Reserach Problem

Moshe Rosenfeld

September 27, 2010

1 Pseudo-Pythagorian Triples

If a triangle has sides of length $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and the angle between the edges a and b is 120° then $a^{2}+b^{2}+a b=c^{2}$.

We say that a triple of integers is Pseudo-Pythagorian if all are odd integers and are the sides of a 120° triangle (that is they satisfy the above relation).

Examples:

1. $3,5,7: 3^{2}+5^{2}+3 \cdot 5=7^{2}$.
2. $7,33,37: 7^{2}+33^{2}+7 \cdot 33=37^{2}$.
3. $11,85,91$
4. $13,35,43$
5. $17,63,73$

Are Pseudo-Pythagorian triples.

Problem: is every odd prime number a member of a Pseudo-Pythagorian triple?

