Discrete Mathematics and its Applications

Ngày 18 tháng 9 năm 2011

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

2

イロト イヨト イヨト イヨト

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

1 $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m \in N\}$ is a relation on *N*.

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m \in N\}$ is a relation on *N*.
- **◎** $\mathbf{R}^2 = \{\{(x, y) | x, y \in \mathbf{R}\} \text{ is a relation on } \mathbf{R}.$

-

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m ∈ N\}$ is a relation on N.
- **◎** $\mathbf{R}^2 = \{\{(x, y) | x, y \in \mathbf{R}\} \text{ is a relation on } \mathbf{R}.$
- $\mathbb{R}_5 = \{(n, m) \mid n m \text{ mod } 19 = 0\}$ is a relation on Z.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m \in N\}$ is a relation on *N*.
- **◎** $\mathbf{R}^2 = \{\{(x, y) | x, y \in \mathbf{R}\} \text{ is a relation on } \mathbf{R}.$
- $\mathbb{R}_5 = \{(n, m) \mid n m \text{ mod } 19 = 0\}$ is a relation on *Z*.
- [●] $\mathbb{R}_6 = \{((n, m), (j, k)) | \{m, m.j, k\} \subset Z \text{ and } nk = mj\} \text{ is a relation on } Z$

3

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m \in N\}$ is a relation on *N*.
- **◎** $\mathbf{R}^2 = \{\{(x, y) | x, y \in \mathbf{R}\} \text{ is a relation on } \mathbf{R}.$
- $\mathbb{R}_5 = \{(n, m) \mid n m \text{ mod } 19 = 0\}$ is a relation on *Z*.
- [●] $\mathbb{R}_6 = \{((n, m), (j, k)) | \{m, m.j, k\} \subset Z \text{ and } nk = mj\} \text{ is a relation on } Z$
- $\mathbb{R}_7 = \{(A, B) \mid A = TBT^{-1}, A, B, T \text{ square matrices of order } n\}.$

- 3

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m \in N\}$ is a relation on *N*.
- **◎** $\mathbf{R}^2 = \{\{(x, y) | x, y \in \mathbf{R}\} \text{ is a relation on } \mathbf{R}.$
- $\mathbb{R}_5 = \{(n, m) \mid n m \text{ mod } 19 = 0\}$ is a relation on *Z*.
- [●] $\mathbb{R}_6 = \{((n, m), (j, k)) | \{m, m.j, k\} \subset Z \text{ and } nk = mj\} \text{ is a relation on } Z$
- $\mathbb{R}_7 = \{(A, B) \mid A = TBT^{-1}, A, B, T \text{ square matrices of order } n\}.$
- 2 Let G be a group and H a subgroup of G. $\mathbb{R}_8 = \{(r, s) \mid r \cdot s^{-1} \in H\}$ is a relation on G.

イロト 不得 トイヨト イヨト 二日

Definition

Definition

• A relation \mathbb{R} on a set A:

Definition

- A relation \mathbb{R} on a set A:
 - *Is* reflexive *if* $\forall a \in A \ (a, a) \in \mathbb{R}$.

Definition

- A relation \mathbb{R} on a set A:
 - *Is* reflexive *if* $\forall a \in A \ (a, a) \in \mathbb{R}$.
 - *Is* symmetric *if* $(x, y) \in \mathbb{R} \longrightarrow (y, x) \in \mathbb{R}$.

Definition

- A relation \mathbb{R} on a set A:
 - *Is* reflexive *if* $\forall a \in A \ (a, a) \in \mathbb{R}$.
 - *Is* symmetric *if* $(x, y) \in \mathbb{R} \longrightarrow (y, x) \in \mathbb{R}$.
 - *Is* transitive *if* (x, y) *and* $(y, z) \in \mathbb{R}$ *then* $(x, z) \in \mathbb{R}$.

Definition

- A relation \mathbb{R} on a set A:
 - *Is* reflexive *if* $\forall a \in A \ (a, a) \in \mathbb{R}$.
 - *Is* symmetric *if* $(x, y) \in \mathbb{R} \longrightarrow (y, x) \in \mathbb{R}$.
 - *Is* transitive *if* (x, y) *and* $(y, z) \in \mathbb{R}$ *then* $(x, z) \in \mathbb{R}$ *.*

Question

Which relation from our examples is reflexive, symmetric, transitive?

< ロ > < 同 > < 回 > < 回 >

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, symmetric, transitive.

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

< ロ > < 同 > < 回 > < 回 >

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, **symmetric**, **transitive**.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then $A = A_1 \cup A_2 \cup \ldots$ where:

3

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, **symmetric**, **transitive**.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then $A = A_1 \cup A_2 \cup \ldots$ where:

• If
$$x, y \in A_i \rightarrow (x, y) \in \mathbb{R}$$
. If $x \in A_i, y \in A_j \ i \neq j$ then $(x, y) \notin \mathbb{R}$.

