Finite sets

October 7, 2010

Advanced problems on finite sets: Set Systems

Theorem

The number of different subsets of an n-set A is 2^{n} (or $|P(A)|=2^{|A|}$).

Advanced problems on finite sets：Set Systems

Theorem

The number of different subsets of an n－set A is 2^{n} （or $|P(A)|=2^{|A|}$ ）．

Proof．

Here are three different proofs：

Advanced problems on finite sets：Set Systems

Theorem

The number of different subsets of an n－set A is 2^{n} （or $|P(A)|=2^{|A|}$ ）．

Proof．

Here are three different proofs：
（1）A decision tree：a full binary tree of height n has 2^{n} leaves． each leaf corresponds to a different subset．

Advanced problems on finite sets: Set Systems

Theorem

The number of different subsets of an n-set A is 2^{n} (or $|P(A)|=2^{|A|}$).

Proof.

Here are three different proofs:
(1) A decision tree: a full binary tree of height n has 2^{n} leaves. each leaf corresponds to a different subset.
(2) Let a_{n} denote the number of subsets.

Then $a_{n}=2 a_{n-1}, a_{1}=1$. It now follows easily by induction that $a_{n}=2^{n}$.

Advanced problems on finite sets: Set Systems

Theorem

The number of different subsets of an n-set A is 2^{n} (or $|P(A)|=2^{|A|}$).

Proof.

Here are three different proofs:
(1) A decision tree: a full binary tree of height n has 2^{n} leaves. each leaf corresponds to a different subset.
(2) Let a_{n} denote the number of subsets.

Then $a_{n}=2 a_{n-1}, a_{1}=1$. It now follows easily by induction that $a_{n}=2^{n}$.
(3) The first 2^{n} integers $\left\{0,1, \ldots 2^{n}-1\right\}$ in binary are: $\left\{0_{2}, 1_{2}, 10_{2}, 11_{2}, \ldots, 111 \ldots 1_{2}\right\}$.
Associate with every integer $n=b_{1} b_{2} \ldots b_{n}$ the subset $\left\{k\right.$ if $\left.b_{k}=1\right\}$.

Extremal Set Systems

A typical question we shall try to investigate is how large can a set of subsets \mathbb{F} of a finite set with n elements be if it satisfies given intersection, union or inclusion conditions.

Extremal Set Systems

A typical question we shall try to investigate is how large can a set of subsets \mathbb{F} of a finite set with n elements be if it satisfies given intersection, union or inclusion conditions.

We studied a couple of examples previously. We shall add more examples in this section.

Extremal Set Systems

A typical question we shall try to investigate is how large can a set of subsets \mathbb{F} of a finite set with n elements be if it satisfies given intersection, union or inclusion conditions.

We studied a couple of examples previously. We shall add more examples in this section.
Let us start with a very simple example:

Question

How large can be \mathbb{F}, a set of subsets of an n-set A, if any two sets intersect?

Extremal Set Systems

A typical question we shall try to investigate is how large can a set of subsets \mathbb{F} of a finite set with n elements be if it satisfies given intersection, union or inclusion conditions.

We studied a couple of examples previously. We shall add more examples in this section.
Let us start with a very simple example:

Question

How large can be \mathbb{F}, a set of subsets of an n-set A, if any two sets intersect?

Answer

We first observe that if we select a fixed member $a_{0} \in A$ and form all 2^{n-1} subsets of $A \backslash\left\{a_{0}\right\}$ and add a_{0} to each subset we obtain 2^{n-1} subsets such that any two intersect.

Extremal Set Systems

A typical question we shall try to investigate is how large can a set of subsets \mathbb{F} of a finite set with n elements be if it satisfies given intersection, union or inclusion conditions.

We studied a couple of examples previously. We shall add more examples in this section.
Let us start with a very simple example:

Question

How large can be \mathbb{F}, a set of subsets of an n-set A, if any two sets intersect?

Answer

We first observe that if we select a fixed member $a_{0} \in A$ and form all 2^{n-1} subsets of $A \backslash\left\{a_{0}\right\}$ and add a_{0} to each subset we obtain 2^{n-1} subsets such that any two intersect.
Also, if $B \in \mathbb{F}$ then $\bar{B} \notin \mathbb{F}$ therefore \mathbb{F} can contain at most half the subsets of A.

The last example is a common technique for solving many problems dealing with finite sets. We first construct an example that may look optimal and then try to prove that indeed it is.

The last example is a common technique for solving many problems dealing with finite sets. We first construct an example that may look optimal and then try to prove that indeed it is.

Here is an example of this approach:

Observation

The last example is a common technique for solving many problems dealing with finite sets. We first construct an example that may look optimal and then try to prove that indeed it is.

Here is an example of this approach:
Question
How many subsets can $\mathbb{F} \subset P(A)$ have if any two subsets have exactly 1 member in common.

Observation

The last example is a common technique for solving many problems dealing with finite sets. We first construct an example that may look optimal and then try to prove that indeed it is.

