How "big" can a set be?

September 29, 2011

Theorem (1)

 $\forall A, \mid P(A) \mid > \mid A \mid$.

Theorem (1)

$$\forall A, \mid P(A) \mid > \mid A \mid$$
.

Theorem (2)

The set $\{x \mid 0 < x < 1, x \in R\}$ is not countable.

Theorem (1)

$$\forall A, \mid P(A) \mid > \mid A \mid$$
.

Theorem (2)

The set $\{x \mid 0 < x < 1, \ x \in R\}$ is not countable.

Theorem (3)

The set of functions $f: N \to \{0,1\}$ is not countable.

Theorem (1)

$$\forall A, \mid P(A) \mid > \mid A \mid$$
.

Theorem (2)

The set $\{x \mid 0 < x < 1, x \in R\}$ is not countable.

Theorem (3)

The set of functions $f: N \to \{0,1\}$ is not countable.

Corollary

There are functions $f: \mathbb{N} \to \{0,1\}$ (decision problems) that are not programmable.

Theorem (4)

If
$$|A| \leq |B|$$
 and $|B| \leq |A|$

Here are some brief hints for the proofs.

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 1)

We will prove that there is no onto function $f: A \to P(A)$. Indeed given any function $f: A \to P(A)$. Let $S = \{a \in A \mid a \notin f(a)\}$. (Recall that $f(a) \subset A$, or $f(a) \in P(A)$).

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 1)

We will prove that there is no onto function $f: A \to P(A)$. Indeed given any function $f: A \to P(A)$. Let $S = \{a \in A \mid a \notin f(a)\}$. (Recall that $f(a) \subset A$, or $f(a) \in P(A)$).

Assume that S = f(s) for some $s \in A$.

Whether $s \in f(s)$ or $s \notin f(s)$ we reach a contradicion.

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 1)

We will prove that there is no onto function $f: A \to P(A)$.

Indeed given any function $f: A \to P(A)$. Let $S = \{a \in A \mid a \notin f(a)\}$.

(Recall that $f(a) \subset A$, or $f(a) \in P(A)$).

Assume that S = f(s) for some $s \in A$.

Whether $s \in f(s)$ or $s \notin f(s)$ we reach a contradicion.

Fill in the details.

Conclusion: since there is an injection $g:A\to P(A)$ and there is no onto

function $f: A \to P(A)$ we conclude that |A| < |P(A)|.

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset \{x \mid 0 < x < 1, \ x \in R\} = \mathbb{U}$ we shall find a real number $y \notin A$.

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset \{x \mid 0 < x < 1, \ x \in R\} = \mathbb{U}$ we shall find a real number $y \notin A$.

Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a countable subset of \mathbb{U} . Let $x_n = 0.x_{n,1}x_{n,2}\dots x_{n,n}x_{n,n+1}\dots$ be the decimal expansion of x_n .

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset \{x \mid 0 < x < 1, \ x \in R\} = \mathbb{U}$ we shall find a real number $y \notin A$.

Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a countable subset of \mathbb{U} . Let $x_n = 0.x_{n,1}x_{n,2}\dots x_{n,n}x_{n,n+1}\dots$ be the decimal expansion of x_n .

Let $y = 0.y_1y_2...y_n...$ be defined as follows:

Let $y_n = x_{n,n} + 5 \pmod{10}$. We want to make sure that $\forall n, y_n \neq x_{n,n}$.

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset \{x \mid 0 < x < 1, \ x \in R\} = \mathbb{U}$ we shall find a real number $y \notin A$.

Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a countable subset of \mathbb{U} . Let $x_n = 0.x_{n,1}x_{n,2}\dots x_{n,n}x_{n,n+1}\dots$ be the decimal expansion of x_n .

Let $y = 0.y_1y_2...y_n...$ be defined as follows:

Let $y_n = x_{n,n} + 5 \pmod{10}$. We want to make sure that $\forall n, y_n \neq x_{n,n}$.

Fill in the details, that is prove that $y \notin A$.

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset \{x \mid 0 < x < 1, \ x \in R\} = \mathbb{U}$ we shall find a real number $y \notin A$.

Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a countable subset of \mathbb{U} . Let $x_n = 0.x_{n,1}x_{n,2}\dots x_{n,n}x_{n,n+1}\dots$ be the decimal expansion of x_n .

Let $y = 0.y_1y_2...y_n...$ be defined as follows:

Let $y_n = x_{n,n} + 5 \pmod{10}$. We want to make sure that $\forall n, y_n \neq x_{n,n}$.

Fill in the details, that is prove that $y \notin A$.

Remark

This proof technique is called the Diagonal Method. It is used on many occaisons. For instance Theorem 1 is an abstract form of this method.

Here we go again.

Proof (Theorem 3, proof sketch)

It is enough to show that there is a bijection between the set of functions: $\{f: N \to \{0,1\}\}\$ and P(N).

Here we go again.

