Finite sets Review

October 9, 2010

Question 1

Question

Construct a family of subsets $\left\{A_{i} \subset\{1,2,3,4,5\}\right\}$ such that any two members of A have one or two numbers in common.

Question 1

Question

Construct a family of subsets $\left\{A_{i} \subset\{1,2,3,4,5\}\right\}$ such that any two members of A have one or two numbers in common.

Press PgDn to see the answer

Question 1

Question

Construct a family of subsets $\left\{A_{i} \subset\{1,2,3,4,5\}\right\}$ such that any two members of A have one or two numbers in common.

Press PgDn to see the answer

(1) Let $A=\{\{x, y, z\} \mid\{x, y, z\} \subset\{1,2,3,4,5\}\}$.
(2) Clearly, if $A_{i}, A_{j} \in A$, then $1 \leq\left|A_{i} \cap A_{j}\right| \leq 2$.
(3) This gives us a set of $\binom{5}{3}=C(5,3)=10$ subsets.

Question 2

Question
Can you construct 5 subsets of $\{a, b, c, d, e\}$ such that every two subsets have two letters in common?

Question 2

Question

Can you construct 5 subsets of $\{a, b, c, d, e\}$ such that every two subsets have two letters in common?

Hint

(1) First note that such a set, if it exists, cannot contain subsets with less than 3 letters.

Question 2

Question

Can you construct 5 subsets of $\{a, b, c, d, e\}$ such that every two subsets have two letters in common?

Hint

(1) First note that such a set, if it exists, cannot contain subsets with less than 3 letters.
(2) Argue that it cannot contain a set with 4 letters.

Question 3

Question

Explain why $(A \times B) \times C$ and $A \times B \times C$ are not the same.

Question 3

Question

Explain why $(A \times B) \times C$ and $A \times B \times C$ are not the same.
Press PgDn to see the answer

Question 3

Question

Explain why $(A \times B) \times C$ and $A \times B \times C$ are not the same.

Press PgDn to see the answer

$$
\begin{aligned}
& A \times B \times C \text { is a set of triples }\{(x, y, z) \mid x \in A, y \in B, z \in C\} \text {. } \\
& (A \times B) \times C \text { is a set of pairs }\{(u, v) \mid u \in A \times B, v \in C\}
\end{aligned}
$$

Observation

There is a bijection between the two sets.

Question 4

Question

How many elements does the set $P(P(\emptyset(\emptyset))$) have?

Question 4

Question

How many elements does the set $P(P(P(\emptyset)))$ have?
Press PgDn to see the answer

Question 4

Question

How many elements does the set $P(P(P(\emptyset)))$ have?

Press PgDn to see the answer

$P(\emptyset)$ has one element: $\{\emptyset\}$.
$P(\{\emptyset\})=\{\emptyset,\{\emptyset\}\}$ (it has two elements).
At this point it might help to rewrite the previous line as follows:
let $a=\emptyset, b=\{\emptyset\}$.
With this notation we have: $P(\{\emptyset\})=P(b)=\{a, b\}$
So $P(P(b))=P(\{a, b\})=\{\emptyset,\{a\},\{b\},\{a, b\}\}$
So $P(P(P(\emptyset)))$ has eight elements.

Question (5)
Let $A=\{a, b, c, d, e\}$
(1) What is the characteristic (incidence) vector of $\{a, b, e\}$?
(2) What is the characteritic vector of $\{a, b, c, d\} \cap\{b, c, d, e\}$?
(3) List all characteristic vectors of all subsets of A with cardinality 4.

Question (5)

Let $A=\{a, b, c, d, e\}$
(1) What is the characteristic (incidence) vector of $\{a, b, e\}$?
(2) What is the characteritic vector of $\{a, b, c, d\} \cap\{b, c, d, e\}$?
(3) List all characteristic vectors of all subsets of A with cardinality 4.

Press PgDn to see the answer

Question (5)

Let $A=\{a, b, c, d, e\}$
(1) What is the characteristic (incidence) vector of $\{a, b, e\}$?
(2) What is the characteritic vector of $\{a, b, c, d\} \cap\{b, c, d, e\}$?
(3) List all characteristic vectors of all subsets of A with cardinality 4.

Press PgDn to see the answer

(1) The characteristic vector of $\{a, b, e\}$ is $(1,1,0,0,1)$.