3

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, **symmetric**, **transitive**.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then $A = A_1 \cup A_2 \cup \ldots$ where:

 $a_i \cap A_j = \emptyset \text{ if } i \neq j.$

3

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, **symmetric**, **transitive**.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then $A = A_1 \cup A_2 \cup \ldots$ where:

 $a_i \cap A_j = \emptyset \text{ if } i \neq j.$

3

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, **symmetric**, **transitive**.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then $A = A_1 \cup A_2 \cup \ldots$ where:

• If
$$x, y \in A_i \rightarrow (x, y) \in \mathbb{R}$$
. If $x \in A_i, y \in A_j \ i \neq j$ then $(x, y) \notin \mathbb{R}$.

2
$$A_i \cap A_j = \emptyset$$
 if $i \neq j$.

We say that the relation \mathbb{R} partitions A into equivalence classes.

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a **function**. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

< ロ > < 同 > < 回 > < 回 >

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a **function**. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

< ロ > < 同 > < 回 > < 回 >

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a **function**. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

Our approach so far has been:

Logic: the bridge between mathematical methods and the universe.

< ロ > < 同 > < 回 > < 回 >

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a **function**. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

Our approach so far has been:

- Logic: the bridge between mathematical methods and the universe.
- Sets, a simple looking object that carries very little background.

< ロ > < 同 > < 回 > < 回 >

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a **function**. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

Our approach so far has been:

- Logic: the bridge between mathematical methods and the universe.
- Sets, a simple looking object that carries very little background.
- 8 Relations: a type of sets.

-

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a **function**. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

Our approach so far has been:

- Logic: the bridge between mathematical methods and the universe.
- Sets, a simple looking object that carries very little background.
- Relations: a type of sets.
- Functions: a type of relations.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definitions

Definition

Let A and B be sets. A **function** f from A to B is an assignment of exactly one element of B to elements of A. Notation: $f: A \rightarrow B$.

Definitions

Definition

Let A and B be sets. A **function** f from A to B is an assignment of exactly one element of B to elements of A. Notation: $f: A \rightarrow B$.

Definitions

Definition

Let A and B be sets. A **function** f from A to B is an assignment of exactly one element of B to elements of A. Notation: $f: A \rightarrow B$.

Alternatively, $f \subset A \times B$ such that $((a, b) \in f) \land ((a, c) \in f) \rightarrow b = c$.

In other words, a function $f : A \rightarrow B$ is a "restricted" binary relation between A and B.

Common notation: f(a) = b b is the image of a under the function f.

Question

Which of the relations in our sample of 8 relations is a function?

- 12

Ex. 1. **f** assigns to a bit string the number of 1's in the string. Domain: $\{b \mid All \text{ bit strings}\}$ Range = $\{0, 1, 2, ...\} = N$. **f**(0110101) = 4.

(日)

Examples

- **Ex.** 1. **f** assigns to a bit string the number of 1's in the string. Domain: $\{b \mid All \text{ bit strings}\}$ Range = $\{0, 1, 2, ...\} = N$. **f**(0110101) = 4.
- **Ex.** 2. f assigns to each positive integer the smallest prime greater or equal to this integer. (f(5) = 5, f(25) = 29, f(69) = 71...Domain: Z^+ , Range the set of prime numbers.

Examples

- **Ex.** 1. **f** assigns to a bit string the number of 1's in the string. Domain: $\{b \mid All \text{ bit strings}\}$ Range = $\{0, 1, 2, ...\} = N$. **f**(0110101) = 4.
- **Ex.** 2. f assigns to each positive integer the smallest prime greater or equal to this integer. (f(5) = 5, f(25) = 29, f(69) = 71...Domain: Z^+ , Range the set of prime numbers.
- **Ex.** 3. $f(x) = \lfloor x \rfloor$ Domain: *R*, Range: *Z*. $f(2.3) = \lfloor 2.3 \rfloor = 2$, $f(-2.3) = \lfloor -2.3 \rfloor = ?$

Examples

- **Ex.** 1. **f** assigns to a bit string the number of 1's in the string. Domain: $\{b \mid All \text{ bit strings}\}$ Range = $\{0, 1, 2, ...\} = N$. **f**(0110101) = 4.
- **Ex.** 2. f assigns to each positive integer the smallest prime greater or equal to this integer. (f(5) = 5, f(25) = 29, f(69) = 71...Domain: Z^+ , Range the set of prime numbers.
- **Ex.** 3. $f(x) = \lfloor x \rfloor$ Domain: *R*, Range: *Z*. $f(2.3) = \lfloor 2.3 \rfloor = 2$, $f(-2.3) = \lfloor -2.3 \rfloor = ?$
- Ex. 4. f assigns to every citizen of Vietnam his I.D number. Domain: the 90,000,000 citizens of Vietnam. Range; I.D numbers.

イロト 不得 トイヨト イヨト 二日