Here is an example of this approach:

Question

How many subsets can $\mathbb{F} \subset P(A)$ have if any two subsets have exactly 1 member in common.

Answer

We start by a construction.
Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and let
$\mathbb{F}=\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{3}\right\}, \ldots\left\{a_{1}, a_{n}\right\},\left\{a_{2}, a_{3}, \ldots, a_{n}\right\}\right\}$.

Observation

The last example is a common technique for solving many problems dealing with finite sets. We first construct an example that may look optimal and then try to prove that indeed it is.

Here is an example of this approach:

Question

How many subsets can $\mathbb{F} \subset P(A)$ have if any two subsets have exactly 1 member in common.

Answer

We start by a construction.
Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and let
$\mathbb{F}=\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{3}\right\}, \ldots\left\{a_{1}, a_{n}\right\},\left\{a_{2}, a_{3}, \ldots, a_{n}\right\}\right\}$.
Clearly, \mathbb{F} contains $n=|A|$ subsets and any two subsets have exactly one member in common.

Observation

The last example is a common technique for solving many problems dealing with finite sets. We first construct an example that may look optimal and then try to prove that indeed it is.

Here is an example of this approach:

Question

How many subsets can $\mathbb{F} \subset P(A)$ have if any two subsets have exactly 1 member in common.

Answer

We start by a construction.
Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and let
$\mathbb{F}=\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{3}\right\}, \ldots\left\{a_{1}, a_{n}\right\},\left\{a_{2}, a_{3}, \ldots, a_{n}\right\}\right\}$.
Clearly, \mathbb{F} contains $n=|A|$ subsets and any two subsets have exactly one member in common.
But can we have more than n subsets?

The proof

Proof.

Once again, we use linear algebra.

The proof

Proof.

Once again, we use linear algebra.
Let $\mathbb{F}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}, B_{i} \subset A, \quad\left|B_{i} \cap B_{j}\right|=1, i \neq j$.
We may assume that $\left|B_{i}\right|=\beta_{i}>1$.

The proof

Proof.

Once again, we use linear algebra.

$$
\text { Let } \mathbb{F}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}, \quad B_{i} \subset A, \quad\left|B_{i} \cap B_{j}\right|=1, i \neq j
$$

We may assume that $\left|B_{i}\right|=\beta_{i}>1$.
Once again we consider the incidence (characteristic) vectors $v_{1}, v_{2}, \ldots, v_{k}$ of the subsets B_{i}.

The proof

Proof．

Once again，we use linear algebra．

$$
\text { Let } \mathbb{F}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}, \quad B_{i} \subset A, \quad\left|B_{i} \cap B_{j}\right|=1, i \neq j \text {. }
$$

We may assume that $\left|B_{i}\right|=\beta_{i}>1$ ．
Once again we consider the incidence（characteristic）vectors $v_{1}, v_{2}, \ldots, v_{k}$ of the subsets B_{i} ．
We shall prove that they are linearly independent．

The proof

Proof.

Once again, we use linear algebra.

$$
\text { Let } \mathbb{F}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}, \quad B_{i} \subset A, \quad\left|B_{i} \cap B_{j}\right|=1, i \neq j
$$

We may assume that $\left|B_{i}\right|=\beta_{i}>1$.
Once again we consider the incidence (characteristic) vectors $v_{1}, v_{2}, \ldots, v_{k}$ of the subsets B_{i}.
We shall prove that they are linearly independent.
(1) $\left\langle v_{i}, v_{j}\right\rangle=1$ if $\left.i \neq j, \quad<v_{i}, v_{i}\right\rangle=\beta_{i}>1$.

The proof

Proof．

Once again，we use linear algebra．

$$
\text { Let } \mathbb{F}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}, \quad B_{i} \subset A, \quad\left|B_{i} \cap B_{j}\right|=1, i \neq j \text {. }
$$

We may assume that $\left|B_{i}\right|=\beta_{i}>1$ ．
Once again we consider the incidence（characteristic）vectors $v_{1}, v_{2}, \ldots, v_{k}$ of the subsets B_{i} ．
We shall prove that they are linearly independent．
（1）$\left\langle v_{i}, v_{j}\right\rangle=1$ if $\left.i \neq j, \quad<v_{i}, v_{i}\right\rangle=\beta_{i}>1$ ．
（2）Assume that $\sum_{i=1}^{k} \alpha_{i} v_{i}=0$ ．

The proof

Proof．

Once again，we use linear algebra．

$$
\text { Let } \mathbb{F}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}, \quad B_{i} \subset A, \quad\left|B_{i} \cap B_{j}\right|=1, i \neq j \text {. }
$$

We may assume that $\left|B_{i}\right|=\beta_{i}>1$ ．
Once again we consider the incidence（characteristic）vectors $v_{1}, v_{2}, \ldots, v_{k}$ of the subsets B_{i} ．
We shall prove that they are linearly independent．
（1）$\left\langle v_{i}, v_{j}\right\rangle=1$ if $\left.i \neq j,<v_{i}, v_{i}\right\rangle=\beta_{i}>1$ ．
（2）Assume that $\sum_{i=1}^{k} \alpha_{i} v_{i}=0$ ． We need to prove that $\alpha_{i}=0$ ．

The proof

Proof.

