Chapter 8

1. List all the binary relations on the set $\{0,1\}$.

Ans: There are 16 binary relations:

$\}$	$\{(0,0)\}$	$\{(0,1)\}$	$\{(1,0)\}$
$\{(1,1)\}$	$\{(0,0),(0,1)\}$	$\{(0,0),(1,0)\}$	$\{(0,0),(1,1)\}$
$\{(0,1),(1,0)\}$	$\{(0,1),(1,1)\}$	$\{(1,0),(1,1)\}$	$\{(0,0),(0,1),(1,0)\}$
$\{(0,0),(0,1),(1,1)\}$	$\{(0,0),(1,0),(1,1)\}$	$\{(0,1),(1,0),(1,1)\}$	$\{(0,0),(0,1),(1,0),(1,1)\}$

2. List the reflexive relations on the set $\{0,1\}$.

Ans: 8, 13, 14, 16.
3. List the irreflexive relations on the set $\{0,1\}$.

Ans: 1, 3, 4, 9 .
4. List the symmetric relations on the set $\{0,1\}$.

Ans: $1,2,5,8,9,12,15,16$.
5. List the transitive relations on the set $\{0,1\}$.

Ans: $1,2,3,4,5,6,7,8,10,11,13,14,16$.
6. List the antisymmetric relations on the set $\{0,1\}$.

Ans: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14.
7. List the asymmetric relations on the set $\{0,1\}$.

Ans: 1, 3, 4 .
8. List the relations on the set $\{0,1\}$ that are reflexive and symmetric.

Ans: 8, 16.
9. List the relations on the set $\{0,1\}$ that are neither reflexive nor irreflexive.

Ans: 2, 5, 6, 7, 10, 11, 12, 15.
Use the following to answer questions 10-23:
In the questions below determine whether the binary relation is: (1) reflexive, (2) symmetric, (3) antisymmetric, (4) transitive.
10. The relation R on $\{1,2,3, \ldots\}$ where $a R b$ means $a \mid b$.

Ans: 1, 3, 4.
11. The relation R on $\{w, x, y, z\}$ where $R=\{(w, w),(w, x),(x, w),(x, x),(x, z),(y, y),(z, y),(z, z)\}$.

Ans: 1.
12. The relation R on \boldsymbol{Z} where $a R b$ means $|a-b| \leq 1$.

Ans: 1, 2.
13. The relation R on \boldsymbol{Z} where $a R b$ means $a^{2}=b^{2}$.

Ans: 1, 2, 4 .
14. The relation R on $\{a, b, c\}$ where $R=\{(a, a),(b, b),(c, c),(a, b),(a, c),(c, b)\}$.

Ans: $1,3,4$.
15. The relation R on $A=\{x, y, z\}$ where $R=\{(x, x),(y, z),(z, y)\}$.

Ans: 2.
16. The relation R on \boldsymbol{Z} where $a R b$ means $a \neq b$.

Ans: 2.
17. The relation R on Z where $a R b$ means that the units digit of a is equal to the units digit of b.

Ans: 1, 2, 4 .
18. The relation R on N where $a R b$ means that a has the same number of digits as b.

Ans: 1, $2,4$.
19. The relation R on the set of all subsets of $\{1,2,3,4\}$ where $S R T$ means $S \subseteq T$. Ans: 1, 3, 4 .
20. The relation R on the set of all people where $a R b$ means that a is at least as tall as b.

Ans: 1, 4 .
21. The relation R on the set of all people where $a R b$ means that a is younger than b.

Ans: 3, 4
22. The relation R on the set $\{(a, b) \mid a, b \in \boldsymbol{Z}\}$ where $(a, b) R(c, d)$ means $a=c$ or $b=d$. Ans: $1,2$.
23. The relation R on R where $a R b$ means $a-b \in \boldsymbol{Z}$.

Ans: $1,2,4$.
24. A company makes four kinds of products. Each product has a size code, a weight code, and a shape code. The following table shows these codes:

	Size Code	Weight Code	Shape Code
1	42	27	42
2	27	38	13
3	13	12	27
4	42	38	38

Find which of the three codes is a primary key. If none of the three codes is a primary key, explain why.
Ans: Shape code.
25. If $X=\left(\right.$ Fran Williams, 617885197, MTH 202, 248B West), find the projections $P_{1,3}(X)$ and $P_{1,2,4}(X)$.
Ans: $P_{1,3}(X)=\left(\right.$ FranWilliams,MTH 202) $P_{1,2,4}(X)=$ (FranWilliams,617885197, 248BWest).

