Discrete Mathematics and Applications

Moshe Rosenfeld
Hanoi 2010
moishe@u. washington. edu

1 Preparation for the final exam

Date: Wednesday, 22 Dec. 2:00 P.M.
Duration: 2 hours.

1.1 List of topics:

1. Logic

- Propositions
- Boolean operations
- Truth Tables
- Logical Equivalence
- Conjunctions and Disjunctions
- Logic Gates

2. Sets

- Set Builder
- Set Operations
- Characteristic Vectors
- Venn Diagrams
- Power Set
- Cardinality
- Countable sets
- The Diagonal Process
- Set Systems (Linear Algebra and Sets)
- Finite Projective Geometries.

3. Counting

- Sum Rule
- Product Rule
- Pigeon Hole Principle
- Inclusion Exclusion

4. Permutations, Combinations, Binomials

- Derangements
- Enumerating permutations (lexicographic, Cantor Digits)
- Lexicographic Order of Combinations
- Binomial Theorem, $\binom{n}{k}$
- Laplace Triangle
- Estimates of $n!, \quad\binom{n}{k}$

5. Recurrence Relations

- What is a solution to a recurrence relation.
- Telescoping
- Build a recurrence relation to solve a problem.
- Linear recurrence relations.
- Homogeneous and Non-Homogeneous Recurrence Relations.
- Order of a Linear Recurrenec Relation.
- Solving Recurrence Relations.
- Generating Functions
- Generalized Binomial Coefficients
- Catalan Numbers

6. Discrete Optimization: Scheduling problems.
7. Number Theory Applications

- Modular Arithmetic
- Prime Numbers
- GF(q)
- Fermat's Theorem
- Chinese Remainder Theorem
- RSA
- Factoring
- SQRT mod p and mod pq

1.2 Description of Test

Questions in the test will be of three categories:

1. Basic knowledge of concepts.

- Examples:
- Build the truth table of $(p \rightarrow q) \wedge(p \vee s) \vee(q \rightarrow s)$
- Draw a Venn Diagram
- How many integers <1000 are not divisible by 7 or 11 ?
- Which combination precedes $\{5,6,9,11,17\}$
- Check whether a given relation is transitive.

2. Applying what we learned.

- Examples
- Build a 3-SAT equivalent to a given boolean function (given its Truth Table).
- From a class of 13 students arrange a list of 13 teams, each wtih 4 students such that each two teams have exactly one student in common.
- In how many ways can you give 13 children 50 identical coins?
- Calculate $7^{35467828} \bmod 11$
- Find a_{1000} given: $a_{n}=a_{n-1}-6 a_{n-2}+2 n, a_{0}=0, a_{1}=1$
- Given a list of jobs $J_{k}(p, d)$ with processing time p and deadline d. Schedule them to minimize the number of late jobs.
- Given 4 matrices, find the smallest number of multiplications of real numbers needed to calculate their product.
- Which permutaion of order 10 is permutation number 234,000 in the Cantor Digits enumeration.
- Given 34 red balls, 45 blue balls and 50 green balls. In how many ways can you select 80 balls?

3. Proofs

- Examples
- Prove Fermat's Theorem.
- Prove that if $n \bmod 10=7$ then there is an integer k such that $n \cdot k=11 \ldots 1$
- Prove that if A is a finite set with $2 n$ members then the maximum number of subsets such that no set contains another set is $\binom{2 n}{n}$.

All questions will be based on the class notes, examples discussed in class, and the assignments.

