Discrete Mathematics Drill-1

Moshe Rosenfeld

Hanoi 2011 moishe@u.washington.edu

1 Drill 2

1.1 logic

For each of the following propositions construct an equivalent proposition that uses only the nand (|) binary operator:

- 1. $(\neg p \leftrightarrow \neg q) \leftrightarrow (p \leftrightarrow q)$
- 2. $((p \rightarrow q) \rightarrow r) \rightarrow s$
- 3. $(p \leftrightarrow q) \leftrightarrow (r \leftrightarrow s)$

1. A truth table of a boolean function with five variables p_1, p_2, p_3, p_4, p_5 is false only when $p_1 = p_3 = p_5 = F$ or $p_2 = p_4 = F$ or $p_3 = p_4 = F$.

Construct a conjunction of disjunction for this function.

2.* a. Show that $(p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor \neg q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r)$ is not satisfiable but if you delete any clause ($(x \lor y \lor z)$ is acluase) then thermaining 7 cluases are satisfiable.

3.** Construct an example of a 3-SAT instance with 10 clauses which is not satisfiable but if you delete any clause it will be satsifiable.