Discrete Mathematics and its Applications

Ngày 18 tháng 9 năm 2011

FINITE SETS

In this lecture we shall study a sample of problems on finite sets. They will be listed as theorems which we will prove together in class.

FINITE SETS

In this lecture we shall study a sample of problems on finite sets. They will be listed as theorems which we will prove together in class.

Theorem
The number of distinct subsets of a set A is $2^{|A|}\left(|P(A)|=2^{|A|}\right.$

FINITE SETS

In this lecture we shall study a sample of problems on finite sets. They will be listed as theorems which we will prove together in class.

Theorem
The number of distinct subsets of a set A is $2^{|A|}\left(|P(A)|=2^{|A|}\right.$

FINITE SETS

In this lecture we shall study a sample of problems on finite sets. They will be listed as theorems which we will prove together in class.

Theorem
The number of distinct subsets of a set A is $2^{|A|}\left(|P(A)|=2^{|A|}\right.$

Question

How large can a family of subsets of an n-set A be if any two subsets intersect?

FINITE SETS

In this lecture we shall study a sample of problems on finite sets. They will be listed as theorems which we will prove together in class.

Theorem
The number of distinct subsets of a set A is $2^{|A|}\left(|P(A)|=2^{|A|}\right.$

Question

How large can a family of subsets of an n-set A be if any two subsets intersect?

FINITE SETS

In this lecture we shall study a sample of problems on finite sets. They will be listed as theorems which we will prove together in class.

Theorem

The number of distinct subsets of a set A is $2^{|A|}\left(|P(A)|=2^{|A|}\right.$

Question

How large can a family of subsets of an n-set A be if any two subsets intersect?

Question

How many subsets can a family $\mathbb{F} \subset P(A))$ have if any two subsets have exactly one element in common?

FINITE SETS

Question

Can we construct a a family $\mathbb{F} \subset P(A)$ such that each subset has the same size k and every member of A belongs to exactly k subsets?

FINITE SETS

Question

Can we construct a a family $\mathbb{F} \subset P(A)$ such that each subset has the same size k and every member of A belongs to exactly k subsets?

FINITE SETS

Question

Can we construct a a family $\mathbb{F} \subset P(A)$ such that each subset has the same size k and every member of A belongs to exactly k subsets?

Question

Let $A=\{1,2,3,4,5,6,7\}$. Construct a family of triples such that every two triples have exactly one number in common and every pair of numbers belong to exactly one triple.

FINITE SETS

Question

Can we construct a a family $\mathbb{F} \subset P(A)$ such that each subset has the same size k and every member of A belongs to exactly k subsets?

Question

Let $A=\{1,2,3,4,5,6,7\}$. Construct a family of triples such that every two triples have exactly one number in common and every pair of numbers belong to exactly one triple.

Question

How large can a family $\mathbb{F} \subset P(A)$ of subsets be if no memebr of the family conatins another member.

FINITE SETS

Question

Can we construct a a family $\mathbb{F} \subset P(A)$ such that each subset has the same size k and every member of A belongs to exactly k subsets?

Question

Let $A=\{1,2,3,4,5,6,7\}$. Construct a family of triples such that every two triples have exactly one number in common and every pair of numbers belong to exactly one triple.

Question

How large can a family $\mathbb{F} \subset P(A)$ of subsets be if no memebr of the family conatins another member.

Remark

Note that if all memebers of \mathbb{F} have the same size then no subset containc another cubset חnoc thic diup uc a clue to the ancumer?

