Discrete Mathematics and Applications

Moshe Rosenfeld

Hanoi 2011 moishe@u.washington.edu

1 Assignment No. 4: sets and sequences

Due: Tuesday, 11 Oct.

Please submit your answer in a neat, readable properly organized format.

2 Sets

- 1. There 35 students in our class. How many teams can we have if no team is a subset of another team.
- 2. (Sage) Can you find an integer n such that: $n^2 \mod 113 = 77$, $n^3 \mod 233 = 34$, and $n^3 + n^2 \mod 173 = 172$

2.1 Functions

1. In the enumeration used in class for NxN in what location will be the pair (100, 50).

What pair will be in location 2011?

- 2. a. If f and $f \circ g$ are ONTO does it follow that g is ONTO? b. If f and $f \circ g$ are 1-1 does it follow that g is 1-1?
- 3. Show that the function $f: Z^+ \times Z^+ \to Z^+$ defined by: $\frac{(m+n-2)(m+n-1)}{2} + m$ is a bijection.
- 4. (Sage) How many 1's are in the binary representation of 50! (fifty factorial).

2.2 Sequences

For the following sequences try to indentify a rule and the next two terms in the sequence.

- 1. $3, 5, 8, 12, 17, 23, \dots$
- $2. \quad 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, \dots$
- 3. * Let a_n denote the n^{th} term of the sequence $1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, \ldots$. Prove that $a_n = \lfloor \sqrt{2n} + \frac{1}{2} \rfloor$.