Claim: we can reverse 3 consecutive marbles.

1. Reversing 3 consecutive marbles (wxy):
2. ...w x y zabcd... $\rightarrow \ldots$ y x wabcd... \rightarrow
3. ...zawxybcd... $\rightarrow \ldots$ abayxwcd.... \rightarrow
4. ...zabcwxyd... $\rightarrow \ldots$...zabcdyxw...
5. After an odd number of 4 -flips the triple wxy is reversed to yxw.
6. If we continue with pairs of 4-flips \ldots yxwkm \rightarrow $\ldots \mathrm{kwxym} \rightarrow$...kmyxw $\rightarrow \ldots==>$
7. Since we have an even number of marbles, we shall reach: ...y x w z a b c d...

Flipping two adjacent marbles.

- ...efgabxyz... \rightarrow...e fgazyxb... \rightarrow...e fgxyzab...
- After each pair of flips "ab" moves 3 positions "clockwise" while all other marbles remain in their original relative position.
- Stop when 1,3 or 5 marbles are left between b and x .
- This will happen since there is an odd number of marbles (25 in our case) left to the right of b.
- Call "triple-exchange" 1,3 or 5 times alternating start between a and b.
- Example:
- ...abefgxyz... \rightarrow...afebgxy... \rightarrow...efabgxy $\rightarrow \ldots$ fgba x y...
- $a b$ is now $b a$.
- Final solution: exchaneg any pair of adjacent marbles that are out of order.

finish...

- This means that any two consecutive marbles can be interchanged.
- But these exchanges generate all permutations.

