Discrete Mathematics and Applications

Moshe Rosenfeld

Hanoi 2010 moishe@u.washington.edu

1 Preparation for the final exam

Date: Wednesday, 22 Dec. 2:00 P.M.

Duration: 2 hours.

1.1 List of topics:

- 1. Logic
 - Propositions
 - Boolean operations
 - \bullet Truth Tables
 - Logical Equivalence
 - Conjunctions and Disjunctions
 - Logic Gates
- 2. Sets
 - Set Builder
 - Set Operations
 - Characteristic Vectors
 - Venn Diagrams
 - Power Set
 - Cardinality
 - Countable sets
 - The Diagonal Process
 - Set Systems (Linear Algebra and Sets)
 - Finite Projective Geometries.
- 3. Counting

- Sum Rule
- Product Rule
- Pigeon Hole Principle
- Inclusion Exclusion
- 4. Permutations, Combinations, Binomials
 - Derangements
 - Enumerating permutations (lexicographic, Cantor Digits)
 - Lexicographic Order of Combinations
 - Binomial Theorem, $\binom{n}{k}$
 - Laplace Triangle
 - Estimates of n!, $\binom{n}{k}$
- 5. Recurrence Relations
 - What is a *solution* to a recurrence relation.
 - Telescoping
 - Build a recurrence relation to solve a problem.
 - Linear recurrence relations.
 - Homogeneous and Non-Homogeneous Recurrence Relations.
 - Order of a Linear Recurrence Relation.
 - Solving Recurrence Relations.
 - Generating Functions
 - Generalized Binomial Coefficients
 - Catalan Numbers
- 6. Discrete Optimization: Scheduling problems.
- 7. Number Theory Applications
 - Modular Arithmetic
 - Prime Numbers.
 - GF(q)
 - Fermat's Theorem
 - Chinese Remainder Theorem
 - RSA
 - Factoring
 - SQRT mod p and mod pq

1.2 Description of Test

Questions in the test will be of three categories:

- 1. Basic knowledge of concepts.
 - Examples:
 - Build the truth table of $(p \to q) \land (p \lor s) \lor (q \to s)$
 - Draw a Venn Diagram
 - How many integers < 1000 are not divisible by 7 or 11?
 - Which combination precedes $\{5, 6, 9, 11, 17\}$
 - Check whether a given relation is transitive.
- 2. Applying what we learned.
 - Examples
 - Build a 3-SAT equivalent to a given boolean function (given its Truth Table).
 - From a class of 13 students arrange a list of 13 teams, each with 4 students such that each two teams have exactly one student in common.
 - In how many ways can you give 13 children 50 identical coins?
 - Calculate $7^{35467828} \mod 11$
 - Find a_{1000} given: $a_n = a_{n-1} 6a_{n-2} + 2n$, $a_0 = 0$, $a_1 = 1$
 - Given a list of jobs $J_k(p, d)$ with processing time p and deadline d. Schedule them to minimize the number of late jobs.
 - Given 4 matrices, find the smallest number of multiplications of real numbers needed to calculate their product.
 - Which permutaion of order 10 is permutation number 234,000 in the Cantor Digits enumeration.
 - Given 34 red balls, 45 blue balls and 50 green balls. In how many ways can you select 80 balls?

3. Proofs

- Examples
- Prove Fermat's Theorem.
- Prove that if $n \mod 10 = 7$ then there is an integer k such that $n \cdot k = 11 \dots 1$
- Prove that if A is a finite set with 2n members then the maximum number of subsets such that no set contains another set is $\binom{2n}{n}$.

All questions will be based on the class notes, examples discussed in class, and the assignments.