Question (5)

Let $A=\{a, b, c, d, e\}$
(1) What is the characteristic (incidence) vector of $\{a, b, e\}$?
(2) What is the characteritic vector of $\{a, b, c, d\} \cap\{b, c, d, e\}$?
(3) List all characteristic vectors of all subsets of A with cardinality 4.

Press PgDn to see the answer

(1) The characteristic vector of $\{a, b, e\}$ is $(1,1,0,0,1)$.
(2) $\{a, b, c, d\} \cap\{b, c, d, e\}=\{b, c, d\}$ so its characteristic vector is $(0,1,1,1,0)$.

Question (5)

Let $A=\{a, b, c, d, e\}$
(1) What is the characteristic (incidence) vector of $\{a, b, e\}$?
(2) What is the characteritic vector of $\{a, b, c, d\} \cap\{b, c, d, e\}$?
(3) List all characteristic vectors of all subsets of A with cardinality 4.

Press PgDn to see the answer

(1) The characteristic vector of $\{a, b, e\}$ is $(1,1,0,0,1)$.
(2) $\{a, b, c, d\} \cap\{b, c, d, e\}=\{b, c, d\}$ so its characteristic vector is $(0,1,1,1,0)$.
(3) The characteritic vectors are:

- ($1,1,1,1,0$)
- $(1,1,1,0,1)$
- $(1,1,0,1,1)$
- ($1,0,1,1,1$)
- $(0,1,1,1,1)$

Question 6

Question

Let U be a finite set and $A, B \subset U$. Prove that $|\bar{A} \cap \bar{B}|=|U|-|A|-|B|+|A \cap B|$.

Question 6

Question

Let U be a finite set and $A, B \subset U$. Prove that $|\bar{A} \cap \bar{B}|=|U|-|A|-|B|+|A \cap B|$.

Hint

Question 6

Question

Let U be a finite set and $A, B \subset U$.
Prove that $|\bar{A} \cap \bar{B}|=|U|-|A|-|B|+|A \cap B|$.

Hint

One simple way to handle this question is to use DeMorgan's law: $\bar{A} \cap \bar{B}=\overline{A \cup B}$ and the simple fact: $|\bar{C}|=|U|-|C|$.

Finite Fields and Sets

Question (7)
Prove that the five characteristic vectors representing the five 4-subsets of a set with five elements (see question (5)) are linearly independent.

Press PgDn to see the answer (to Question 7)

Press PgDn to see the answer (to Question 7)

Proof.

(1) Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ denote the five vectors.

Press PgDn to see the answer (to Question 7)

Proof.

(1) Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ denote the five vectors.
(2) We have: $\left\langle v_{i}, v_{j}\right\rangle=3$ if $i \neq j$ and $\left.<v_{i}, v_{i}\right\rangle=5$.

Press PgDn to see the answer (to Question 7)

Proof.

(1) Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ denote the five vectors.
(2) We have: $\left\langle v_{i}, v_{j}\right\rangle=3$ if $i \neq j$ and $\left.<v_{i}, v_{i}\right\rangle=5$.
(3) Assume that $\sum_{i=1}^{5} \alpha_{i} v_{i}=0$.

Press PgDn to see the answer (to Question 7)

Proof.

(1) Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ denote the five vectors.
(2) We have: $\left\langle v_{i}, v_{j}\right\rangle=3$ if $i \neq j$ and $\left.<v_{i}, v_{i}\right\rangle=5$.
(3) Assume that $\sum_{i=1}^{5} \alpha_{i} v_{i}=0$. We need to prove that $\forall i \alpha_{i}=0$.

Press PgDn to see the answer (to Question 7)

Proof.

(1) Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ denote the five vectors.
(2) We have: $\left\langle v_{i}, v_{j}\right\rangle=3$ if $i \neq j$ and $\left.<v_{i}, v_{i}\right\rangle=5$.
(3) Assume that $\sum_{i=1}^{5} \alpha_{i} v_{i}=0$. We need to prove that $\forall i \alpha_{i}=0$.
(9) $\left.\left.<v_{1}, \sum_{i=1}^{5} \alpha_{i} v_{i}\right\rangle=\sum_{i=1}^{5} \alpha_{i}<v_{1}, v_{i}\right\rangle=0$.

Press PgDn to see the answer (to Question 7)

Proof.

(1) Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ denote the five vectors.
(2) We have: $\left\langle v_{i}, v_{j}\right\rangle=3$ if $i \neq j$ and $\left\langle v_{i}, v_{i}\right\rangle=5$.
(3) Assume that $\sum_{i=1}^{5} \alpha_{i} v_{i}=0$.

