Discrete Mathematics and Applications

Moshe Rosenfeld

Hanoi 2010 moishe@u.washington.edu

1 A selection of practice recurrence relations problems

1.1 Simple drills

- 1. Solve: $a_n = a_{n-1} + 6a_{n-2}$, $a_0 = 0, a_1 = 1$.
- 2. Solve: $a_n = \sum_{i=0}^{n-1} a_i$ $a_0 = 1$.
- 3. Find the general solution to: $a_n = 2a_n + 3a_{n-2} + 2^n 1$.
- 4. Solve: $a_n = 2a_{n-1} 3a_{n-2}$, $a_0 = 1, a_1 = 2$.
- 5. List all the binary sequences of length 8 that contain four 1's and four 0's such that when scanning from left to right the number of 1's is never less than the number of 0's.

1.2 More challenging problems

- 1. Solve the recurrence relation $a_n = \sqrt{a_{n-1}a_{n-2}}$ $a_0 = 9, a_1 = 1$. Is this sequence bounded? Can you find its limit?
- 2. Show that $(6 + \sqrt{37})^{10000}$ has at least 10000 (moui nghin) 0's after the decimal point.
- 3. Show that $\forall n \ge 1$ $(\sqrt{2}-1)^n = \sqrt{m+1} \sqrt{m}$ for some positive integer m.