Discrete Mathematics and its Applications

Ngày 18 tháng 9 năm 2011

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A. Example

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.
(3) $\mathbf{R}^{2}=\{\{(x, y) \mid x, y \in \mathbf{R}\}$ is a relation on R.

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.
(3) $\mathbf{R}^{2}=\{\{(x, y) \mid x, y \in \mathbf{R}\}$ is a relation on R.
(4) $\mathbb{R}_{5}=\{(n, m) \mid n-m \bmod 19=0\}$ is a relation on Z.

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.
(3) $\mathbf{R}^{2}=\{\{(x, y) \mid x, y \in \mathbf{R}\}$ is a relation on R.
(4) $\mathbb{R}_{5}=\{(n, m) \mid n-m \bmod 19=0\}$ is a relation on Z.
(5) $\mathbb{R}_{6}=\{((n, m),(j, k)) \mid\{m, m . j, k\} \subset Z$ and $n k=m j\}$ is a relation on Z

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.
(3) $\mathbf{R}^{2}=\{\{(x, y) \mid x, y \in \mathbf{R}\}$ is a relation on R.
(4) $\mathbb{R}_{5}=\{(n, m) \mid n-m \bmod 19=0\}$ is a relation on Z.
(5) $\mathbb{R}_{6}=\{((n, m),(j, k)) \mid\{m, m . j, k\} \subset Z$ and $n k=m j\}$ is a relation on Z
(6) $\mathbb{R}_{7}=\left\{(A, B) \mid A=T B T^{-1}, A, B, T\right.$ square matrices of order $\left.n\right\}$.

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.
(3) $\mathbf{R}^{2}=\{\{(x, y) \mid x, y \in \mathbf{R}\}$ is a relation on R.
(4) $\mathbb{R}_{5}=\{(n, m) \mid n-m \bmod 19=0\}$ is a relation on Z.
(5) $\mathbb{R}_{6}=\{((n, m),(j, k)) \mid\{m, m . j, k\} \subset Z$ and $n k=m j\}$ is a relation on Z
(6) $\mathbb{R}_{7}=\left\{(A, B) \mid A=T B T^{-1}, A, B, T\right.$ square matrices of order $\left.n\right\}$.
(7) Let G be a group and H a subgroup of G.
$\mathbb{R}_{8}=\left\{(r, s) \mid r \cdot s^{-1} \in H\right\}$ is a relation on G.

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition
(1) A relation \mathbb{R} on a set A :

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition
(1) A relation \mathbb{R} on a set A :

- Is reflexive if $\forall a \in A(a, a) \in \mathbb{R}$.

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition
(1) A relation \mathbb{R} on a set A :

- Is reflexive if $\forall a \in A(a, a) \in \mathbb{R}$.
- Is symmetric if $(x, y) \in \mathbb{R} \longrightarrow(y, x) \in \mathbb{R}$.

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition
(1) A relation \mathbb{R} on a set A :

- Is reflexive if $\forall a \in A(a, a) \in \mathbb{R}$.
- Is symmetric if $(x, y) \in \mathbb{R} \longrightarrow(y, x) \in \mathbb{R}$.
- Is transitive if (x, y) and $(y, z) \in \mathbb{R}$ then $(x, z) \in \mathbb{R}$.

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition

(1) A relation \mathbb{R} on a set A :

- Is reflexive if $\forall a \in A(a, a) \in \mathbb{R}$.
- Is symmetric if $(x, y) \in \mathbb{R} \longrightarrow(y, x) \in \mathbb{R}$.
- Is transitive if (x, y) and $(y, z) \in \mathbb{R}$ then $(x, z) \in \mathbb{R}$.

Question

Which relation from our examples is reflexive, symmetric, transitive?

Equivalence

Definition

A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Equivalence

Definition

A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Equivalence

Definition
A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem
If A is a set and \mathbb{R} is an equivalence relation on A then $A=A_{1} \cup A_{2} \cup \ldots$ where:

Equivalence

Definition
A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then
$A=A_{1} \cup A_{2} \cup \ldots$ where:
(1) If $x, y \in A_{i} \rightarrow(x, y) \in \mathbb{R}$. If $x \in A_{i}, y \in A_{j} i \neq j$ then $(x, y) \notin \mathbb{R}$.

Equivalence

Definition

A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then
$A=A_{1} \cup A_{2} \cup \ldots$ where:
(1) If $x, y \in A_{i} \rightarrow(x, y) \in \mathbb{R}$. If $x \in A_{i}, y \in A_{j} i \neq j$ then $(x, y) \notin \mathbb{R}$.
(2) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$.