We need to prove that $\forall i \alpha_{i}=0$.
(9) $<v_{1}, \sum_{i=1}^{5} \alpha_{i} v_{i}>=\sum_{i=1}^{5} \alpha_{i}<v_{1}, v_{i}>=0$.
(6) $\sum_{i=1}^{5} \alpha_{i}<v_{1}, v_{i}>=2 \alpha_{1}+3 \sum_{i=1}^{5} \alpha_{i}=0$.

Press PgDn to see the answer (to Question 7)

Proof.

(1) Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ denote the five vectors.
(2) We have: $\left\langle v_{i}, v_{j}\right\rangle=3$ if $i \neq j$ and $\left.<v_{i}, v_{i}\right\rangle=5$.
(3) Assume that $\sum_{i=1}^{5} \alpha_{i} v_{i}=0$. We need to prove that $\forall i \alpha_{i}=0$.
(9) $\left.\left.<v_{1}, \sum_{i=1}^{5} \alpha_{i} v_{i}\right\rangle=\sum_{i=1}^{5} \alpha_{i}<v_{1}, v_{i}\right\rangle=0$.
(5) $\sum_{i=1}^{5} \alpha_{i}<v_{1}, v_{i}>=2 \alpha_{1}+3 \sum_{i=1}^{5} \alpha_{i}=0$.
(6) If $\sum_{i=1}^{5} \alpha_{i}=0$ then $\alpha_{1}=0$ and we are done.

Press PgDn to see the answer (to Question 7)

Proof.

(1) Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ denote the five vectors.
(2) We have: $\left\langle v_{i}, v_{j}\right\rangle=3$ if $i \neq j$ and $\left.<v_{i}, v_{i}\right\rangle=5$.
(3) Assume that $\sum_{i=1}^{5} \alpha_{i} v_{i}=0$. We need to prove that $\forall i \alpha_{i}=0$.
(1) $<v_{1}, \sum_{i=1}^{5} \alpha_{i} v_{i}>=\sum_{i=1}^{5} \alpha_{i}<v_{1}, v_{i}>=0$.
(5) $\sum_{i=1}^{5} \alpha_{i}<v_{1}, v_{i}>=2 \alpha_{1}+3 \sum_{i=1}^{5} \alpha_{i}=0$.
(0) If $\sum_{i=1}^{5} \alpha_{i}=0$ then $\alpha_{1}=0$ and we are done.
(3) If not, we obtain forall other indices $i, 2 \alpha_{i}+3 \sum_{i=1}^{5} \alpha_{i}=0$.

Press PgDn to see the answer (to Question 7)

Proof.

(1) Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ denote the five vectors.
(2) We have: $\left\langle v_{i}, v_{j}\right\rangle=3$ if $i \neq j$ and $\left\langle v_{i}, v_{i}\right\rangle=5$.
(3) Assume that $\sum_{i=1}^{5} \alpha_{i} v_{i}=0$. We need to prove that $\forall i \alpha_{i}=0$.
(9) $<v_{1}, \sum_{i=1}^{5} \alpha_{i} v_{i}>=\sum_{i=1}^{5} \alpha_{i}<v_{1}, v_{i}>=0$.
(5) $\sum_{i=1}^{5} \alpha_{i}<v_{1}, v_{i}>=2 \alpha_{1}+3 \sum_{i=1}^{5} \alpha_{i}=0$.
(0) If $\sum_{i=1}^{5} \alpha_{i}=0$ then $\alpha_{1}=0$ and we are done.
(3) If not, we obtain forall other indices $i, 2 \alpha_{i}+3 \sum_{i=1}^{5} \alpha_{i}=0$.
(8) If we sum all five equations we get:
$2 \sum_{i=1}^{5} \alpha_{i}+15 \sum_{i=1}^{5} \alpha_{i}=17 \sum_{i=1}^{5} \alpha_{i}=0$.
(0) But this contradicts the assumption that $\sum_{i=1}^{5} \alpha_{i} \neq 0$.

Question (8)

a. Find the equation of a line through the origin in $G F^{2}(7)$ parallel to the line that includes the points $(4,5),(3,6)$.
b. Find the intersection of the original line and the line through the points $(2,5),(4,1)$.

Question (8)

a. Find the equation of a line through the origin in $G F^{2}(7)$ parallel to the line that includes the points $(4,5),(3,6)$.
b. Find the intersection of the original line and the line through the points $(2,5),(4,1)$.

