Finite sets Review

October 9, 2010

Question

Construct a family of subsets $\{A_i \subset \{1,2,3,4,5\}\}$ such that any two members of A have one or two numbers in common.

Question

Construct a family of subsets $\{A_i \subset \{1,2,3,4,5\}\}$ such that any two members of A have one or two numbers in common.

Question

Construct a family of subsets $\{A_i \subset \{1,2,3,4,5\}\}$ such that any two members of A have one or two numbers in common.

- **1** Let $A = \{\{x, y, z\} | \{x, y, z\} \subset \{1, 2, 3, 4, 5\}\}.$
- **2** Clearly, if $A_i, A_j \in A$, then $1 \leq |A_i \cap A_j| \leq 2$.
- This gives us a set of $\binom{5}{3} = C(5,3) = 10$ subsets.

Question

Can you construct 5 subsets of $\{a, b, c, d, e\}$ such that every two subsets have two letters in common?

Question

Can you construct 5 subsets of $\{a, b, c, d, e\}$ such that every two subsets have two letters in common?

Hint

• First note that such a set, if it exists, cannot contain subsets with less than 3 letters.

Question

Can you construct 5 subsets of $\{a, b, c, d, e\}$ such that every two subsets have two letters in common?

Hint

- First note that such a set, if it exists, cannot contain subsets with less than 3 letters.
- 2 Argue that it cannot contain a set with 4 letters.

Question

Explain why $(A \times B) \times C$ and $A \times B \times C$ are not the same.

Question

Explain why $(A \times B) \times C$ and $A \times B \times C$ are not the same.

Question

Explain why $(A \times B) \times C$ and $A \times B \times C$ are not the same.

Press PgDn to see the answer

$$A \times B \times C$$
 is a set of triples $\{(x, y, z) | x \in A, y \in B, z \in C\}$. $(A \times B) \times C$ is a set of pairs $\{(u, v) | u \in A \times B, v \in C\}$

Observation

There is a bijection between the two sets.

Question

How many elements does the set $P(P(P(\emptyset)))$ have?

Question

How many elements does the set $P(P(P(\emptyset)))$ have?

Question

How many elements does the set $P(P(P(\emptyset)))$ have?

Press PgDn to see the answer

 $P(\emptyset)$ has one element: $\{\emptyset\}$.

 $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$ (it has two elements).

At this point it might help to rewrite the previous line as follows:

let $a = \emptyset$, $b = {\emptyset}$.

With this notation we have: $P(\{\emptyset\}) = P(b) = \{a, b\}$

So $P(P(b)) = P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$

So $P(P(P(\emptyset)))$ has eight elements.

Let $A = \{a, b, c, d, e\}$

- What is the characteristic (incidence) vector of {a, b, e}?
- **2** What is the characteritic vector of $\{a, b, c, d\} \cap \{b, c, d, e\}$?
- List all characteristic vectors of all subsets of A with cardinality 4.

Let $A = \{a, b, c, d, e\}$

- What is the characteristic (incidence) vector of {a, b, e}?
- **2** What is the characteritic vector of $\{a, b, c, d\} \cap \{b, c, d, e\}$?
- **3** List all characteristic vectors of all subsets of A with cardinality 4.

Let
$$A = \{a, b, c, d, e\}$$

- What is the characteristic (incidence) vector of {a, b, e}?
- **2** What is the characteritic vector of $\{a, b, c, d\} \cap \{b, c, d, e\}$?
- 1 List all characteristic vectors of all subsets of A with cardinality 4.

Press PgDn to see the answer

• The characteristic vector of $\{a, b, e\}$ is (1, 1, 0, 0, 1).

Let $A = \{a, b, c, d, e\}$

- What is the characteristic (incidence) vector of {a, b, e}?
- **2** What is the characteritic vector of $\{a, b, c, d\} \cap \{b, c, d, e\}$?
- 3 List all characteristic vectors of all subsets of A with cardinality 4.

- The characteristic vector of $\{a, b, e\}$ is (1, 1, 0, 0, 1).
- **2** $\{a, b, c, d\} \cap \{b, c, d, e\} = \{b, c, d\}$ so its characteristic vector is (0, 1, 1, 1, 0).

Let $A = \{a, b, c, d, e\}$

- What is the characteristic (incidence) vector of {a, b, e}?
- **2** What is the characteritic vector of $\{a, b, c, d\} \cap \{b, c, d, e\}$?
- 3 List all characteristic vectors of all subsets of A with cardinality 4.

- The characteristic vector of $\{a, b, e\}$ is (1, 1, 0, 0, 1).
- **2** $\{a, b, c, d\} \cap \{b, c, d, e\} = \{b, c, d\}$ so its characteristic vector is (0, 1, 1, 1, 0).
- 3 The characteritic vectors are:
 - \bullet (1, 1, 1, 1, 0)
 - \bullet (1, 1, 1, 0, 1)
 - (1, 1, 0, 1, 1)
 - \bullet (1,0,1,1,1)
 - (0,1,1,1,1)

Question

Let *U* be a finite set and $A, B \subset U$.