Equivalence

Definition

A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then
$A=A_{1} \cup A_{2} \cup \ldots$ where:
(1) If $x, y \in A_{i} \rightarrow(x, y) \in \mathbb{R}$. If $x \in A_{i}, y \in A_{j} i \neq j$ then $(x, y) \notin \mathbb{R}$.
(2) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$.

Equivalence

Definition

A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then
$A=A_{1} \cup A_{2} \cup \ldots$ where:
(1) If $x, y \in A_{i} \rightarrow(x, y) \in \mathbb{R}$. If $x \in A_{i}, y \in A_{j} i \neq j$ then $(x, y) \notin \mathbb{R}$.
(2) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$.

We say that the relation \mathbb{R} partitions A into equivalence classes.

FUNCTIONS

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a function. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

FUNCTIONS

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a function. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

FUNCTIONS

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a function. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

Our approach so far has been:
(1) Logic: the bridge between mathematical methods and the universe.

FUNCTIONS

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a function. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

Our approach so far has been:
(1) Logic: the bridge between mathematical methods and the universe.
(2) Sets, a simple looking object that carries very little background.

FUNCTIONS

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a function. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

Our approach so far has been:
(1) Logic: the bridge between mathematical methods and the universe.
(2) Sets, a simple looking object that carries very little background.
(3) Relations: a type of sets.

FUNCTIONS

(Preface)

Functions are the muscles and blood of mathematics, the sciences and many other areas. This section may change drsatically your current notion of a function. One of our goals in introducing this notion here is to be able to answer some "simple" question on sets: like how "large" can a set be? Given two sets, can we say which one is larger?

Our approach so far has been:
(1) Logic: the bridge between mathematical methods and the universe.
(2) Sets, a simple looking object that carries very little background.
(3) Relations: a type of sets.
(4) Functions: a type of relations.

Definitions

Definition

Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to elements of A. Notation: $\quad f: A \rightarrow B$.

Definitions

Definition

Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to elements of A. Notation: $\quad f: A \rightarrow B$.

Definitions

Definition

Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to elements of A.
Notation: $\quad f: A \rightarrow B$.
Alternatively, $f \subset A \times B$ such that $((a, b) \in f) \wedge((a, c) \in f) \rightarrow b=c$.
In other words, a function $f: A \rightarrow B$ is a "restricted" binary relation between A and B.
Common notation: $f(a)=b \quad b$ is the image of a under the function f.
Question
Which of the relations in our sample of 8 relations is a function?

Examples

Ex. 1. f assigns to a bit string the number of 1 's in the string. Domain: $\{b \mid$ All bit strings $\}$ Range $=\{0,1,2, \ldots\}=N$. $f(0110101)=4$.

Examples

Ex. 1. f assigns to a bit string the number of 1 's in the string. Domain: $\{b \mid$ All bit strings $\}$ Range $=\{0,1,2, \ldots\}=N$. $f(0110101)=4$.
Ex. 2. f assigns to each positive integer the smallest prime greater or equal to this integer.
$(f(5)=5, f(25)=29, f(69)=71 \ldots$
Domain: Z^{+}, Range the set of prime numbers.

Examples

Ex. 1. f assigns to a bit string the number of 1 's in the string.
Domain: $\{b \mid$ All bit strings $\}$ Range $=\{0,1,2, \ldots\}=N$. $f(0110101)=4$.
Ex. 2. f assigns to each positive integer the smallest prime greater or equal to this integer.
$(f(5)=5, f(25)=29, f(69)=71 \ldots$
Domain: Z^{+}, Range the set of prime numbers.
Ex. 3. $f(x)=\lfloor x\rfloor$
Domain: R, Range: Z.
$f(2.3)=\lfloor 2.3\rfloor=2, \quad f(-2.3)=\lfloor-2.3\rfloor=$?

Examples

Ex. 1. f assigns to a bit string the number of 1 's in the string.
Domain: $\{b \mid$ All bit strings $\}$ Range $=\{0,1,2, \ldots\}=N$. $f(0110101)=4$.
Ex. 2. f assigns to each positive integer the smallest prime greater or equal to this integer.
$(f(5)=5, f(25)=29, f(69)=71 \ldots$
Domain: Z^{+}, Range the set of prime numbers.
Ex. 3. $f(x)=\lfloor x\rfloor$
Domain: R, Range: Z.
$f(2.3)=\lfloor 2.3\rfloor=2, \quad f(-2.3)=\lfloor-2.3\rfloor=$?
Ex. 4. f assigns to every citizen of Vietnam his I.D number.
Domain: the 90,000, 000 citizens of Vietnam. Range; I.D numbers.

