Discrete Mathematics and Applications

Moshe Rosenfeld

Hanoi 2010 moishe@u.washington.edu

1 Assignment No. 8: Counting

Due: Tuesday, 08 Nov.

Please submit your answer in a neat, readable properly organized format.

2 Elemntary counting

- 1. A multiple choice test has 40 questions. Each question has four possible answer (with only one correct answer).
 - a. In how many ways can a student answer all 40 questions?
 - b. In how many ways can a student answer all question so that exactly 30 questions are answered correctly?
 - c. In how many ways can a student answer the questions if he can leave some answers blank?
- 2. How many positive integers < 10000:
 - a. Are divisible by 13.
 - b. Are divisible by 13 or by 15.
 - c. Are divisible by 13 and by 17 but not by both.
 - d. Are relatively prime to 13 and 17.
- 3. A **palindrome** is a string whose reversal is the same as the priginal string, ABBA is a palindrome. how many bit strings of length *n* are plaindromes?

2.1 Proofs

1. Prove that among any n + 1 positive integers none greater than 2n there must be a pair of integers n, m such that n divides m (notation: $n \mid m$).

2. a. Prove that there is an integer k<1000 such that the absolute value of the difference between $k\sqrt{2}$ and its nearest integer is $<\frac{1}{1000}$.

b. * Let x be an irrational number and n a positive integer. Prove that there is an integer $j \leq n$ such that the absolute value of the difference between jx and the nearest integer to jx is less than $\frac{1}{n}$.

- 3. Prove that there are infinitely many prime numbers of the form 4k + 3.
- 4. (SAGE): Let $k = 10 \times (ph num) + 1$ (ph-num is the last four digits of your phone number). Use SAGE to find an integer m such that $m \times k = 11 \cdots 1$.