Prove that $|\overline{A} \cap \overline{B}| = |U| - |A| - |B| + |A \cap B|$.

Question

Let U be a finite set and $A, B \subset U$.

Prove that $|\overline{A} \cap \overline{B}| = |U| - |A| - |B| + |A \cap B|$.

Hint

Question

Let U be a finite set and $A, B \subset U$.

Prove that $|\overline{A} \cap \overline{B}| = |U| - |A| - |B| + |A \cap B|$.

Hint

One simple way to handle this question is to use DeMorgan's law:

$$\overline{A} \cap \overline{B} = \overline{A \cup B}$$
 and the simple fact: $|\overline{C}| = |U| - |C|$.

Finite Fields and Sets

Question (7)

Prove that the five characteristic vectors representing the five 4-subsets of a set with five elements (see question (5)) are linearly independent.

Proof.

• Let v_1, v_2, v_3, v_4, v_5 denote the five vectors.

- **1** Let v_1, v_2, v_3, v_4, v_5 denote the five vectors.
- ② We have: $\langle v_i, v_j \rangle = 3$ if $i \neq j$ and $\langle v_i, v_i \rangle = 5$.

- ① Let v_1, v_2, v_3, v_4, v_5 denote the five vectors.
- ② We have: $\langle v_i, v_j \rangle = 3$ if $i \neq j$ and $\langle v_i, v_i \rangle = 5$.
- **3** Assume that $\sum_{i=1}^{5} \alpha_i v_i = 0$.

- ① Let v_1, v_2, v_3, v_4, v_5 denote the five vectors.
- ② We have: $\langle v_i, v_j \rangle = 3$ if $i \neq j$ and $\langle v_i, v_i \rangle = 5$.
- **3** Assume that $\sum_{i=1}^{5} \alpha_i v_i = 0$. We need to prove that $\forall i \ \alpha_i = 0$.

- Let v_1, v_2, v_3, v_4, v_5 denote the five vectors.
- ② We have: $\langle v_i, v_j \rangle = 3$ if $i \neq j$ and $\langle v_i, v_i \rangle = 5$.
- **3** Assume that $\sum_{i=1}^{5} \alpha_i v_i = 0$. We need to prove that $\forall i \ \alpha_i = 0$.

- **1** Let v_1, v_2, v_3, v_4, v_5 denote the five vectors.
- ② We have: $\langle v_i, v_j \rangle = 3$ if $i \neq j$ and $\langle v_i, v_i \rangle = 5$.
- **3** Assume that $\sum_{i=1}^{5} \alpha_i v_i = 0$. We need to prove that $\forall i \ \alpha_i = 0$.
- **5** $\sum_{i=1}^{5} \alpha_i < v_1, v_i > = 2\alpha_1 + 3\sum_{i=1}^{5} \alpha_i = 0.$

- **1** Let v_1, v_2, v_3, v_4, v_5 denote the five vectors.
- ② We have: $\langle v_i, v_j \rangle = 3$ if $i \neq j$ and $\langle v_i, v_i \rangle = 5$.
- **3** Assume that $\sum_{i=1}^{5} \alpha_i v_i = 0$. We need to prove that $\forall i \ \alpha_i = 0$.

- If $\sum_{i=1}^{5} \alpha_i = 0$ then $\alpha_1 = 0$ and we are done.

- **1** Let v_1, v_2, v_3, v_4, v_5 denote the five vectors.
- ② We have: $\langle v_i, v_j \rangle = 3$ if $i \neq j$ and $\langle v_i, v_i \rangle = 5$.
- **3** Assume that $\sum_{i=1}^{5} \alpha_i v_i = 0$. We need to prove that $\forall i \ \alpha_i = 0$.

- **1** If $\sum_{i=1}^{5} \alpha_i = 0$ then $\alpha_1 = 0$ and we are done.
- If not, we obtain forall other indices i, $2\alpha_i + 3\sum_{i=1}^5 \alpha_i = 0$.

- **1** Let v_1, v_2, v_3, v_4, v_5 denote the five vectors.
- ② We have: $\langle v_i, v_j \rangle = 3$ if $i \neq j$ and $\langle v_i, v_i \rangle = 5$.
- **3** Assume that $\sum_{i=1}^{5} \alpha_i v_i = 0$. We need to prove that $\forall i \ \alpha_i = 0$.

