Discrete Optimization

Moshe Rosenfeld University of Washington Tacoma Washington, USA moishe@u.washington.edu

1 Permutations

This short section will be devoted to a short review of permutations. It is a topic we hope you are familiar with. We shall start with the basic definitions, notation, fundamental properties, examples and in a separate pdf files a sample of questions, hints and answers.

Definition 1. A bijection on a set A is called a permutation

If |A| = k then a permutation on A is a k-permutation. In most cases, the word permutation is used for permutations on finite sets.

The usual notation for a permutation is:

$$S = \begin{pmatrix} 1 & 2 & \dots & k \\ a_1 & a_2 & \dots & a_k \end{pmatrix}$$
(1)

An alternative simpler notation we shall use is $a_1 a_2 a_3 \ldots a_k$.

Definition 2. The product of two permutations $\pi_1 \times \pi_2$ is the composition of the two bijections defining them.

Corolary 1. The set of n-permutations on a set of cardinality n forms a group, the symmetric group S_n .

Example 1.

- The permutation: $\pi = 13542681097$ is a 10-permutation.
- $\pi(1) = 1, \ \pi(5) = 2, \ \pi(7) = 8$

Definition 3. 1. Let π be a k-permutation. A cycle is a subsequence $a_1 a_2 \ldots a_m$ of π such that $\pi(a_i) = a_{i+1}$, i < m, and $\pi(a_m) = a_1$...

2. We denote the cyclic permutaions by (a_1, a_2, \ldots, a_m) .

3. When it is clear from the context that we are dealing with n-permutations when we write (a_1, a_2, \ldots, a_m) . we mean an n-permutation μ such that $\mu(j) = j$ if $j \notin \{a_1, a_2, \ldots, a_m\}$

Example 2. The 10-permutation π in example 1. Contains the cycels (1), (2,3,5), (4) etc.

Exercise 1.

- Find all cycles in the permutation π in example 1.
- Check that they are pairwise disjoint.
- Check that π is the product of these cycles.

Definition 4. A cycle (a, b) is called a transposition.

Note that if π is a transposition then π^2 is the identity permutation.

Remark 1.

- Every permutation is a unique product of disjoint cycles.
- Every cycle is a product of transpositions.
- Every permutation is a product of transposition.
- While the representation of permutations as a product of transpositions is not unique the parity is invariant. This means that all representations of a permutation as a product of transpositions are either all a product of an even number of transpositions, or and odd number of transpositions.

Definition 5.

- An n-permutation that is a product of an even number of transpositions is called an even permutation.
- the set of all even n-permutations is a group denote by A_n .
- $|S_n| = n!, |A_n| = \frac{n!}{2}.$

Exercise 2.

- Is the permutation in example 1 odd or even?
- Construct a 12-permutation which is the product of 3 disjoint 4-cycles.
- Determine whether your permutation is odd or even.
- Find its inverse.
- Is the cycle $(1, 2, \ldots, n)$ odd or even?

We conclude this brief review of permutations by introducing an order on ${\cal S}_n.$

Definition 6. Given two n-permutations $\pi = a_1 a_2 \dots a_n$ and $\mu = b_1 b_2 \dots b_n$ we say that $\pi \prec \mu$ if $a_i = b_i$, for i < j and $a_j < b_j$.

Example 3. $73481562 \prec 73482165$

This is a total order on the set of n-permutations. It is called the $l\mathrm{exicographic}$ order.

Exercise 3. Can you find a permutation α between π and μ ?