n,5) = 1 we conclude that

1{j−m} is a multiple of n
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The Chinese Reamainder theorem

Theorem
If a1,a2, . . . ,ak are relatively prime, and 0 ≤ mi < ai then there
is a unique integer m < M = a1 · a2 · . . . · ak such that
m mod ai = mi .

Chứng minh.

1 Since ai are relatively prime we can find integers bi such
that:

bi mod ai = 1, bi mod aj = 0 for i 6= j .

2 It is easy to check that the integer s = (
∑k

i=1 mi ·bi) mod M
satisfies the relations: s mod ai = mi .

3 It remains to prove that s is unique.
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CRT-continued.
To prove uniqueness we use the pigeonhole principle.

1 Start with M holes numbered 0,1, . . . ,M − 1.
2 There are M distinct k-tuples m1,m2, . . . ,mk , 0 ≤ mi < ai .
3 We place the k-tuple m1,m2, . . . ,mk , 0 ≤ mi < ai in hs

where s = (
∑k

i=1 mi · bi) mod M .
4 Each integer t < M produces a k-tuple

ti = t mod ai , i = 1, . . . , k that will be placed in ht .
5 Each hole contains a k − tuple. The number of k-tuples is

equal to the number of holes.
6 Conclusion: each hole contains exactly one item, or the

uniqueness is established.
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Two more examples

Question (Example number 1)

In the ASEAN Cầu lông championship held in Hanoi, Linh won
first place. The championship lasted 21 days. Linh played 35
matches, playing at least one match every day. Prove that there
is a span of consecutive days in which Linh played exactly 6
matches.
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The proof.

1 Let mi denote the total number of matches Linh played by
the end of day number i .

2 This means that mi is a monotonically increasing sequence
and m21 = 35.

3 Let xi = mi + 6.
4 xi is also monotonically increasing and x21 = 41.
5 {mi} and {xi} together have 42 integers.
6 But the largest integer is 41, so at least one integer must

appear twice.
7 Since mi < mj , and xi < xj if i < j we must have mi = xj

for some i and j .
8 But this means that between days j and i Linh played

exactly 6 matches.
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Second example

Question
To commemerate Vua Le’s defeat of the Chinese invaders, he
decided to mint 11 commemerative gold coins. He gave a large
amount of gold to a jeweler.
When the jeweler returned the coins, Vua Le suspected that the
jeweler stole some gold and replaced it with cheaper metals.
Vua Le, knew that the jeweler will not dare to tinker with more
than one coin. The only way to identify the fake coin is to weigh
coins on a balanced scale.

Vua Le decided to test the intelligence of his chief adviser. He
ordered him to design a weighing scheme to detect the fake
coin, decide whether it is heavier or lighter by using no more
than three weighings.
It is your mission to help the adviser by designing the weighing
scheme.
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