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Securing Transactions

Question
Mr. Nguyen sells expensive jewelry. He has an interesting idea
for a business model. Each customer will have access to boxes
with a combination lock. Once a person grabs a box he can set
his own private combination lock. An open box can be closed
by anyone, but only the owner knows the combination and can
open it. The content of any open box sent between persons will
be stolen.
You wish to buy an expensive gift for your significant other’s
birthday. This means money will have to be sent to Mr. Nguyen
(who is honest and trustworthy) and the gift delivered to you.
Transaction details, such as item, price etc. can be discussed
by phone.

How can we accomplish this?
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Discussion
This is exactly how business transactions are being conducted
on the internet today, except that the boxes are virtual boxes.
Closing a box is accomplished by encrypting the message. So
while the message is traveling on the internet, being exposed to
hackers and others, it is encrypted using a “key”. Only the
owner of the key knows how to open the box and retrieve its
content.

Question
The question faced scientists was how to design a system with
the following properties:

1 A group of particpants can securely communicate with
each other over an open system.

2 How can anyone send a message to bob so no one except
Bob will be able to understand the message.

3 Can messages be “signed’?.
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RSA Public Key System

Discussion
Until the mid-70’s encryptions were done using private keys.
Two persons or institutions that needed to establish secure
communications shared a private key they used for encryption.

The system worked quite well, except for one problem: how to
share keys.

DES, (Data Encryption Standard) was a popular private key
system that was widely used by many governments and
institutions.

It was recently replaced by another system, AES (Advanced
Encryption Standard).

In 1976 Rivest, Shamir and Adelman proposed the public key
cryptosystem: RSA.
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RSA

Each key consisted of two parts, a public part used for
encryption and a private part used for decryption.

1 Every message can be coded as an integer M .

2 Public key: (K ,e) where K = pq, p,q prime numbers,
gcd(e, (p − 1)(q − 1)) = 1.

3 To encrypt the message M , coded as an integer, we
calculate EM = Me mod K and send EM to the owner of
the public key (K ,e).

4 Decryption: The key owner first finds
d = e−1 mod (p − 1)(q − 1).

5 To retrieve M , the owner of the key (K ,e) calculates:
EMd mod K = M .
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Prime numbers, key facts

The following theorems play a central role discussing primes
and factorization.

1 T1: GF (p) = {0,1, . . . ,p − 1} is a field (addition and
multiplication are done mod p)

2 T2: GF (p) has primitve elements. α ∈ GF (p) is primitive if
{αi | i = 0,1, . . .p − 2} = {0,1,2, . . . ,p − 1}.

3 T3: If p(x) is a polynomial with coefficients in GF (p) and
f (β) = 0 then p(x) = (x − β)p1(x) where p1(x) is a
polynomial with coefficients in GF (p).

4 T4: A finite field has pn (p prime) elements and is unique
upto isomorphism.
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Theorem (Fermat’s theorem)

If p is prime and a < p then ap−1 mod p = 1.

Chứng minh.

Since GF (p) is a field for any
a ∈ GF (p) {a,2a,3a, . . . , (p − 1)a} = {1,2,3, . . . ,p − 1}.
So a · 2a · 3a · · · (p − 1)a = 1 · 2 · 3 · · · (p − 1)
ap−1 ·

∏p−1
i=1 i =

∏p−1
i=1 i mod p ⇒ ap−1 = 1 mod p
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Fermat’s theorem can be applied to simplify some intimidating
looking computations:

Example

1 Calculate 7341235 mod 11.

2 11 is prime, so 710 mod 11 = 1
7341235 mod 11 = (710)34123 · 75 mod 11 = 75 mod 11 = 10

3 Calculate 7341235 mod 341.

4 341 = 31 · 11, 7341235 mod 11 = 10.
7341235 mod 31 = 7341220715 mod 31 = 715 mod 31.
72 mod 31 = 18, 73 mod 31 = 7 · 18 mod 31 =
126 mod 31 = 2
75 mod 31 = 73 · 72 mod 31 = 1.
So if x = 7341235 then we have:
x mod 11 = 10, x mod 31 = 1.
We can now use the Chinese Reaminder Theorem and get:
7341235 mod 341 = 32.
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Fermat’s theorem can be used to test whether an integer is
composite (not prime).

Given an integer n, if an−1 mod n 6= 1, a < n then n is
composite.

But what if an−1 = 1?
For example: 2340 mod 341 = 1 but 341 = 11 · 31
a1728 mod 1729 = 1 ∀a relatively prime to 1729.