Once again, we use linear algebra.

$$
\text { Let } \mathbb{F}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}, \quad B_{i} \subset A, \quad\left|B_{i} \cap B_{j}\right|=1, i \neq j \text {. }
$$

We may assume that $\left|B_{i}\right|=\beta_{i}>1$.
Once again we consider the incidence (characteristic) vectors $v_{1}, v_{2}, \ldots, v_{k}$ of the subsets B_{i}.
We shall prove that they are linearly independent.
(1) $\left\langle v_{i}, v_{j}\right\rangle=1$ if $\left.i \neq j,<v_{i}, v_{i}\right\rangle=\beta_{i}>1$.
(2) Assume that $\sum_{i=1}^{k} \alpha_{i} v_{i}=0$.

We need to prove that $\alpha_{i}=0$.
(3) $\left.<v_{j}, \sum_{i=1}^{k} \alpha_{i} v_{i}\right\rangle=\sum_{i=1}^{k} \alpha_{i}\left\langle v_{i}, v_{j}\right\rangle=0$.

The proof

Proof.

Once again, we use linear algebra.

$$
\text { Let } \mathbb{F}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}, \quad B_{i} \subset A, \quad\left|B_{i} \cap B_{j}\right|=1, i \neq j
$$

We may assume that $\left|B_{i}\right|=\beta_{i}>1$.
Once again we consider the incidence (characteristic) vectors $v_{1}, v_{2}, \ldots, v_{k}$ of the subsets B_{i}.
We shall prove that they are linearly independent.
(1) $\left\langle v_{i}, v_{j}\right\rangle=1$ if $\left.i \neq j,<v_{i}, v_{i}\right\rangle=\beta_{i}>1$.
(2) Assume that $\sum_{i=1}^{k} \alpha_{i} v_{i}=0$. We need to prove that $\alpha_{i}=0$.
(3) $<v_{j}, \sum_{i=1}^{k} \alpha_{i} v_{i}>=\sum_{i=1}^{k} \alpha_{i}<v_{i}, v_{j}>=0$.
(9) $\sum_{i=1}^{k} \alpha_{i}<v_{i}, v_{j}>=\left(\beta_{j}-1\right) \alpha_{j}+\sum_{i=1}^{k} \alpha_{i}=0$

The proof

Proof.

Once again, we use linear algebra.

$$
\text { Let } \mathbb{F}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}, \quad B_{i} \subset A, \quad\left|B_{i} \cap B_{j}\right|=1, i \neq j
$$

We may assume that $\left|B_{i}\right|=\beta_{i}>1$.
Once again we consider the incidence (characteristic) vectors $v_{1}, v_{2}, \ldots, v_{k}$ of the subsets B_{i}.
We shall prove that they are linearly independent.
(1) $\left\langle v_{i}, v_{j}\right\rangle=1$ if $\left.i \neq j,<v_{i}, v_{i}\right\rangle=\beta_{i}>1$.
(2) Assume that $\sum_{i=1}^{k} \alpha_{i} v_{i}=0$. We need to prove that $\alpha_{i}=0$.
(3) $<v_{j}, \sum_{i=1}^{k} \alpha_{i} v_{i}>=\sum_{i=1}^{k} \alpha_{i}<v_{i}, v_{j}>=0$.
(9) $\sum_{i=1}^{k} \alpha_{i}<v_{i}, v_{j}>=\left(\beta_{j}-1\right) \alpha_{j}+\sum_{i=1}^{k} \alpha_{i}=0$
(c) $\alpha_{j}=\frac{1}{1-\beta_{j}} \sum_{i=1}^{k} \alpha_{i}$.

continued.

(1) If $\sum_{i=1}^{k} \alpha_{i}=0$, then $\alpha_{j}=0$. and we are done.

continued.

(1) If $\sum_{i=1}^{k} \alpha_{i}=0$, then $\alpha_{j}=0$. and we are done.

If not, we have (summing over j):
(2) $\sum_{j=1}^{k} \alpha_{j}=\sum_{j=1}^{k} \frac{1}{1-\beta_{j}} \sum_{i=1}^{k} \alpha_{i}$.

continued.

(1) If $\sum_{i=1}^{k} \alpha_{i}=0$, then $\alpha_{j}=0$. and we are done.

If not, we have (summing over j):
(2) $\sum_{j=1}^{k} \alpha_{j}=\sum_{j=1}^{k} \frac{1}{1-\beta_{j}} \sum_{i=1}^{k} \alpha_{i}$.
(3) $\left(1+\sum_{j=1}^{k} \frac{1}{\beta_{j}-1}\right) \sum_{j=1}^{k} \alpha_{j}=0$.

continued.

(1) If $\sum_{i=1}^{k} \alpha_{i}=0$, then $\alpha_{j}=0$. and we are done.