Use the following to answer questions 26-31:

In the questions below suppose R and S are relations on $\{a, b, c, d\}$, where $R=$ $\{(a, b),(a, d),(b, c),(c, c),(d, a)\}$ and $S=\{(a, c),(b, d),(d, a)\}$.

26 . Construct R^{2}.
Ans: $\{(a, a),(a, c),(b, c),(c, c),(d, b),(d, d)\}$.
27. Construct R^{3}.

Ans: $\{(a, b),(a, c),(a, d),(b, c),(c, c),(d, a),(d, c)\}$.
28. Construct S^{2}.

Ans: $\{(b, a),(d, c)\}$.
29. Construct S^{3}.

Ans: $\{(b, c)\}$.
30. Construct $R \circ S$.

Ans: $\{(a, c),(b, a),(d, b),(d, d)\}$.
31. Construct $S \circ R$.

Ans: $\{(a, a),(a, d),(d, c)\}$.

Use the following to answer questions 32-41:
In the questions below find the matrix that represents the given relation. Use elements in the order given to determine rows and columns of the matrix.
32. R on $\{1,2,3,4\}$ where $a R b$ means $|a-b| \leq 1$.
Ans: $\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$.
33. R on $\{w, x, y, z\}$ where $R=\{(w, w),(w, x),(x, w),(x, x),(x, z),(y, y),(z, y),(z, z)\}$.

Ans: $\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$.
34. R on $\{-2,-1,0,1,2$,$\} where a R b$ means $a^{2}=b^{2}$.

Ans: $\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1\end{array}\right]$.
35. R on $\{1,2,3,4,6,12\}$ where $a R b$ means $a \mid b$.

Ans: $\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$.
36. R on $\{1,2,4,8,16\}$ where $a R b$ means $a \mid b$.

Ans:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

37. R on $\{1,2,4,8,16\}$ where $a R b$ means $a \leq b$.
Ans: $\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
38. R^{2}, where R is the relation on on $\{1,2,3,4\}$ such that $a R b$ means $|a-b| \leq 1$. Ans: $\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}\right]$.
39. R^{2}, where R is the relation on $\{w, x, y, z\}$ such that $R=$ $\{(w, w),(w, x),(x, w),(x, x),(x, z),(y, y),(z, y),(z, z)\}$.
Ans: $\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$.
40. R^{-1}, where R is the relation on $\{1,2,3,4\}$ such that $a R b$ means $|a-b| \leq 1$.

Ans:

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

41. \bar{R}, where R is the relation on $\{w, x, y, z\}$ such that $R=$ $\{(w, w),(w, x),(x, w),(x, x),(x, z),(y, y),(z, y),(z, z)\}$.
Ans: $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0\end{array}\right]$.
42. If $\mathbf{M}_{R}=\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$, determine if R is: (a) reflexive (b) symmetric (c) antisymmetric (d) transitive.

Ans: (a) Yes. (b) No. (c) No. (d) No.
43. If $\mathbf{M}_{R}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$, determine if R is: (a) reflexive (b) symmetric (c) antisymmetric (d) transitive.

Ans: (a) Yes. (b) No. (c) Yes. (d) Yes.
44. Draw the directed graph for the relation defined by the matrix $\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$,

45. Draw the directed graph for the relation defined by the matrix $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$.

46. Draw the Hasse diagram for the relation R on $A=\{2,3,4,6,10,12,16\}$ where $a R b$ means a b.

Ans:

47. Draw the Hasse diagram for the relation R on $A=\{2,3,4,5,6,8,10,40\}$ where $a R b$ means a | b.

Ans: 3

48. Suppose $A=\{2,3,6,9,10,12,14,18,20\}$ and R is the partial order relation defined on A where $x R y$ means x is a divisor of y.
(a) Draw the Hasse diagram for R.
(b) Find all maximal elements.
(c) Find all minimal elements.
(d) Find lub $(\{2,9\})$.
(e) Find $\operatorname{lub}(\{3,10\})$.
(f) Find $\operatorname{glb}(\{14,10\})$.