Question
Can you prove it? It is not difficult, give it a try.
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Question (Challenge)
The other day we found the 163 digits long key below on the
internet. It is not prime, easy to check.
2Key−1 mod Key 6= 1
Can we find its prime factors?

Key =
1193098423264097759646037965385887599016380476452
72854129917551358235578179312630945926936573377803
05097493118591879028040057842613777270672354255530
86083970158319

Question
Are there any other ways to factor integers besides trying the
GCD of the integer with smaller integers?
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Is p really a prime number?

Question
Is there a way to certify that a given number p is indeed prime?

Theorem (Wallis)

p is prime if and only if (p − 1)! mod p = −1.
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Miller-Rabin Test

Let N be an integer. By Fermat’s theorem if N is prime then
aN−1 mod N = 1. This calculation can be executed very fast on
integers with a few thousand digits. This means that if for some
1 < a < N − 1, aN−1 mod N 6= 1 then N is definitely not a
prime number.

But what can we conclude if aN−1 mod N = 1?

Answer: NOTHING. N can be composite, or prime.

Example

1 2340 mod 341 = 1 but 341 = 11 · 31.
2 But 3340 mod 341 = 56 proves that 341 is composite.
3 On the other hand, if

gcd(a,1729) = 1 then a1728mod1729 = 1.
4 Since φ(1729) = 1729(1− 1

7)(1−
1

13)(1−
1

19) = 1296 if we
select a randomly we do not have a good chance to find an
integer that will prove that 1729 is not a prime number .
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Miller-Rabin Test

Numbers N like 1729 for which aN−1 mod N = 1 ∀a relatively
prime to N are called Carmichael numbers. They are rare, but
there are infinitely many of them.

So Fermat’s theorem is not a good test for primality. We need a
better test.

Theorem (Miller-Rabin Test)

Let N be an integer, N − 1 = 2m · (2k + 1).
An integer n is NOT a “composite-witness” for N if:

1 For some 1 ≤ i ≤ m, n(2k+1)2i
mod N = −1.

2 Or n(2k+1)2i
mod N = 1 and n2k+1 mod N = 1

In other words, the test fails to prove that N is composite.
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Miller-Rabin Test

Chứng minh.

If p is prime then by Fermat’s theorem ap−1 mod p = 1.
So a(p−1)/2 mod p =

√
1 = ±1.

If a(p−1)/2 mod p = −1 then the test stops. In other words, it will
not say that p is composite.
If a(p−1)/2 mod p = 1 then we calculate a(p−1)/4 mod p = ±1
We continue until we reach a2k+1 mod p

We skip the important part of the proof. They proved that if N is
composite then more than 50% of the integers a < N will be
composite-witnesses. In other words, to test whether an integer
p is prime, we randomly select say 100 integers a < p and
apply to them the Miller-Rabin test. If the test fails, we assume
that p is a prime number. The probabilty that we made a
mistake, that is decided that p is prime while in fact it is not, is
less then

(1
2

)100.
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Example

1 1729 is a composite integer. Indeed 1728 = 26 · 33 and
31728/2i

mod 1729 = 1 but 31728/64 mod 1729 = 664
proving that 1729 is composite.

2 c = 9746347772161 is a Carmichael number.
3 39746347772160 mod 9746347772161 = 1.
4 39746347772160/2 mod 9746347772161 = 1, no decission.

So we continue.
5 39746347772160/4 mod 9746347772161 = 4485448662696

proving that c is composite.
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Factoring

Discussion

1 To implement RSA we need to manufacture large primes.
2 The Miller-Rabin test is commonly used for this purpose.
3 There are also efficient algorithms to manufacture

“certified” primes.
4 Are all large primes safe?
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Square roots

Most integers are not perfect squares. Finding the square root
or identifying that it is not a perfect square is very easy. Yet in
modular arithmetic the situation is drastically different.

Half the positive integres mod a prime number p are quadratic
residues. While finding their square roots is not difficult it is a bit
trickier than finding the square root of an integer.

Finding the square root of an integer mod p · q where p,q are
primes is dramatically different. Actually it is as difficult as
factoring. In other words, if there was a fast calculation of√

n mod p · q then we would have a fast factorization.

We shall start by learning how to find
√

n mod p.
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√
n mod p

1 Recall: GF (p) has primitve elements. Let α be a primitive
element of GF (p).

2 n is a quadratic residue mod p if and only if
n = α2k mod p.

3 n is a quadratic residue mod p if and only if
n

p−1
2 mod p = 1.

4 Claim: If n is a quadratice residue mod p then we can find
an integer β such that n2m+1β2s mod p = 1

5
√

n mod p = nm+1βs mod p
6 We will not have to find a primitive element.