If not, we have (summing over j):
(2) $\sum_{j=1}^{k} \alpha_{j}=\sum_{j=1}^{k} \frac{1}{1-\beta_{j}} \sum_{i=1}^{k} \alpha_{i}$.
(3) $\left(1+\sum_{j=1}^{k} \frac{1}{\beta_{j}-1}\right) \sum_{j=1}^{k} \alpha_{j}=0$.
(9) But this is a contradiction since $1+\sum_{j=1}^{k} \frac{1}{\beta_{j}-1}>1$.

continued.

(1) If $\sum_{i=1}^{k} \alpha_{i}=0$, then $\alpha_{j}=0$. and we are done.

If not, we have (summing over j):
(2) $\sum_{j=1}^{k} \alpha_{j}=\sum_{j=1}^{k} \frac{1}{1-\beta_{j}} \sum_{i=1}^{k} \alpha_{i}$.
(3) $\left(1+\sum_{j=1}^{k} \frac{1}{\beta_{j}-1}\right) \sum_{j=1}^{k} \alpha_{j}=0$.
(9) But this is a contradiction since $1+\sum_{j=1}^{k} \frac{1}{\beta_{j}-1}>1$.
(6) This proves that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent and therefore $k \leq n$.

continued.

(1) If $\sum_{i=1}^{k} \alpha_{i}=0$, then $\alpha_{j}=0$. and we are done.

If not, we have (summing over j):
(2) $\sum_{j=1}^{k} \alpha_{j}=\sum_{j=1}^{k} \frac{1}{1-\beta_{j}} \sum_{i=1}^{k} \alpha_{i}$.
(3) $\left(1+\sum_{j=1}^{k} \frac{1}{\beta_{j}-1}\right) \sum_{j=1}^{k} \alpha_{j}=0$.
(4) But this is a contradiction since $1+\sum_{j=1}^{k} \frac{1}{\beta_{j}-1}>1$.
(5) This proves that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent and therefore $k \leq n$.

Remark

As ususal, a closer look reveals that we can prove more. The same proof will work if we assume that all subset pairs have m members in common for some fixed m.

Many other questions come to mind.
(1) What if we require all subsets to have the same size?

Many other questions come to mind.
(1) What if we require all subsets to have the same size?
(2) What if we allow more intersection sizes? Say three different sizes?

Many other questions come to mind.
(1) What if we require all subsets to have the same size?
(2) What if we allow more intersection sizes? Say three different sizes?
(3) Can we construct a system of subset of A such that every point belongs to k subsets and every subset has k points?

Many other questions come to mind.
(1) What if we require all subsets to have the same size?
(2) What if we allow more intersection sizes? Say three different sizes?
(3) Can we construct a system of subset of A such that every point belongs to k subsets and every subset has k points?
(4) Here is a famous example of 7 triples, subsets of $\{1,2,3,4,5,6,7\}$ such that:

Many other questions come to mind.
(1) What if we require all subsets to have the same size?
(2) What if we allow more intersection sizes? Say three different sizes?
(3) Can we construct a system of subset of A such that every point belongs to k subsets and every subset has k points?
(1) Here is a famous example of 7 triples, subsets of $\{1,2,3,4,5,6,7\}$ such that:

- Every number is in 3 triples.

Many other questions come to mind.
(1) What if we require all subsets to have the same size?
(2) What if we allow more intersection sizes? Say three different sizes?
(3) Can we construct a system of subset of A such that every point belongs to k subsets and every subset has k points?
(9) Here is a famous example of 7 triples, subsets of $\{1,2,3,4,5,6,7\}$ such that:

- Every number is in 3 triples.
- Every pair of triples have exactly one number in common.

Many other questions come to mind.
(1) What if we require all subsets to have the same size?
(2) What if we allow more intersection sizes? Say three different sizes?
(3) Can we construct a system of subset of A such that every point belongs to k subsets and every subset has k points?
(9) Here is a famous example of 7 triples, subsets of $\{1,2,3,4,5,6,7\}$ such that:

- Every number is in 3 triples.
- Every pair of triples have exactly one number in common.
- Every pair of points are contained in one triple.

Many other questions come to mind.
(1) What if we require all subsets to have the same size?
(2) What if we allow more intersection sizes? Say three different sizes?
(3) Can we construct a system of subset of A such that every point belongs to k subsets and every subset has k points?
(9) Here is a famous example of 7 triples, subsets of $\{1,2,3,4,5,6,7\}$ such that:

- Every number is in 3 triples.
- Every pair of triples have exactly one number in common.
- Every pair of points are contained in one triple.

Welcome to the wonderful world of Finite Projective Geometries.

Many other questions come to mind.
(1) What if we require all subsets to have the same size?
(2) What if we allow more intersection sizes? Say three different sizes?
(3) Can we construct a system of subset of A such that every point belongs to k subsets and every subset has k points?
(9) Here is a famous example of 7 triples, subsets of $\{1,2,3,4,5,6,7\}$ such that:

- Every number is in 3 triples.
- Every pair of triples have exactly one number in common.
- Every pair of points are contained in one triple.