Ans: (a)

(b) $12,14,18,20$. (c) 2,3 . (d) 18 .
(e) Does not exist. (f) 2 .
49. The diagram shown is the Hasse diagram for a partially ordered set. Referring to this diagram:
(a) List the maximal elements
(b) List the minimal elements
(c) Find all upper bounds for f, g
(d) Find all lower bounds for d, f
(e) Find lub $\left.\left\{g_{j}, j, m\right\}\right)$
(f) Find $\operatorname{glb}(\{d, e\})$
(g) Find the greatest element
(h) Find the least element
(i) Use a topological sort to order the elements of the poset represented by this Hasse diagram.

Ans: (a) a, b. (b) l, m. (c) b. (d) h, i, j, m. (e) g. (f) None. (g) None. (h) None.
(i) For example: $m, k, i, j, l, h, g_{f}, e, c, d, b, a$.
50. Find the transitive closure of R if \mathbf{M}_{R} is $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$.

Ans:.$\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$.
51. Find the transitive closure of R if \mathbf{M}_{R} is $\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$.

Ans: $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$.
52. If $R=\{(1,2),(1,4),(2,3),(3,1),(4,2)\}$, find the reflexive closure of R.

Ans: $\{(1,1),(1,2),(1,4),(2,2),(2,3),(3,1),(3,3),(4,2),(4,4)\}$.
53. If $R=\{(1,2),(1,4),(2,3),(3,1),(4,2)\}$, find the symmetric closure of R. Ans: $\{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2)\}$.
54. If $R=\{(x, y) \mid x$ and y are bit strings containing the same number of 0 s$\}$, find the equivalence classes of
(a) 1 .
(b) 00 .
(c) 101 .

Ans: (a) All strings that contain no 0 s (including the empty string). (b) All strings with exactly two 0 s. (c) All strings with exactly one 0 .
55. Find the smallest equivalence relation on $\{1,2,3\}$ that contains $(1,2)$ and $(2,3)$.

Ans: $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$.
56. Find the smallest partial order relation on $\{1,2,3\}$ that contains $(1,1),(3,2),(1,3)$.

Ans: $\{(1,1),(2,2),(3,3),(3,2),(1,3),(1,2)\}$.
57. What is the covering relation of the partial ordering $\{(a, b) \mid a$ divides $b\}$ on the set $\{1,2,3,4,6,8,12,24\} ?$
Ans: $\{(1,2),(1,3),(2,4),(2,6),(3,6),(4,8),(4,12),(6,12),(8,24),(12,24)\}$.
58. What is the covering relation of the partial ordering $\{(a, b) \mid a$ divides $b\}$ on the set $\{2,4,6,8,10,12\}$?
Ans: $\{(2,4),(2,6),(2,10),(4,8),(4,12),(6,12)\}$.
59. Find the join of the 3-ary relation
$\left\{\begin{array}{l}(\text { Wages,MS410,N507), } \\ (\text { Rosen,CS540,N525), } \\ (\text { Michaels,CS518,N504), } \\ (\text { Michaels,MS410,N510) }\end{array}\right\}$
and the 4-ary relation

$$
\left\{\begin{array}{l}
(\text { MS410,N507,Monday,6:00), } \\
(\text { MS410,N507,Wednesday,6:00), } \\
\text { (CS540,N525,Monday,7:30), } \\
\text { (CS518,N504,Tuesday,6:00), } \\
\text { (CS518,N504,Thursday,6:00) }
\end{array}\right\}
$$

with respect to the last two fields of the first relation and the first two fields of the second relation.
Ans:

$$
\left\{\begin{array}{l}
(\text { Wages,MS410,N507,Monday,6:00), } \\
\text { (Wages,MS410,N507,Wednesday,6:00), } \\
\text { (Rosen,CS540,N525,Monday,7:30), } \\
\text { (Michaels,CS518,N504,Tuesday,6:00), } \\
\text { (Michaels,CS518,N504,Thursday,6:00) }
\end{array}\right\}
$$

60. Find the transitive closure of R on $\{a, b, c, d\}$ where $R=$ $\{(a, a),(b, a),(b, c),(c, a),(c, c),(c, d),(d, a),(d, c)\}$.
Ans: $\{(a, a),(b, a),(b, c),(b, d),(c, a),(c, c),(c, d),(d, a),(d, c),(d, d)\}$.
61. Which of the following are partitions of $\{1,2,3, \ldots, 10\}$?
(a) $\{2,4,6,8\},\{1,3,5,9\},\{7,10\}$.
(b) $\{1,2,4,8\},\{2,5,7,10\},\{3,6,9\}$.
(c) $\{3,8,10\},\{1,2,5,9\},\{4,7,8\}$.
(d) $\{1\},\{2\}, \ldots,\{10\}$.
(e) $\{1,2, \ldots, 10\}$.