An Application of Number Theory, the RSA Cryptosystem



√
n mod p

1 Recall: GF (p) has primitve elements. Let α be a primitive
element of GF (p).

2 n is a quadratic residue mod p if and only if
n = α2k mod p.

3 n is a quadratic residue mod p if and only if
n

p−1
2 mod p = 1.

4 Claim: If n is a quadratice residue mod p then we can find
an integer β such that n2m+1β2s mod p = 1

5
√

n mod p = nm+1βs mod p
6 We will not have to find a primitive element.

An Application of Number Theory, the RSA Cryptosystem



√
n mod p

1 Recall: GF (p) has primitve elements. Let α be a primitive
element of GF (p).

2 n is a quadratic residue mod p if and only if
n = α2k mod p.

3 n is a quadratic residue mod p if and only if
n

p−1
2 mod p = 1.

4 Claim: If n is a quadratice residue mod p then we can find
an integer β such that n2m+1β2s mod p = 1

5
√

n mod p = nm+1βs mod p
6 We will not have to find a primitive element.

An Application of Number Theory, the RSA Cryptosystem



√
n mod p

1 Recall: GF (p) has primitve elements. Let α be a primitive
element of GF (p).

2 n is a quadratic residue mod p if and only if
n = α2k mod p.

3 n is a quadratic residue mod p if and only if
n

p−1
2 mod p = 1.

4 Claim: If n is a quadratice residue mod p then we can find
an integer β such that n2m+1β2s mod p = 1

5
√

n mod p = nm+1βs mod p
6 We will not have to find a primitive element.

An Application of Number Theory, the RSA Cryptosystem



√
n mod p

1 Recall: GF (p) has primitve elements. Let α be a primitive
element of GF (p).

2 n is a quadratic residue mod p if and only if
n = α2k mod p.

3 n is a quadratic residue mod p if and only if
n

p−1
2 mod p = 1.

4 Claim: If n is a quadratice residue mod p then we can find
an integer β such that n2m+1β2s mod p = 1

5
√

n mod p = nm+1βs mod p

6 We will not have to find a primitive element.

An Application of Number Theory, the RSA Cryptosystem



√
n mod p

1 Recall: GF (p) has primitve elements. Let α be a primitive
element of GF (p).

2 n is a quadratic residue mod p if and only if
n = α2k mod p.

3 n is a quadratic residue mod p if and only if
n

p−1
2 mod p = 1.

4 Claim: If n is a quadratice residue mod p then we can find
an integer β such that n2m+1β2s mod p = 1

5
√

n mod p = nm+1βs mod p
6 We will not have to find a primitive element.

An Application of Number Theory, the RSA Cryptosystem



√
n mod p

1 Calculate n
p−1

2 mod p = ±1 (use one of the powermod
functions).

2 If n
p−1

2 mod p = −1 stop! n is not a quadratic residue.
3 Let p − 1 = 2m(2k + 1).

4 Note: n
p−1

4 mod p = ±1. Repeat calculating n
p−1

2j until you
get −1 or n2k+1 mod p = 1

5 If n
p−1

2j = −1 then find a non-quadratic residue β that is
β

p−1
2 mod p = −1 (easy, just try a few numbers).

6 n
p−1

2j β
p−1

2 mod p = 1

7 Calculate: n
p−1
2j+1 β

p−1
4 mod p = ±1

8 Repeat the same process ubtil you reach
n2k+1β2s mod p = 1
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Examples

Example

1 p = 3 mod 4.
2 This is a very easy case as

p−1
2 = 2k + 1, n2k+1 mod p = 1 so

√
n mod p = nk+1.

3 Let p = 337639.
71168819 mod 337639 = 1 (71 is a quadratic residue mod
337639).
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1 p = 2701297, p − 1 = 24 · 33 · 132 · 37.

2 71(p−1)/2 = 2701296 so 71 is not a quadratic residue mod
p.

3 75 is a quadratic residue.
4 75(p−1)/4 mod p = 2701296 = −1.
5 71(p−1)/2 mod p = −1⇒ 75(p−1)/471(p−1)/2 mod p = 1
6 75(p−1)/871(p−1)/4 mod p = −1⇒

75(p−1)/8713(p−1)/4 mod p = 1.
7 75(p−1)/16713(p−1)/8 = 75168331711012986 mod p = 1
8
√

75 mod p = 75168332/2711012986/2 mod p = 2309891
9 Verify: 23098912 mod p = 75.

10 We can verify it in yet another way. 75 = 25 · 3. This means
that
√

3 mod p = 2309891/5. Indeed
5−1 mod p = 1080519 and 1080519 · 2309891 mod p =
1542497 and 15424972 mod p = 3.
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