Welcome to the wonderful world of Finite Projective Geometries.

Fano's plane, a finite projective geometry of order 2.

Finite Projective Planes

Definition

A finite projective plane is a set of points P and a set of subsets of P called "lines" that satisfy the following rules:

Finite Projective Planes

Definition

A finite projective plane is a set of points P and a set of subsets of P called "lines" that satisfy the following rules:
(1) Given any two distinct points, there is exactly one line incident with both of them.

Finite Projective Planes

Definition

A finite projective plane is a set of points P and a set of subsets of P called "lines" that satisfy the following rules:
(1) Given any two distinct points, there is exactly one line incident with both of them.
(2) Given any two distinct lines, there is exactly one point incident with both of them.

Finite Projective Planes

Definition

A finite projective plane is a set of points P and a set of subsets of P called "lines" that satisfy the following rules:
(1) Given any two distinct points, there is exactly one line incident with both of them.
(2) Given any two distinct lines, there is exactly one point incident with both of them.
(3) There are four points such that no line is incident with more than two of them.

Finite Projective Planes

Definition

A finite projective plane is a set of points P and a set of subsets of P called "lines" that satisfy the following rules:
(1) Given any two distinct points, there is exactly one line incident with both of them.
(2) Given any two distinct lines, there is exactly one point incident with both of them.
(3) There are four points such that no line is incident with more than two of them.

Finite projective planes have the following properties:

Finite Projective Planes

Definition

A finite projective plane is a set of points P and a set of subsets of P called "lines" that satisfy the following rules:
(1) Given any two distinct points, there is exactly one line incident with both of them.
(2) Given any two distinct lines, there is exactly one point incident with both of them.
(3) There are four points such that no line is incident with more than two of them.

Finite projective planes have the following properties:
(1) $|P|=n^{2}+n+1$.

Finite Projective Planes

Definition

A finite projective plane is a set of points P and a set of subsets of P called "lines" that satisfy the following rules:
(1) Given any two distinct points, there is exactly one line incident with both of them.
(2) Given any two distinct lines, there is exactly one point incident with both of them.
(3) There are four points such that no line is incident with more than two of them.

Finite projective planes have the following properties:
(1) $|P|=n^{2}+n+1$.
(2) There are also $n^{2}+n+1$ lines.

Finite Projective Planes

Definition

A finite projective plane is a set of points P and a set of subsets of P called "lines" that satisfy the following rules:
(1) Given any two distinct points, there is exactly one line incident with both of them.
(2) Given any two distinct lines, there is exactly one point incident with both of them.
(3) There are four points such that no line is incident with more than two of them.

Finite projective planes have the following properties:
(1) $|P|=n^{2}+n+1$.
(2) There are also $n^{2}+n+1$ lines.
(3) Any point lies on $n+1$ lines.

Finite Projective Planes

Definition

A finite projective plane is a set of points P and a set of subsets of P called "lines" that satisfy the following rules:
(1) Given any two distinct points, there is exactly one line incident with both of them.
(2) Given any two distinct lines, there is exactly one point incident with both of them.
(3) There are four points such that no line is incident with more than two of them.

Finite projective planes have the following properties:
(1) $|P|=n^{2}+n+1$.
(2) There are also $n^{2}+n+1$ lines.
(3) Any point lies on $n+1$ lines.
(9) Any line contains $n+1$ points.

Finite Projective Planes

Notice the duality between "points" and "lines.".

Finite Projective Planes

Notice the duality between "points" and "lines.".
The number n is called the order of the finite projective plane P.

Finite Projective Planes

Notice the duality between "points" and "lines.".
The number n is called the order of the finite projective plane P. The Fano plane is a finite projective geometry of order 2.

Finite Projective Planes

Notice the duality between "points" and "lines.".
The number n is called the order of the finite projective plane P.
The Fano plane is a finite projective geometry of order 2.

Question

For which integers n there is a finite projective plane of order n ?

Finite Projective Planes

Notice the duality between "points" and "lines.".
The number n is called the order of the finite projective plane P. The Fano plane is a finite projective geometry of order 2.

Question

For which integers n there is a finite projective plane of order n ?

Answer

We can construct finite projective geometries of orders $n=p^{k}, p$ prime.

Finite Projective Planes

Notice the duality between "points" and "lines.".
The number n is called the order of the finite projective plane P. The Fano plane is a finite projective geometry of order 2.

Question

For which integers n there is a finite projective plane of order n ?

Answer

We can construct finite projective geometries of orders $n=p^{k}, p$ prime.

There is no finite projective plane of order 6.

Finite Projective Planes

Notice the duality between "points" and "lines.".
The number n is called the order of the finite projective plane P. The Fano plane is a finite projective geometry of order 2.

Question

For which integers n there is a finite projective plane of order n ?

Answer

We can construct finite projective geometries of orders $n=p^{k}, p$ prime.

There is no finite projective plane of order 6. There is no finite projective plane of order 10.

