Discrete Mathematics and Applications

Moshe Rosenfeld

Hanoi 2010 moishe@u.washington.edu

1 Assignment No. 4: mathematical induction and permutations

Due: Friday, 8 Oct.

Please submit your answer in a neat, readable properly organized format.

- 1. Express each of the following cycles as a product of transpositions. a. (1 2 3 4)
 - b. $(1\ 2\ 3\ \dots\ n)$
 - c. $(1\ 2\ 3\ 4) \circ (2\ 3\ 4\ 5)$
- 2. Let π = 7 3 1 6 5 2 4 8 μ = 7 3 1 4 5 8 6 2
 a. Which permutation is lexicography "smaller?"
 b. Which permutation immediately follows π in the lexicographic order, which precedes μ?
 c. How many permutations lie between π and μ in the lexicographic order?
- 3. * 30 marbles numbered $1, 2, \ldots, 30$ are randomly arranged in a circular track. They can be move d around the track in clockwise or counter clockwise direction (operation 1). At the bottom of the track is a circular disk that can hold exactly four marbles. The circular disk can rotate 180° (reversing the orientation of the four marbles it holds, operation 2). Prove that you can sort the marbles using these two operations.

2 Mathematical Induction

- 1. Prove that if k is odd then 2^{n+2} divides $k^{2^n} 1 \quad \forall n \in Z^+$.
- 2. a. Prove that $(1 + \sqrt{2})^{2n} + (1 \sqrt{2})^{2n}$ is an even integer. b. Prove that $(1 + \sqrt{2})^{2n} - (1 - \sqrt{2})^{2n} = k\sqrt{2}$ for some positive integer k.
- 3. Prove that $\sum_{i=1}^{n} i \cdot i! = (n+1)! 1$

- 4. In a country called Oz they have only two types of coins: 7 gnods and 30 gnods. The cheapest item you can buy in Oz costs 1000 gnods. Can you use exact change to pay for any purchase greater than 1000 gnods?
- 5. Prove that $\sqrt{n} \leq \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 2\sqrt{n}$
- 6. Recall the Fibonacci sequence 1, 1, 2, 3, 5, ... or $f_1 = f_2 = 1$, $f_i = f_i 1 + f_i 2$ for $i \ge 3$ Prove that $f_k f_n + f_{k+1} f_{n+1} = f_{n+k+1} \quad \forall n, k \in Z^+$.
- 7. * Prove the means inequality: $\frac{1}{n}(\sum_{i=1}^{n} a_i) \ge (a_1 a_2 \dots a_n)^{\frac{1}{n}}$ using the following steps:
 - a. Prove it by induction for $n = 2^k$.
 - b. Assume that it is true for n = m and prove it for n = m 1.
 - (Note that now you have the freedom to choose the value of a_m).