How "big" can a set be?

September 29, 2011

Many infinities

Theorem (1)
$\forall A,|P(A)|>|A|$.

Many infinities

Theorem (1)
$\forall A,|P(A)|>|A|$.
Theorem (2)
The set $\{x \mid 0<x<1, x \in R\}$ is not countable.

Many infinities

Theorem (1)
$\forall A,|P(A)|>|A|$.
Theorem (2)
The set $\{x \mid 0<x<1, x \in R\}$ is not countable.
Theorem (3)
The set of functions $f: N \rightarrow\{0,1\}$ is not countable.

Many infinities

Theorem (1)
$\forall A,|P(A)|>|A|$.
Theorem (2)
The set $\{x \mid 0<x<1, x \in R\}$ is not countable.
Theorem (3)
The set of functions $f: N \rightarrow\{0,1\}$ is not countable.

Corollary

There are functions $f: N \rightarrow\{0,1\}$ (decision problems) that are not programmable.

Theorem (4)
If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$

Proofs

Here are some brief hints for the proofs.

Proofs

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 1)

We will prove that there is no onto function $f: A \rightarrow P(A)$. Indeed given any function $f: A \rightarrow P(A)$. Let $S=\{a \in A \mid a \notin f(a)\}$. (Recall that $f(a) \subset A$, or $f(a) \in P(A))$.

Proofs

Here are some brief hints for the proofs.
Proof (Sketch of a proof for theorem 1)
We will prove that there is no onto function $f: A \rightarrow P(A)$. Indeed given any function $f: A \rightarrow P(A)$. Let $S=\{a \in A \mid a \notin f(a)\}$. (Recall that $f(a) \subset A$, or $f(a) \in P(A))$. Assume that $S=f(s)$ for some $s \in A$.
Whether $s \in f(s)$ or $s \notin f(s)$ we reach a contradicion.

Proofs

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 1)

We will prove that there is no onto function $f: A \rightarrow P(A)$. Indeed given any function $f: A \rightarrow P(A)$. Let $S=\{a \in A \mid a \notin f(a)\}$.
(Recall that $f(a) \subset A$, or $f(a) \in P(A)$).
Assume that $S=f(s)$ for some $s \in A$.
Whether $s \in f(s)$ or $s \notin f(s)$ we reach a contradicion.
Fill in the details.
Conclusion: since there is an injection $g: A \rightarrow P(A)$ and there is no onto function $f: A \rightarrow P(A)$ we conclude that $|A|<|P(A)|$.

Proofs

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset\{x \mid 0<x<1, x \in R\}=\mathbb{U}$ we shall find a real number $y \notin A$.

Proofs

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset\{x \mid 0<x<1, x \in R\}=\mathbb{U}$ we shall find a real number $y \notin A$.
Let $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ be a countable subset of \mathbb{U}. Let $x_{n}=0 \cdot x_{n, 1} x_{n, 2} \ldots x_{n, n} x_{n, n+1} \ldots$ be the decimal expansion of x_{n}.

Proofs

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset\{x \mid 0<x<1, x \in R\}=\mathbb{U}$ we shall find a real number $y \notin A$.
Let $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ be a countable subset of \mathbb{U}. Let $x_{n}=0 \cdot x_{n, 1} x_{n, 2} \ldots x_{n, n} x_{n, n+1} \ldots$ be the decimal expansion of x_{n}. Let $y=0 . y_{1} y_{2} \ldots y_{n} \ldots$ be defined as follows:

Let $y_{n}=x_{n, n}+5(\bmod 10)$. We want to make sure that $\forall n, y_{n} \neq x_{n, n}$.

Proofs

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset\{x \mid 0<x<1, x \in R\}=\mathbb{U}$ we shall find a real number $y \notin A$.
Let $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ be a countable subset of \mathbb{U}. Let $x_{n}=0 \cdot x_{n, 1} x_{n, 2} \ldots x_{n, n} x_{n, n+1} \ldots$ be the decimal expansion of x_{n}. Let $y=0 . y_{1} y_{2} \ldots y_{n} \ldots$ be defined as follows:

Let $y_{n}=x_{n, n}+5(\bmod 10)$. We want to make sure that $\forall n, y_{n} \neq x_{n, n}$.
Fill in the details, that is prove that $y \notin A$.

Proofs

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset\{x \mid 0<x<1, x \in R\}=\mathbb{U}$ we shall find a real number $y \notin A$.
Let $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ be a countable subset of \mathbb{U}. Let $x_{n}=0 . x_{n, 1} x_{n, 2} \ldots x_{n, n} x_{n, n+1} \ldots$ be the decimal expansion of x_{n}.

Let $y=0 . y_{1} y_{2} \ldots y_{n} \ldots$ be defined as follows:
Let $y_{n}=x_{n, n}+5(\bmod 10)$. We want to make sure that $\forall n, y_{n} \neq x_{n, n}$.
Fill in the details, that is prove that $y \notin A$.

Remark

This proof technique is called the Diagonal Method. It is used on many occaisons. For instance Theorem 1 is an abstract form of this method.

Proofs

Here we go again.
Proof (Theorem 3, proof sketch)
It is enough to show that there is a bijection between the set of functions: $\{f: N \rightarrow\{0,1\}\}$ and $P(N)$.

Proofs

Here we go again.