Finite Projective Planes

Notice the duality between "points" and "lines.".
The number n is called the order of the finite projective plane P.
The Fano plane is a finite projective geometry of order 2.

Question

For which integers n there is a finite projective plane of order n ?

Answer

We can construct finite projective geometries of orders $n=p^{k}, p$ prime.

There is no finite projective plane of order 6. There is no finite projective plane of order 10. For all other integers:

Finite Projective Planes

Notice the duality between "points" and "lines.".
The number n is called the order of the finite projective plane P.
The Fano plane is a finite projective geometry of order 2.

Question

For which integers n there is a finite projective plane of order n ?

Answer

We can construct finite projective geometries of orders $n=p^{k}, p$ prime.

There is no finite projective plane of order 6.
There is no finite projective plane of order 10.
For all other integers:
No one knows! 12 is the smallest unknown.

Construction of finite projective planes of order p^{n}

Construction of finite projective planes of order p^{n}

We start by defining the "points" of our projective geometry.

Construction of finite projective planes of order p^{n}

We start by defining the "points" of our projective geometry. (1) Let $S=\{(x, y, z) \mid x, y, z \in G F(q),(x, y, z) \neq(0,0,0)\}$.

Construction of finite projective planes of order p^{n}

We start by defining the "points" of our projective geometry.
(1) Let $S=\{(x, y, z) \mid x, y, z \in G F(q),(x, y, z) \neq(0,0,0)\}$.
(2) We define on S a relation \propto as follows:

$$
(x, y, z) \propto \alpha(x, y, z), \alpha \in G F(q), \alpha \neq 0
$$

Construction of finite projective planes of order p^{n}

We start by defining the "points" of our projective geometry.
(1) Let $S=\{(x, y, z) \mid x, y, z \in G F(q),(x, y, z) \neq(0,0,0)\}$.
(2) We define on S a relation \propto as follows:

$$
(x, y, z) \propto \alpha(x, y, z), \alpha \in G F(q), \alpha \neq 0
$$

(3) It is easy to check that α is an equivalence relation.

Construction of finite projective planes of order p^{n}

We start by defining the "points" of our projective geometry.
(1) Let $S=\{(x, y, z) \mid x, y, z \in G F(q),(x, y, z) \neq(0,0,0)\}$.
(2) We define on S a relation \propto as follows:

$$
(x, y, z) \propto \alpha(x, y, z), \alpha \in G F(q), \alpha \neq 0
$$

(3) It is easy to check that α is an equivalence relation.
(9) The set of points is the equivalence classes of the relation \propto.

Construction of finite projective planes of order p^{n}

We start by defining the "points" of our projective geometry.
(1) Let $S=\{(x, y, z) \mid x, y, z \in G F(q),(x, y, z) \neq(0,0,0)\}$.
(2) We define on S a relation \propto as follows:

$$
(x, y, z) \propto \alpha(x, y, z), \alpha \in G F(q), \alpha \neq 0
$$

(3) It is easy to check that \propto is an equivalence relation.
(9) The set of points is the equivalence classes of the relation \propto.
(3) A line of this projective plane is:

$$
L=\{(x, y, z) \mid a x+b y+c z=0,(a, b, c) \neq(0,0,0)\}
$$

Construction of finite projective planes of order p^{n}

We start by defining the "points" of our projective geometry.
(1) Let $S=\{(x, y, z) \mid x, y, z \in G F(q),(x, y, z) \neq(0,0,0)\}$.
(2) We define on S a relation \propto as follows:

$$
(x, y, z) \propto \alpha(x, y, z), \alpha \in G F(q), \alpha \neq 0
$$

(3) It is easy to check that α is an equivalence relation.
(9) The set of points is the equivalence classes of the relation \propto.
(3) A line of this projective plane is:

$$
L=\{(x, y, z) \mid a x+b y+c z=0, \quad(a, b, c) \neq(0,0,0)\}
$$

First notice the duality between "points" and "lines" in this definition.

Construction of finite projective planes of order p^{n}

We start by defining the "points" of our projective geometry.
(1) Let $S=\{(x, y, z) \mid x, y, z \in G F(q),(x, y, z) \neq(0,0,0)\}$.
(2) We define on S a relation \propto as follows:

$$
(x, y, z) \propto \alpha(x, y, z), \alpha \in G F(q), \alpha \neq 0
$$

(3) It is easy to check that \propto is an equivalence relation.
(1) The set of points is the equivalence classes of the relation \propto.
(5) A line of this projective plane is:

$$
L=\{(x, y, z) \mid a x+b y+c z=0,(a, b, c) \neq(0,0,0)\}
$$

First notice the duality between "points" and "lines" in this definition.
The proof that these points and lines satisfy the definition of a finite projective plane will be included in the exercises following an example.

Constructing PG(2)

Constructing PG(2)

Points:
$\{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)\}$

Constructing PG(2)

Points:
$\{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)\}$
(Note: each equivalence class contains only one point).

