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onZ
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@ Let G be a group and H a subgroup of G.
Rg = {(r,s) | r- s~' € H} is a relation on G.
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Equivalence

Definition
A relation R on a set A is an equivalence relation if it is reflexive,
symmetric, transitive.

Question
Which relation from our examples is an equivalence relation?

Theorem

If Ais a set and R is an equivalence relation on A then
A=A;UAU... where:

Q Ifx,yeAi—(x,y)eR. Ifxe A, ycAi#jthen(x,y) €R.
(2] AiﬂAj:@I’fl';ﬁj.
We say that the relation R partitions A into equivalence classes.
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(

Functions are the muscles and blood of mathematics, the sciences
and many other areas. This section may change drsatically your
current notion of a function. One of our goals in introducing this notion
here is to be able to answer some “simple” question on sets: like how
“large” can a set be? Given two sets, can we say which one is larger?
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|
Definitions

Definition

Let A and B be sets. A function f from A to B is an assignment of
exactly one element of B to elements of A.

Notation: f:A— B.

Alternatively, f ¢ A x B such that ((a,b) € f) A ((a,c) € f) = b=rc.

In other words, a function f : A — B is a “restricted” binary relation
between A and B.
Common notation: f(a) = b

Question
Which of the relations in our sample of 8 relations is a function?
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Ex. 1. f assigns to a bit string the number of 1’s in the string.
Domain: {b | All bit strings} Range = {0,1,2,...} = N.
f(0110101) = 4.
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1. f assigns to a bit string the number of 1’s in the string.
Domain: {b | All bit strings} Range = {0,1,2,...} = N.
f(0110101) = 4.

2. f assigns to each positive integer the smallest prime greater or
equal to this integer.

(f(5) =5, f(25) =29, f(69) =71...

Domain: Z+, Range the set of prime numbers.

3. f(x) = |x]

Domain: R, Range: Z.

f(23)=123] =2, f(-23)=|-23]=7

4. f assigns to every citizen of Vietnam his |.D number.

Domain: the 90, 000, 000 citizens of Vietnam. Range; I.D numbers.
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