Discrete Mathematics and Applications

Moshe Rosenfeld
Hanoi 2010
moishe@u. washington.edu

1 Assignment No. 1: proofs

Due: Wednesday, Sep. 15
Please submit your answer in a neat, readable properly organized format. In general, a * in exercises indicates a more challenging problem.

1. Prove that if a,b are real positive numbers then $a^{2}+b^{2} \geq 2 a b$
2. Prove that if a,b,c are real positive numbers then $a^{3}+b^{3}+c^{3} \geq 3 a b c$
3. Let $S=\left\{n \mid n=a^{2}+b^{2}, a, b, n \in N, a, b>0\right\}$

Find an integer m such that $\{m, m+1, m+2\} \subset S$
4. * Prove that there are infinitely many integers m for which $\{m, m+1, m+$ $2\} \subset S$