Constructing PG(2)

Points:
$\{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)\}$
(Note: each equivalence class contains only one point).
Lines:

Constructing PG(2)

Points:
$\{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)\}$
(Note: each equivalence class contains only one point).
Lines:
(1) $L_{1}=\{(x, y, z) \mid x=0=\{(0,0,1),(0,1,0),(0,1,1)\}$

Constructing PG(2)

Points:

$\{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)\}$
(Note: each equivalence class contains only one point).
Lines:
(1) $L_{1}=\{(x, y, z) \mid x=0=\{(0,0,1),(0,1,0),(0,1,1)\}$
(2) $L_{2}=\{(x, y, z) \mid y=0=\{(0,0,1),(1,0,0),(1,0,1)\}$
(3) $L_{3}=\{(x, y, z) \mid z=0=\{(1,0,0),(0,1,0),(1,1,0)\}$
(9) $L_{4}=\{(x, y, z) \mid x+y=0=\{(0,0,1),(1,1,0),(1,1,1)\}$
(6) $L_{5}=\{(x, y, z) \mid x+z=0=\{(1,0,1),(0,1,0),(1,1,1)\}$
(6) $L_{6}=\{(x, y, z) \mid y+z=0=\{(0,1,1),(1,0,0),(1,1,1)\}$
(2) $L_{7}=\{(x, y, z) \mid x+y+z=0=\{(1,0,1),(1,1,0),(0,1,1)\}$

It is now a simple matter to check that this set system satisfies the definition of a finite projective plane.

We conclude this short journey into extremal set systems with a final example:

We conclude this short journey into extremal set systems with a final example:

Sperner's Lemma.

We conclude this short journey into extremal set systems with a final example:

Sperner's Lemma.

Theorem

Let A be a set with n members. The maximum number of subsets of A such that no subset is included in another subset is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$

We conclude this short journey into extremal set systems with a final example:

Sperner's Lemma.

Theorem

Let A be a set with n members. The maximum number of subsets of A such that no subset is included in another subset is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$

Proof.

(1) Observation: if \mathbb{F} is a family of subsets all of the same size, then no subset is contained in another subset.

We conclude this short journey into extremal set systems with a final example:

Sperner's Lemma.

Theorem

Let A be a set with n members. The maximum number of subsets of A such that no subset is included in another subset is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$

Proof.

(1) Observation: if \mathbb{F} is a family of subsets all of the same size, then no subset is contained in another subset.
(2) Since $\binom{n}{k}$ is maximized when $k=\left\lfloor\frac{n}{2}\right\rfloor$ we can have as many subsets as claimed.

We conclude this short journey into extremal set systems with a final example:

Sperner's Lemma.

Theorem

Let A be a set with n members. The maximum number of subsets of A such that no subset is included in another subset is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$

Proof.

(1) Observation: if \mathbb{F} is a family of subsets all of the same size, then no subset is contained in another subset.
(2) Since $\binom{n}{k}$ is maximized when $k=\left\lfloor\frac{n}{2}\right\rfloor$ we can have as many subsets as claimed.
(3) It remains to prove that we cannot have more subsets.

We conclude this short journey into extremal set systems with a final example:

Sperner's Lemma.

Theorem

Let A be a set with n members. The maximum number of subsets of A such that no subset is included in another subset is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$

Proof.

(1) Observation: if \mathbb{F} is a family of subsets all of the same size, then no subset is contained in another subset.
(2) Since $\binom{n}{k}$ is maximized when $k=\left\lfloor\frac{n}{2}\right\rfloor$ we can have as many subsets as claimed.
(3) It remains to prove that we cannot have more subsets. Let \mathbb{F} be a family of k subsets satisfying the non-inclusion condition.

Continued.

Continued.
(1) For a given subset $A \in \mathbb{F}$ let P_{A} be the set of all n-permutations such that the first $|A|$ entries in $\pi \in P_{A}$ are the elements of A.

Continued.
(1) For a given subset $A \in \mathbb{F}$ let P_{A} be the set of all n-permutations such that the first $|A|$ entries in $\pi \in P_{A}$ are the elements of A.
(2) Clearly, $\left|P_{A}\right|=|A|!\times(n-|A|)$!

Continued.

(1) For a given subset $A \in \mathbb{F}$ let P_{A} be the set of all n-permutations such that the first $|A|$ entries in $\pi \in P_{A}$ are the elements of A.
(2) Clearly, $\left|P_{A}\right|=|A|!\times(n-|A|)$!
(3) The non-inclusion condition implies that if $A \neq B$ then $P_{A} \cap P_{B}=\emptyset$.

Continued.

(1) For a given subset $A \in \mathbb{F}$ let P_{A} be the set of all n-permutations such that the first $|A|$ entries in $\pi \in P_{A}$ are the elements of A.
(2) Clearly, $\left|P_{A}\right|=|A|!\times(n-|A|)$!
(3) The non-inclusion condition implies that if $A \neq B$ then $P_{A} \cap P_{B}=\emptyset$.
(9) This means that $\cup_{A \in \mathbb{F}} P_{A} \subset S_{n} \rightarrow \sum_{A \in \mathbb{F}}|A|!\times(n-|A|)!\leq n!$.