Proof (Theorem 3, proof sketch)

It is enough to show that there is a bijection between the set of functions: $\{f: N \rightarrow\{0,1\}\}$ and $P(N)$.
Let $F(f)=\{i \mid f(i)=1\}$.
Show that this is a bijection between $P(n)$ and the functions.

Proofs

Here we go again.

Proof (Theorem 3, proof sketch)

It is enough to show that there is a bijection between the set of functions: $\{f: N \rightarrow\{0,1\}\}$ and $P(N)$.
Let $F(f)=\{i \mid f(i)=1\}$.
Show that this is a bijection between $P(n)$ and the functions.

Proof (of the corollary)

Each program that implements a decision problem is stored in memory as a finite binary sequence. There are only countably many finite binary sequences. Hence there are non computable functions.

Proofs

Proof (of theorem 4)

The theorem says that if there are $1-1$ functions $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Proofs

Proof (of theorem 4)

The theorem says that if there are $1-1$ functions $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Consider the following chains, (directed paths): $\ldots \rightarrow$ a $\rightarrow f(a) \rightarrow g(f(a) \ldots$

Proofs

Proof (of theorem 4)

The theorem says that if there are $1-1$ functions $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Consider the following chains, (directed paths): $\ldots \rightarrow$ a
$\rightarrow f(a) \rightarrow g(f(a) \ldots$
Verify: Each chain is one of the following four types:
(1) A finite cycle with $2 n$ "nodes" n, members of A interlaced with n members of .

Proofs

Proof (of theorem 4)

The theorem says that if there are $1-1$ functions $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Consider the following chains, (directed paths): $\ldots \rightarrow$ a
$\rightarrow f(a) \rightarrow g(f(a) \ldots$
Verify: Each chain is one of the following four types:
(1) A finite cycle with $2 n$ "nodes" n, members of A interlaced with n members of .
(2) A doubly infinite chain of interlaced nodes from A and B.

Proofs

Proof (of theorem 4)

The theorem says that if there are $1-1$ functions $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Consider the following chains, (directed paths): $\ldots \rightarrow$ a
$\rightarrow f(a) \rightarrow g(f(a) \ldots$
Verify: Each chain is one of the following four types:
(1) A finite cycle with $2 n$ "nodes" n, members of A interlaced with n members of.
(2) A doubly infinite chain of interlaced nodes from A and B.
(3) An infinite chain $a \rightarrow b \rightarrow a^{\prime} \rightarrow b^{\prime} \rightarrow \ldots$

Proofs

Proof (of theorem 4)

The theorem says that if there are $1-1$ functions $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Consider the following chains, (directed paths): $\ldots \rightarrow$ a
$\rightarrow f(a) \rightarrow g(f(a) \ldots$
Verify: Each chain is one of the following four types:
(1) A finite cycle with $2 n$ "nodes" n, members of A interlaced with n members of.
(2) A doubly infinite chain of interlaced nodes from A and B.
(3) An infinite chain $a \rightarrow b \rightarrow a^{\prime} \rightarrow b^{\prime} \rightarrow \ldots$
(9) An infinite chain $b \rightarrow a \rightarrow b^{\prime} \rightarrow a^{\prime} \rightarrow \ldots$

Proof of theorem 4, continued

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Proof of theorem 4, continued

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a succsessor in B

Proof of theorem 4, continued

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a succsessor in B Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

Proof of theorem 4, continued

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a succsessor in B Each $a \in A$ has a predecessor in B except for the head of the chains in (3). Each $b \in B$ has a successor in A.

Proof of theorem 4, continued

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a succsessor in B Each $a \in A$ has a predecessor in B except for the head of the chains in (3). Each $b \in B$ has a successor in A.
Each $b \in B$ has a predecessor in A except for the head of the chains in (4).

Proof of theorem 4, continued

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a succsessor in B Each $a \in A$ has a predecessor in B except for the head of the chains in (3). Each $b \in B$ has a successor in A.
Each $b \in B$ has a predecessor in A except for the head of the chains in (4). The mapping $F(a)=b$ where $a \rightarrow b$, if a belongs to chains in (1), (2) or (3) and $F(a)=b$ where $b \rightarrow a$ if a is in a chain of (4) is a bijection between A and B .

Proof of theorem 4, continued

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a succsessor in B Each $a \in A$ has a predecessor in B except for the head of the chains in (3). Each $b \in B$ has a successor in A.
Each $b \in B$ has a predecessor in A except for the head of the chains in (4). The mapping $F(a)=b$ where $a \rightarrow b$, if a belongs to chains in (1), (2) or (3) and $F(a)=b$ where $b \rightarrow a$ if a is in a chain of (4) is a bijection between A and B .
Verify this assertion.
In Set Theory this is known as bernstein's Lemma.

Surprise

Remark

There is a surprising consequence of this famous lemma. If you take two sets of points A and B in the plane, and if each set contains a disk, then each set can be disected into two sets $A_{1}, A_{2}, B_{1}, B_{2}$ such that A_{i} and B_{i} are similar.

Surprise

Remark

There is a surprising consequence of this famous lemma. If you take two sets of points A and B in the plane, and if each set contains a disk, then each set can be disected into two sets $A_{1}, A_{2}, B_{1}, B_{2}$ such that A_{i} and B_{i} are similar.

For example: these two sets can be disected into a pair of similar sets!

