A Letter to vua Le

Ngày 1 tháng 11 năm 2010

A Letter to vua Le

The honorable vua Le,
The students of the math honors program at the Vietnam University of Science in Hanoi are humbly submitting their solution to your fake coin problem.
Actually we did even more, we offer a solution you can use in the future for identifying a fake coin among 12 coins. It is a very general solution, the same weighing scheme will identify the fake coin through the same sequence of three weighings.
We also can prove that if you have more than 12 coins you will need more than three weighings.

The honorable vua Le,
The students of the math honors program at the Vietnam University of Science in Hanoi are humbly submitting their solution to your fake coin problem.
Actually we did even more, we offer a solution you can use in the future for identifying a fake coin among 12 coins. It is a very general solution, the same weighing scheme will identify the fake coin through the same sequence of three weighings.
We also can prove that if you have more than 12 coins you will need more than three weighings.
Here are the details:
(0) First arrange the coins in a line and virtually associate with each coin a number from 1 to 12.
(0) First arrange the coins in a line and virtually associate with each coin a number from 1 to 12.
(3) Clearly, in each weighing we must put the same number of coins on both sides of the scale.
(0) First arrange the coins in a line and virtually associate with each coin a number from 1 to 12.
(2) Clearly, in each weighing we must put the same number of coins on both sides of the scale.
(0) Each weighing will have three potential outcomes: Left heavy (1), equal (0), Right heavy (-1).
(0) First arrange the coins in a line and virtually associate with each coin a number from 1 to 12.
(2) Clearly, in each weighing we must put the same number of coins on both sides of the scale.
(0) Each weighing will have three potential outcomes: Left heavy (1), equal (0), Right heavy (-1).
(1) Three weighings have 27 possible outcomes. But the outcome ($0,0,0$) is useless. So we have 26 possible outcomes.
(0) First arrange the coins in a line and virtually associate with each coin a number from 1 to 12.
(3) Clearly, in each weighing we must put the same number of coins on both sides of the scale.
(3) Each weighing will have three potential outcomes: Left heavy (1), equal (0), Right heavy (-1).
(1) Three weighings have 27 possible outcomes. But the outcome ($0,0,0$) is useless. So we have 26 possible outcomes.
(6) There are 24 possible inputs: coin number i is Heavy, coin number i is Light, $i=1,2, \ldots 12$.
(0) First arrange the coins in a line and virtually associate with each coin a number from 1 to 12.
(3) Clearly, in each weighing we must put the same number of coins on both sides of the scale.
(3) Each weighing will have three potential outcomes: Left heavy (1), equal (0), Right heavy (-1).
(1) Three weighings have 27 possible outcomes. But the outcome ($0,0,0$) is useless. So we have 26 possible outcomes.
(6) There are 24 possible inputs: coin number i is Heavy, coin number i is Light, $i=1,2, \ldots 12$.
(0) We can associate with every coin a pair of complementary triples.
(0) First arrange the coins in a line and virtually associate with each coin a number from 1 to 12.
(3) Clearly, in each weighing we must put the same number of coins on both sides of the scale.
(0) Each weighing will have three potential outcomes: Left heavy (1), equal (0), Right heavy (-1).
(1) Three weighings have 27 possible outcomes. But the outcome ($0,0,0$) is useless. So we have 26 possible outcomes.
(6) There are 24 possible inputs: coin number i is Heavy, coin number i is Light, $i=1,2, \ldots 12$.
(0) We can associate with every coin a pair of complementary triples.
(- For instance, if coin number i is heavy, if we place it on the left side of the scale, the left side will be heavy and if we place it on the right side the right side will be heavy.
(1) So if for example, we associate the triple $(1,-1,0)$ with coin number i we automatically also associate with it the triple ($-1,1,0$) to cover both possibilities (Heavy, Light).
(1) So if for example, we associate the triple $(1,-1,0)$ with coin number i we automatically also associate with it the triple ($-1,1,0$) to cover both possibilities (Heavy, Light).
(2) The interpretation of this association is:
(1) So if for example, we associate the triple $(1,-1,0)$ with coin number i we automatically also associate with it the triple ($-1,1,0$) to cover both possibilities (Heavy, Light).
(2) The interpretation of this association is:

- In the first weighing we place coin i on the left side.
(1) So if for example, we associate the triple $(1,-1,0)$ with coin number i we automatically also associate with it the triple ($-1,1,0$) to cover both possibilities (Heavy, Light).
(2) The interpretation of this association is:
- In the first weighing we place coin i on the left side.
- In the second weighing we place it on the right side.
(1) So if for example, we associate the triple $(1,-1,0)$ with coin number i we automatically also associate with it the triple $(-1,1,0)$ to cover both possibilities (Heavy, Light).
(2) The interpretation of this association is:
- In the first weighing we place coin i on the left side.
- In the second weighing we place it on the right side.
- We do not use coin i in the third weighing.
(1) So if for example, we associate the triple $(1,-1,0)$ with coin number i we automatically also associate with it the triple $(-1,1,0)$ to cover both possibilities (Heavy, Light).
(2) The interpretation of this association is:
- In the first weighing we place coin i on the left side.
- In the second weighing we place it on the right side.
- We do not use coin i in the third weighing.
- Please notice that if coin i is the heavy coin then the outcome will be $(1,-1,0)$ and if it is light, the outcome will be $(-1,1,0)$
(1) So if for example, we associate the triple $(1,-1,0)$ with coin number i we automatically also associate with it the triple ($-1,1,0$) to cover both possibilities (Heavy, Light).
(2) The interpretation of this association is:
- In the first weighing we place coin i on the left side.
- In the second weighing we place it on the right side.
- We do not use coin i in the third weighing.
- Please notice that if coin i is the heavy coin then the outcome will be $(1,-1,0)$ and if it is light, the outcome will be $(-1,1,0)$
(0) All is left to do is to associate with every coin a distinct complementary pair of triples and make sure that in each column the number of 1 's is equal to the number of -1 's.
(1) So if for example, we associate the triple $(1,-1,0)$ with coin number i we automatically also associate with it the triple ($-1,1,0$) to cover both possibilities (Heavy, Light).
(2) The interpretation of this association is:
- In the first weighing we place coin i on the left side.
- In the second weighing we place it on the right side.
- We do not use coin i in the third weighing.
- Please notice that if coin i is the heavy coin then the outcome will be $(1,-1,0)$ and if it is light, the outcome will be $(-1,1,0)$
(0) All is left to do is to associate with every coin a distinct complementary pair of triples and make sure that in each column the number of 1 's is equal to the number of -1 's.
(1. So if for example, we associate the triple $(1,-1,0)$ with coin number i we automatically also associate with it the triple ($-1,1,0$) to cover both possibilities (Heavy, Light).
(2) The interpretation of this association is:
- In the first weighing we place coin i on the left side.
- In the second weighing we place it on the right side.
- We do not use coin i in the third weighing.
- Please notice that if coin i is the heavy coin then the outcome will be $(1,-1,0)$ and if it is light, the outcome will be $(-1,1,0)$
(3) All is left to do is to associate with every coin a distinct complementary pair of triples and make sure that in each column the number of 1 's is equal to the number of -1 's.
You can see our solution in the next slide

The universal algorithm for identifying the fake coin

	Heavy			
Coin	1	2	3	
1	1	0	1	
2	0	0	-1	
3	-1	1	1	
4	1	-1	0	
5	0	-1	1	
6	-1	-1	-1	
7	1	1	-1	
8	-1	0	1	
9	-1	0	0	
10	1	1	0	
11	0	-1	-1	
12	0	1	0	
13				

Light		
1	2	3
-1	0	-1
0	0	1
1	-1	-1
-1	1	0
0	1	-1
1	1	1
-1	-1	1
1	0	-1
1	0	0
-1	-1	0
0	1	1
0	-1	0

We still have to solve the 11 coins problem.
But first let us see why we cannot find a fake coin among 13 coins using only 3 weighings.

We still have to solve the 11 coins problem.
But first let us see why we cannot find a fake coin among 13 coins using only 3 weighings.
(1) We would need to use all 26 distinct non-zeo triples.

We still have to solve the 11 coins problem.
But first let us see why we cannot find a fake coin among 13 coins using only 3 weighings.
(1) We would need to use all 26 distinct non-zeo triples.
(2) But 0 appears in the first coordinate in 8 of these triples.

We still have to solve the 11 coins problem.
But first let us see why we cannot find a fake coin among 13 coins using only 3 weighings.
(1) We would need to use all 26 distinct non-zeo triples.
(2) But 0 appears in the first coordinate in 8 of these triples.
(3) $\mathrm{So} \pm 1$ appears in the remaining 18 triples in the first coordinate.

We still have to solve the 11 coins problem.
But first let us see why we cannot find a fake coin among 13 coins using only 3 weighings.
(1) We would need to use all 26 distinct non-zeo triples.
(2) But 0 appears in the first coordinate in 8 of these triples.
(3) $\mathrm{So} \pm 1$ appears in the remaining 18 triples in the first coordinate.
(1) They will have to be divided equally among the two tables.

We still have to solve the 11 coins problem.
But first let us see why we cannot find a fake coin among 13 coins using only 3 weighings.
(1) We would need to use all 26 distinct non-zeo triples.
(2) But 0 appears in the first coordinate in 8 of these triples.
(3) So ± 1 appears in the remaining 18 triples in the first coordinate.
(1) They will have to be divided equally among the two tables.
(0) But this means that in the first column we cannot have an equal number of 1 's and -1 's.