Ans: a, d, e.
62. Suppose R is the relation on N where $a R b$ means that a ends in the same digit in which b ends. Determine whether R is an equivalence relation on N.
Ans: Yes.
63. Suppose the relation R is defined on the set \boldsymbol{Z} where $a R b$ means that $a b \leq 0$. Determine whether R is an equivalence relation on \boldsymbol{Z}.
Ans: No (not reflexive, not transitive).
64. Suppose A is the set composed of all ordered pairs of positive integers. Let R be the relation defined on A where $(a, b) R(c, d)$ means that $a+d=b+c$.
(a) Prove that R is an equivalence relation.
(b) Find $[(2,4)]$.

Ans: (a) Reflexive: $a+b=b+a$; Symmetric: if $a+d=b+c$, then $c+b=d+a$;
Transitive: if $a+d=b+c$ and $c+f=d+e$, then $a+d-(d+e)=(b+c)-(c+f)$, therefore $a-e=b-f$, or $a+f=b+e$. (b) $[(2,4)]=\{(a, b) \mid b=a+2\}$.
65. Suppose that R and S are equivalence relations on a set A. Prove that the relation $R \cap S$ is also an equivalence relation on A.
Ans: Reflexive: for all $a \in A, a R a$ and $a S a$; hence for all $a \in A, a(R \cap S) a$. Symmetric: suppose $a(R \cap S) b$; then $a R b$ and $a S b$; by symmetry of R and $S, b R a$ and $b S a$;
therefore $b(R \cap S) a$. Transitive: suppose $a(R \cap S) b$ and $b(R \cap S) c$; then $a R b, a S b$, $b R c$, and $b S c$; by transitivity of R and $S, a R c$ and $a S c$; therefore $a(R \cap S) c$.
66. Let R be the relation on $A=\{1,2,3,4,5\}$ where $R=$ $\{(1,1),(1,3),(1,4),(2,2),(3,1),(3,3),(3,4),(4,1)$, $(4,3),(4,4),(5,5)\}$. Write the matrix for R.
Ans: $\left[\begin{array}{ccccc}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
67. Let R be the relation on $A=\{1,2,3,4,5\}$ where $R=$ $\{(1,1),(1,3),(1,4),(2,2),(3,1),(3,3),(3,4),(4,1)$,
$(4,3),(4,4),(5,5)\}$. Draw the directed graph for R.

68. Let R be the relation on $A=\{1,2,3,4,5\}$ where $R=$ $\{(1,1),(1,3),(1,4),(2,2),(3,1),(3,3),(3,4),(4,1)$, $(4,3),(4,4),(5,5)\}$. Find the equivalence classes for the partition of A given by R. Ans: $\{1,3,4\},\{2\},\{5\}$.

Use the following to answer questions 69-71:
In the questions below give an example or else prove that there are none.
69. A relation on $\{a, b, c\}$ that is reflexive and transitive, but not antisymmetric.

Ans: $\{(a, a),(b, b),(c, c),(a, b),(b, a)\}$.
70. A relation on $\{1,2\}$ that is symmetric and transitive, but not reflexive.

Ans: $\{(1,1)\}$.
71. A relation on $\{1,2,3\}$ that is reflexive and transitive, but not symmetric.

Ans: $\{(1,1),(2,2),(3,3),(1,2)\}$.
72. Suppose $|A|=n$. Find the number of binary relations on A.

Ans: $2^{n^{2}}$.
73. Suppose $|A|=n$. Find the number of symmetric binary relations on A.

Ans: $2^{n(n+1) / 2}$.
74. Suppose $|A|=n$. Find the number of reflexive, symmetric binary relations on A. Ans: $2^{n(n-1) / 2}$.

