Discrete Mathematics and Applications

Moshe Rosenfeld
Hanoi 2010
moishe@u. washington.edu

1 Assignment No. 3: Sets

Due: Thursday, 29 Sep.
Please submit your answer in a neat, readable properly organized format.

1. In the Venn diagram for 4 sets A, B, C, D mark the following subsets:

- $(A \cap B) \cup(C \cap D)$
- $A \backslash(B \cap C \cap D)$
- $(\overline{A \cup B}) \cap(\overline{C \cup D})$

2. Let $A_{n}=\{i \mid n \leq i \leq 2 n\} i \in Z^{+}$Find: $\bigcup_{n=1}^{100} A_{n}$. Find $\bigcap_{n=1}^{k} A_{n}$.
3. We have 36 students in our class.

- How many different teams of 3 students can we form?
- How many different teams with an even number of students can we form?
- How many different teams with an even number of students such that every two teams have an even number of students in common can be formed.
- * How many teams can we have if no team is a subset of another team.

4. Can you find an integer n such that $n^{2} \bmod 111=5, n^{3} \bmod 17=$ 50 , and $n \bmod 23=14($ Use SAGE)

2 Functions exercises

1. In the enumeration used in class for $N x N$ in what location will be the pair $(95,32)$.
What pair will be in location 2011?
2. a. If f and $f \circ g$ are ONTO does it follow that g is ONTO?
b. If f and $f \circ g$ are $1-1$ does it follow that g is $1-1$?
3. Show that the function $f: Z^{+} \times Z^{+} \rightarrow Z^{+}$defined by: $\frac{(m+n-2)(m+n-1)}{2}+$ m is a bijection.
