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Many infinities

Theorem (1)

∀A, | P(A) |>| A | .

Theorem (2)

The set {x | 0 < x < 1, x ∈ R} is not countable.

Theorem (3)

The set of functions f : N → {0, 1} is not countable.

Corollary

There are functions f : N → {0, 1} (decision problems) that are not
programmable.

Theorem (4)

If | A |≤| B | and | B |≤| A | then | A |=| B |
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Proofs

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 1)

We will prove that there is no onto function f : A→ P(A) .
Indeed given any function f : A→ P(A). Let S = {a ∈ A | a 6∈ f (a)}.
(Recall that f (a) ⊂ A, or f (a) ∈ P(A)).
Assume that S = f (s) for some s ∈ A.
Whether s ∈ f (s) or s 6∈ f (s) we reach a contradicion.
Fill in the details.
Conclusion: since there is an injection g : A→ P(A) and there is no onto
function f : A→ P(A) we conclude that | A |<| P(A) |.
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Proofs

Proof (Sketch of a proof for theorem 2)

For every countable set A ⊂ {x | 0 < x < 1, x ∈ R} = U we shall find a
real number y 6∈ A.

Let {x1, x2, . . . , xn, . . .} be a countable subset of U. Let
xn = 0.xn,1xn,2 . . . xn,nxn,n+1 . . . be the decimal expansion of xn.

Let y = 0.y1y2 . . . yn . . . be defined as follows:

Let yn = xn,n + 5 (mod 10). We want to make sure that ∀n, yn 6= xn,n.

Fill in the details, that is prove that y 6∈ A.

Remark

This proof technique is called the Diagonal Method. It is used on many
occaisons. For instance Theorem 1 is an abstract form of this method.
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Proofs

Here we go again.

Proof (Theorem 3, proof sketch)

It is enough to show that there is a bijection between the set of functions:
{f : N → {0, 1}} and P(N).

Let F (f ) = {i | f (i) = 1}.
Show that this is a bijection between P(n) and the functions.

Proof (of the corollary)

Each program that implements a decision problem is stored in memory as
a finite binary sequence. There are only countably many finite binary
sequences. Hence there are non computable functions.
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Proofs

Proof ( of theorem 4)

The theorem says that if there are 1− 1 functions
f : A→ B and g : B → A then there is a bijection between A and B.

Consider the following chains, (directed paths): . . .→a
→ f (a)→ g(f (a) . . .
Verify: Each chain is one of the following four types:

1 A finite cycle with 2n ”nodes” n, members of A interlaced with n
members of .

2 A doubly infinite chain of interlaced nodes from A and B.

3 An infinite chain a→ b → a′ → b′ → . . .

4 An infinite chain b → a→ b′ → a′ → . . .
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Proof of theorem 4, continued

We note that each a ∈ A, and b ∈ B is included in exactly one chain.

Each a ∈ A has a succsessor in B
Each a ∈ A has a predecessor in B except for the head of the chains in (3).
Each b ∈ B has a successor in A.
Each b ∈ B has a predecessor in A except for the head of the chains in (4).
The mapping F (a) = b where a→ b, if a belongs to chains in (1), (2) or
(3) and F (a) = b where b → a if a is in a chain of (4) is a bijection
between A and B.
Verify this assertion.

In Set Theory this is known as bernstein’s Lemma.
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Surprise

Remark

There is a surprising consequence of this famous lemma. If you take two
sets of points A and B in the plane, and if each set contains a disk, then
each set can be disected into two sets A1,A2,B1,B2 such that Ai and Bi

are similar.
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For example: these two sets can be disected into a pair of similar sets!
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