Discrete Mathematics and Applications

Moshe Rosenfeld
Hanoi 2010
moishe@u.washington.edu

1 Assignment No. 6: sequences, counting, binomial coefficients

Due: Friday, 5 Nov.

Please submit your answer in a neat, readable properly organized format.

1. In a group of 50 persons, 29 speak Vietnamese, 22 speak English and 17 speak French. It is also known that 12 speak both English and French, 9 speak English and Vietnamese and 11 speak both French and Vietnamese. 6 persons speak all three languages. How many persons do not speak any of the three languages?
2. Find the segment with the largest weight in the following array:
$9,-8,-8,9,-4,0,-1,-5,5,6,2,8,6,6,7,0,-10,10,8,2,-2,8,-8,1,11,1,-7,-11,-7,-6$, $2,2,4,-9,-4,4,-3,-3,2,2,9,-9,5,13,12,3,11,0,7,11,-9,-4,-8,5,11,5,-6,12,8,4$
3. Find a_{11}, a_{12} and the general term a_{n} for the sequence whose first 10 terms are: $2,9,22,41,66,97,134,177,226,281,342,409$.
4. How many bit strings of length n contain exactly two occurences of the substring 10 ?
5. Show that a sequence of numbres $a_{1}, a_{2}, \ldots, a_{n^{2}+1}$ contains a monotonic subsequence of length $\geq n+1$.

2 Binomial Coefficients

1. What is the coefficient of x^{12} in the expansion of $\left(2 x^{2}+\frac{1}{2 x^{2}}\right)^{20}$.
2. Use a counting argument to prove that $\sum_{i=r}^{n}\binom{i}{r}=\binom{n+1}{r+1}$.
3. Prove that $\binom{2 n}{n} \geq \frac{4^{n}}{2 n}$.