Proof (Theorem 3, proof sketch)

It is enough to show that there is a bijection between the set of functions: $\{f: N \to \{0,1\}\}\$ and P(N).

Let
$$F(f) = \{i \mid f(i) = 1\}.$$

Show that this is a bijection between P(n) and the functions.

Here we go again.

Proof (Theorem 3, proof sketch)

It is enough to show that there is a bijection between the set of functions: $\{f: N \to \{0,1\}\}\$ and P(N).

Let
$$F(f) = \{i \mid f(i) = 1\}.$$

Show that this is a bijection between P(n) and the functions.

Proof (of the corollary)

Each program that implements a decision problem is stored in memory as a finite binary sequence. There are only countably many finite binary sequences. Hence there are non computable functions.

Proof (of theorem 4)

The theorem says that if there are 1-1 functions $f:A\to B$ and $g:B\to A$ then there is a bijection between A and B.

Proof (of theorem 4)

The theorem says that if there are 1-1 functions

 $f:A \rightarrow B \ \ and \ \ g:B \rightarrow A \ \ then \ \ there \ is \ a \ \ bijection \ \ between \ A \ \ and \ B.$

Consider the following chains, (directed paths): ... \rightarrow a

$$\rightarrow f(a) \rightarrow g(f(a)...$$

Proof (of theorem 4)

The theorem says that if there are 1-1 functions

 $f: A \rightarrow B \ and \ g: B \rightarrow A \ then \ there is a bijection between A \ and B.$

Consider the following chains, (directed paths): $\ldots \rightarrow a$

$$\rightarrow f(a) \rightarrow g(f(a)...$$

Verify: Each chain is one of the following four types:

• A finite cycle with 2n "nodes" n, members of A interlaced with n members of .

Proof (of theorem 4)

The theorem says that if there are 1-1 functions

 $f: A \rightarrow B \ and \ g: B \rightarrow A \ then \ there is a bijection between A \ and B$.

Consider the following chains, (directed paths): $\ldots \rightarrow a$

$$\rightarrow f(a) \rightarrow g(f(a)...$$

Verify: Each chain is one of the following four types:

- A finite cycle with 2n "nodes" n, members of A interlaced with n members of .
- A doubly infinite chain of interlaced nodes from A and B.

Proof (of theorem 4)

The theorem says that if there are 1-1 functions

 $f:A \rightarrow B \ and \ g:B \rightarrow A \ then \ there is a bijection between A \ and B.$

Consider the following chains, (directed paths): $\ldots \rightarrow a$

$$\rightarrow f(a) \rightarrow g(f(a)...$$

Verify: Each chain is one of the following four types:

- A finite cycle with 2n "nodes" n, members of A interlaced with n members of .
- A doubly infinite chain of interlaced nodes from A and B.
- **3** An infinite chain $a \rightarrow b \rightarrow a' \rightarrow b' \rightarrow \dots$

Proof (of theorem 4)

The theorem says that if there are 1-1 functions

 $f:A \rightarrow B \ and \ g:B \rightarrow A \ then \ there is a bijection between A \ and B.$

Consider the following chains, (directed paths): $\ldots \rightarrow a$

$$\rightarrow f(a) \rightarrow g(f(a)...$$

Verify: Each chain is one of the following four types:

- A finite cycle with 2n "nodes" n, members of A interlaced with n members of.
- ② A doubly infinite chain of interlaced nodes from A and B.
- **3** An infinite chain $a \rightarrow b \rightarrow a' \rightarrow b' \rightarrow \dots$
- **4** An infinite chain $b \rightarrow a \rightarrow b' \rightarrow a' \rightarrow \dots$

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a successor in B

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

Each $b \in B$ has a predecessor in A except for the head of the chains in (4).

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

Each $b \in B$ has a predecessor in A except for the head of the chains in (4).

The mapping F(a) = b where $a \to b$, if a belongs to chains in (1), (2) or

(3) and F(a) = b where $b \rightarrow a$ if a is in a chain of (4) is a bijection between A and B.

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

Each $b \in B$ has a predecessor in A except for the head of the chains in (4).

The mapping F(a) = b where $a \to b$, if a belongs to chains in (1), (2) or

(3) and F(a) = b where $b \rightarrow a$ if a is in a chain of (4) is a bijection between A and B.

Verify this assertion.

In Set Theory this is known as bernstein's Lemma.

Surprise

Remark

There is a surprising consequence of this famous lemma. If you take two sets of points A and B in the plane, and if each set contains a disk, then each set can be disected into two sets A_1 , A_2 , B_1 , B_2 such that A_i and B_i are similar.

Surprise

Remark

There is a surprising consequence of this famous lemma. If you take two sets of points A and B in the plane, and if each set contains a disk, then each set can be disected into two sets A_1 , A_2 , B_1 , B_2 such that A_i and B_i are similar.

For example: these two sets can be disected into a pair of similar sets!