Continued.

(1) For a given subset $A \in \mathbb{F}$ let P_{A} be the set of all n-permutations such that the first $|A|$ entries in $\pi \in P_{A}$ are the elements of A.
(2) Clearly, $\left|P_{A}\right|=|A|!\times(n-|A|)$!
(3) The non-inclusion condition implies that if $A \neq B$ then $P_{A} \cap P_{B}=\emptyset$.
(4) This means that
$\cup_{A \in \mathbb{F}} P_{A} \subset S_{n} \rightarrow \sum_{A \in \mathbb{F}}|A|!\times(n-|A|)!\leq n!$.
(5) We note that $\frac{|A|!\times(n-|A|)!}{n!}=\frac{1}{(|A|!)}$

Continued.

(1) For a given subset $A \in \mathbb{F}$ let P_{A} be the set of all n-permutations such that the first $|A|$ entries in $\pi \in P_{A}$ are the elements of A.
(2) Clearly, $\left|P_{A}\right|=|A|!\times(n-|A|)$!
(3) The non-inclusion condition implies that if $A \neq B$ then $P_{A} \cap P_{B}=\emptyset$.
(4) This means that
$\cup_{A \in \mathbb{F}} P_{A} \subset S_{n} \rightarrow \sum_{A \in \mathbb{F}}|A|!\times(n-|A|)!\leq n!$.
(5) We note that $\frac{|A|!\times(n-|A|)!}{n!}=\frac{1}{(|A|!)}$
(- Also $\frac{1}{(|A|!)} \geq \frac{1}{\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}}$

Continued.

(1) For a given subset $A \in \mathbb{F}$ let P_{A} be the set of all n-permutations such that the first $|A|$ entries in $\pi \in P_{A}$ are the elements of A.
(2) Clearly, $\left|P_{A}\right|=|A|!\times(n-|A|)$!
(3) The non-inclusion condition implies that if $A \neq B$ then $P_{A} \cap P_{B}=\emptyset$.
(9) This means that
$\cup_{A \in \mathbb{F}} P_{A} \subset S_{n} \rightarrow \sum_{A \in \mathbb{F}}|A|!\times(n-|A|)!\leq n!$.
(5) We note that $\frac{|A|!\times(n-|A|)!}{n!}=\frac{1}{\binom{n}{|A|!)}}$
(- Also $\frac{1}{(|A|!)} \geq \frac{1}{\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}}$
(1) Hence $\frac{|\mathbb{F}|}{\left(\begin{array}{ll}\left(\frac{n}{2}\right\rfloor\end{array}\right)} \leq \sum_{A \in \mathbb{F}} \frac{|A|!\times(n-|A|)!}{n!} \leq 1 \rightarrow|\mathbb{F}| \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

Summary

This concludes our short journey to the world of sets.

Summary

This concludes our short journey to the world of sets.
(1) We learned:

Summary

This concludes our short journey to the world of sets.
(1) We learned:
(2) How to describe sets.

Summary

This concludes our short journey to the world of sets.
(1) We learned:
(2) How to describe sets.
(3) Binary operations on sets.

Summary

This concludes our short journey to the world of sets.
(1) We learned:
(2) How to describe sets.
(3) Binary operations on sets.
(1) Simple applications using the built-in set objects in computing systems.

Summary

This concludes our short journey to the world of sets.
(1) We learned:
(2) How to describe sets.
(3) Binary operations on sets.
(9) Simple applications using the built-in set objects in computing systems.
(5) Infinite sets, countable and non-countable.

Summary

This concludes our short journey to the world of sets.
(1) We learned:
(2) How to describe sets.
(3) Binary operations on sets.
(9) Simple applications using the built-in set objects in computing systems.
(6) Infinite sets, countable and non-countable.
(0) Existence of non programmable functions $f: N \rightarrow\{0,1\}$.

Summary

This concludes our short journey to the world of sets.
(1) We learned:
(2) How to describe sets.
(3) Binary operations on sets.
(1) Simple applications using the built-in set objects in computing systems.
(6) Infinite sets, countable and non-countable.
(0) Existence of non programmable functions $f: N \rightarrow\{0,1\}$.
(3) Set systems.

Summary

This concludes our short journey to the world of sets.
(1) We learned:
(2) How to describe sets.
(3) Binary operations on sets.
((Simple applications using the built-in set objects in computing systems.
(5) Infinite sets, countable and non-countable.
(0) Existence of non programmable functions $f: N \rightarrow\{0,1\}$.
(-) Set systems.
(8) The use of linear algebra to prove properties of set systems.

Summary

This concludes our short journey to the world of sets.
(1) We learned:
(2) How to describe sets.
(3) Binary operations on sets.
((Simple applications using the built-in set objects in computing systems.
(5) Infinite sets, countable and non-countable.
(0) Existence of non programmable functions $f: N \rightarrow\{0,1\}$.
(0) Set systems.
(8) The use of linear algebra to prove properties of set systems.

We hope you enjoyed the journey.