Press PgDn to see the answer

Question (8)

a. Find the equation of a line through the origin in $G F^{2}(7)$ parallel to the line that includes the points $(4,5),(3,6)$.
b. Find the intersection of the original line and the line through the points $(2,5),(4,1)$.

Press PgDn to see the answer

(Recall: we are working in GF(7)).
a. The equation of the line through $(4,5),(3,6)$ is:
$x-4=5-y$ or $x+y=2$.
Therefore the line through the origin parallel to this line is
$x+y=0$.

Question (8)

a. Find the equation of a line through the origin in $G F^{2}(7)$ parallel to the line that includes the points $(4,5),(3,6)$.
b. Find the intersection of the original line and the line through the points $(2,5),(4,1)$.

Press PgDn to see the answer

(Recall: we are working in GF(7)).
a. The equation of the line through $(4,5),(3,6)$ is:
$x-4=5-y$ or $x+y=2$.
Therefore the line through the origin parallel to this line is
$x+y=0$.
b. The equation of the line through $(2,5),(4,1)$ is: $\frac{x-2}{2}=\frac{y-5}{1-5}$.

Simplifying: $y+2 x=2$.

Question (8)

a. Find the equation of a line through the origin in $G F^{2}(7)$ parallel to the line that includes the points $(4,5),(3,6)$.
b. Find the intersection of the original line and the line through the points $(2,5),(4,1)$.

Press PgDn to see the answer

(Recall: we are working in GF(7)).
a. The equation of the line through $(4,5),(3,6)$ is:
$x-4=5-y$ or $x+y=2$.
Therefore the line through the origin parallel to this line is
$x+y=0$.
b. The equation of the line through $(2,5),(4,1)$ is: $\frac{x-2}{2}=\frac{y-5}{1-5}$.

Simplifying: $y+2 x=2$.
The lines intersect at: $(0,2)$.

Question (9)

a. Find the equation of the line through the points
$(4,3,0),(1,0,2)$ in the projective plane $P G(5)$.
b. Find the eqauation of the line through $(0,1,0),(1,2,3)$ in $P G(5)$.
c. Find the intersection point of these lines.

Question (9)

a. Find the equation of the line through the points
$(4,3,0),(1,0,2)$ in the projective plane $P G(5)$.
b. Find the eqauation of the line through $(0,1,0),(1,2,3)$ in $P G(5)$.
c. Find the intersection point of these lines.

Press PgDn to see the answer

Question (9)

a. Find the equation of the line through the points
$(4,3,0),(1,0,2)$ in the projective plane $P G(5)$.
b. Find the eqauation of the line through $(0,1,0),(1,2,3)$ in $P G(5)$.
c. Find the intersection point of these lines.

Press PgDn to see the answer

a. We are looking for a triple $(a, b, c) \neq(0,0,0)$ such that $4 a+3 b=a+c=0$
We may choose $a=1$ (do you see why this is justified?) So
$(a, b, c)=(1,2,4)$ and the equation of the line is: $x+2 y+4 z=0$.
b. Similarly, the equation of the line is $2 x+z=0$.
c. The intersection point is: $(1,1,3)$.

Question (10)

a.Prove that the number of points and lines in the projective plane $P G(q)$ is $q^{2}+q+1$.

Question (10)

a.Prove that the number of points and lines in the projective plane $P G(q)$ is $q^{2}+q+1$.
b. Prove that every line in this projective plane conatins $q+1$ points.

Answer Question 10

Press PgDn to see the answer

Answer Question 10

Press PgDn to see the answer

Proof.

a. The number of triples

$$
\{(x, y, z)\} \mid x, y, z \in G F(q) \backslash\{(0,0,0)\} \text { is } q^{3}-1
$$

Every equivalence class contains $q-1$ triples.
Since the equivalence classes are pairwise disjoint the number of equivalence classes is $\frac{q^{3}-1}{q-1}=q^{2}+q+1$..
b. The equation of a line is: $a x+b y+c z=0,(a, b, c) \neq(0,0,0)$ Note that if $\left(x_{0}, y_{0}, z_{0}\right)$ satisfies this equation then so does $(\alpha x, \alpha y, \alpha z) \forall \alpha \in G F(q)$. But $(x, y, z) \equiv(\alpha x, \alpha y, \alpha z)$ or they are the same point.
The total number of triples that satisfy the linear equation is q^{2}. Since $(0,0,0)$ is excluded, the total number of points on this line in $P G(q)$ is $\frac{q^{2}-1}{q-1}=q+1$.

