Discrete Mathematics Drill

Moshe Rosenfeld

Hanoi 2011
moishe@u.washington.edu

1 Number Theory

This file will include drills to help you understand the class discussion.
P-P Indicates that this should be done with paper-pencil only, meaning that it is a simple calculation.

1. P-P Find all primitive elements in $G F(7)$, in $G F(13)$
2. (SAGE): Find one primitive element in $G F(34296447299)$ (it is a prime number).
3. P-P Find $\sqrt{3} \bmod 11$.
4. P-P Find the roots of $x^{2}+3 x+7$ in $G F(19)$ and factor it.
5. P-P Find $\sqrt{5} 3 \bmod 143$
6. P-P Calculate $3^{57} \bmod 24$.
7. (SAGE): 413138881 is not prime. Check whether 7 is a "compositewitness." Find an integer $k<10$ which is a composite witness.
8. P-P Find all $\sqrt{5} 8 \bmod 77$.
9. (SAGE:) $n=2301745823128543215222807511401298908490$ is a quadratic residue mod $202535570977849468738480623197759397863611(=k)$. Two square roots of $n \bmod k$ are 143322814257550191724686615344936184421437 and 380658098827589507522765997677129324673 .

- Verify that indeed both are square roots of n.
- Use the square roots to factor k.
- Note: after you use what we learned and factored k you can use the factor() method in SAGE and compare the results. SAGE can factor integers with 42 digits quite fast.