- **6** If $\sum_{i=1}^{5} \alpha_i = 0$ then $\alpha_1 = 0$ and we are done.
- If not, we obtain forall other indices i, $2\alpha_i + 3\sum_{i=1}^5 \alpha_i = 0$.
- If we sum all five equations we get: $2\sum_{i=1}^{5} \alpha_i + 15\sum_{i=1}^{5} \alpha_i = 17\sum_{i=1}^{5} \alpha_i = 0.$
- **9** But this contradicts the assumption that $\sum_{i=1}^{5} \alpha_i \neq 0$.

- a. Find the equation of a line through the origin in $GF^2(7)$ parallel to the line that includes the points (4,5), (3,6).
- b. Find the intersection of the original line and the line through the points (2,5),(4,1).

- a. Find the equation of a line through the origin in $GF^2(7)$ parallel to the line that includes the points (4,5), (3,6).
- b. Find the intersection of the original line and the line through the points (2,5),(4,1).

- a. Find the equation of a line through the origin in $GF^2(7)$ parallel to the line that includes the points (4,5), (3,6).
- b. Find the intersection of the original line and the line through the points (2,5),(4,1).

Press PgDn to see the answer

(Recall: we are working in GF(7)).

a. The equation of the line through (4,5),(3,6) is:

$$x - 4 = 5 - y$$
 or $x + y = 2$.

Therefore the line through the origin parallel to this line is x + y = 0.

- a. Find the equation of a line through the origin in $GF^2(7)$ parallel to the line that includes the points (4,5), (3,6).
- b. Find the intersection of the original line and the line through the points (2,5),(4,1).

Press PgDn to see the answer

(Recall: we are working in GF(7)).

a. The equation of the line through (4,5),(3,6) is:

$$x - 4 = 5 - y$$
 or $x + y = 2$.

Therefore the line through the origin parallel to this line is x + y = 0.

b. The equation of the line through (2,5), (4,1) is: $\frac{x-2}{2} = \frac{y-5}{1-5}$. Simplifying: y + 2x = 2.

- a. Find the equation of a line through the origin in $GF^2(7)$ parallel to the line that includes the points (4,5), (3,6).
- b. Find the intersection of the original line and the line through the points (2,5),(4,1).

Press PgDn to see the answer

(Recall: we are working in GF(7)).

a. The equation of the line through (4,5),(3,6) is:

$$x - 4 = 5 - y$$
 or $x + y = 2$.

Therefore the line through the origin parallel to this line is x + y = 0.

b. The equation of the line through (2,5), (4,1) is: $\frac{x-2}{2} = \frac{y-5}{1-5}$. Simplifying: y + 2x = 2.

The lines intersect at: (0,2).

- a. Find the equation of the line through the points
- (4,3,0),(1,0,2) in the projective plane PG(5).
- b. Find the equation of the line through (0,1,0),(1,2,3) in PG(5).
 - c. Find the intersection point of these lines.

- a. Find the equation of the line through the points
- (4,3,0),(1,0,2) in the projective plane PG(5).
- b. Find the equation of the line through (0,1,0),(1,2,3) in PG(5).
 - c. Find the intersection point of these lines.

- a. Find the equation of the line through the points
- (4,3,0),(1,0,2) in the projective plane PG(5).
- b. Find the equation of the line through (0,1,0),(1,2,3) in PG(5).
- c. Find the intersection point of these lines.

- a. We are looking for a triple $(a, b, c) \neq (0, 0, 0)$ such that
- 4a + 3b = a + c = 0
- We may choose a = 1 (do you see why this is justified?) So
- (a,b,c)=(1,2,4) and the equation of the line is: x+2y+4z=0.
- b. Similarly, the equation of the line is 2x + z = 0.
- c. The intersection point is: (1,1,3).

Question (10)

a. Prove that the number of points and lines in the projective plane PG(q) is $q^2 + q + 1$.

Question (10)

- a. Prove that the number of points and lines in the projective plane PG(q) is $q^2 + q + 1$.
- b. Prove that every line in this projective plane conatins q+1 points.

Answer Question 10

Answer Question 10

Press PgDn to see the answer

Proof.

a. The number of triples

$$\{(x,y,z)\}|x,y,z\in GF(q)\setminus\{(0,0,0)\} \text{ is } q^3-1.$$

Every equivalence class contains q-1 triples.

Since the equivalence classes are pairwise disjoint the number of equivalence classes is $\frac{q^3-1}{q-1}=q^2+q+1..$

b. The equation of a line is: ax + by + cz = 0, $(a, b, c) \neq (0, 0, 0)$ Note that if (x_0, y_0, z_0) satisfies this equation then so does $(\alpha x, \alpha y, \alpha z) \ \forall \alpha \in GF(q)$. But $(x, y, z) \equiv (\alpha x, \alpha y, \alpha z)$ or they are the same point.

The total number of triples that satisfy the linear equation is q^2 . Since (0,0,0) is excluded, the total number of points on this line in PG(q) is $\frac{q^2-1}{q-1}=q+1$.

