"Named" numbres

Ngày 25 tháng 11 năm 2011

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.
(3) $2,3,5,7,11,13, \ldots$

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.
(3) $2,3,5,7,11,13, \ldots$

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.
(3) $2,3,5,7,11,13, \ldots$ the prime numbers.
(4) $1,1,2,3,5,8,13, \ldots$

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.
(3) $2,3,5,7,11,13, \ldots$ the prime numbers.
(4) $1,1,2,3,5,8,13, \ldots$

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.
(3) $2,3,5,7,11,13, \ldots$ the prime numbers.
(4) $1,1,2,3,5,8,13, \ldots$ Fibonacci numbers.
(5) $\binom{n}{k}$

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.
(3) $2,3,5,7,11,13, \ldots$ the prime numbers.
(4) $1,1,2,3,5,8,13, \ldots$ Fibonacci numbers.
(5) $\binom{n}{k}$

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.
(3) $2,3,5,7,11,13, \ldots$ the prime numbers.
(4) $1,1,2,3,5,8,13, \ldots$ Fibonacci numbers.
(5) $\binom{n}{k}$ binomials.
(6) $\frac{1}{n+1}\binom{2 n}{n}$

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.
(3) $2,3,5,7,11,13, \ldots$ the prime numbers.
(4) $1,1,2,3,5,8,13, \ldots$ Fibonacci numbers.
(5) $\binom{n}{k}$ binomials.
(6) $\frac{1}{n+1}\binom{2 n}{n}$

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.
(3) $2,3,5,7,11,13, \ldots$ the prime numbers.
(4) $1,1,2,3,5,8,13, \ldots$ Fibonacci numbers.
(5) $\binom{n}{k}$ binomials.
(6) $\frac{1}{n+1}\binom{2 n}{n}$ the Catalan numbers.

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are "famous."
(1) $1,2,3,4, \ldots$ the integers.
(2) $1,3,5,7,9 \ldots$ the odd integers.
(3) $2,3,5,7,11,13, \ldots$ the prime numbers.
(4) $1,1,2,3,5,8,13, \ldots$ Fibonacci numbers.
(5) $\binom{n}{k}$ binomials.
(6) $\frac{1}{n+1}\binom{2 n}{n}$ the Catalan numbers.

The reason they are "named" is because they appear in many forms in mathematics and other sciences.

Stirling Numbers

Stirling Numbers are named after the Scottish mathematician James Stirling who introduced them in the $18^{\text {th }}$ century. There are two kinds of Stirling numbers (with various notation):

Stirling numbers of the first kind: $\left[\begin{array}{l}n \\ k\end{array}\right]=c(n, k)$
Stirling numbers of the second kind: $\left\{\begin{array}{l}n \\ k\end{array}\right\}=S(n, k)$
Both numbers describe combinatorial counting that lead to a "triangular" recurrence relation similar to the binomial coefficients.

Stirling numbers of the second kind:

Question

In how many ways can you partition the set $\{a, b, c, d, e\}$ into two non-empty subsets?

Stirling numbers of the second kind:

Question

In how many ways can you partition the set $\{a, b, c, d, e\}$ into two non-empty subsets?

Answer

We can just list the subsets:
$\{\{a\},\{, b, c, d, e\}\},\{\{b\},\{a, c, d, e\}\} \ldots,\{\{a, b\},\{c, d, e\}\}, \ldots$
$\{\{d, e\},\{, a, b, c\}\}$. For a total of:

Stirling numbers of the second kind:

Question

In how many ways can you partition the set $\{a, b, c, d, e\}$ into two non-empty subsets?

Answer

We can just list the subsets:
$\{\{a\},\{, b, c, d, e\}\},\{\{b\},\{a, c, d, e\}\} \ldots,\{\{a, b\},\{c, d, e\}\}, \ldots$
$\{\{d, e\},\{, a, b, c\}\}$. For a total of:

Stirling numbers of the second kind:

Question

In how many ways can you partition the set $\{a, b, c, d, e\}$ into two non-empty subsets?

Answer

We can just list the subsets:
$\{\{a\},\{, b, c, d, e\}\},\{\{b\},\{a, c, d, e\}\} \ldots,\{\{a, b\},\{c, d, e\}\}, \ldots$
$\{\{d, e\},\{, a, b, c\}\}$. For a total of: $5+10=15$ different partitions.
Definition
$\left\{\begin{array}{l}n \\ k\end{array}\right\}$ The Stirling number of the second kind is the number of ways to partition an n-set into k non-empty subsets.

From the example we can derive a recurrence relation for these numbers:

From the example we can derive a recurrence relation for these numbers:

Let B be an $n-$ set. We can divide the patitions into two sets A : partitions that include a fixed singleton $\left\{x_{0}\right\}$ and B : the rest.

From the example we can derive a recurrence relation for these numbers:

Let B be an n-set. We can divide the patitions into two sets A : partitions that include a fixed singleton $\left\{x_{0}\right\}$ and B : the rest.

Clearly, there are $S(n-1, k-1)$ distinct partitions in A.

From the example we can derive a recurrence relation for these numbers:

Let B be an n-set. We can divide the patitions into two sets A : partitions that include a fixed singleton $\left\{x_{0}\right\}$ and B : the rest.

Clearly, there are $S(n-1, k-1)$ distinct partitions in A.
As for the set B for every partition $B \backslash\left\{x_{0}\right\}$ into k subset we can add x_{0} to any one of the k parttions yielding:

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}
$$

From the example we can derive a recurrence relation for these numbers:

Let B be an n-set. We can divide the patitions into two sets A : partitions that include a fixed singleton $\left\{x_{0}\right\}$ and B : the rest.

Clearly, there are $S(n-1, k-1)$ distinct partitions in A.
As for the set B for every partition $B \backslash\left\{x_{0}\right\}$ into k subset we can add x_{0} to any one of the k parttions yielding:

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}
$$

This "triangular" relation is very similar to Pascal's identity for binomials.

An application

The polynomials of degree n form a vector space over the field \mathbb{R}, and so do the polynomials $\{1, x, x(x-1), x(x-1)(x-2) \ldots\}$. A common notation for $x(x-1) \ldots(x-j+1)$ is $x^{j}-$
This means that the polynomials x^{k} can be expressed as linear combination of these polynomials:

$$
x^{k}=\sum_{i=0}^{k} a_{i} x^{\underline{i}}
$$

An application

The polynomials of degree n form a vector space over the field \mathbb{R}, and so do the polynomials $\{1, x, x(x-1), x(x-1)(x-2) \ldots\}$. A common notation for $x(x-1) \ldots(x-j+1)$ is $x^{j}-$
This means that the polynomials x^{k} can be expressed as linear combination of these polynomials:

$$
x^{k}=\sum_{i=0}^{k} a_{i} x^{\underline{i}}
$$

What are the coefficients a_{i} ?

Claim:

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{\underline{k}}
$$

Chứng minh.

Claim:

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{\underline{k}}
$$

Chứng minh.
(1) a. $x \cdot x^{\underline{k}}=x \underline{k+1}+k x^{\underline{k}}$.

Claim:

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{\underline{k}}
$$

Chứng minh.
(1) a. $x \cdot x^{\underline{k}}=x^{\underline{k+1}}+k x^{\underline{k}}$.
(2)

$$
\begin{gathered}
x \cdot x^{n-1}=x \sum_{k=0}^{n-1}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\} x^{\underline{k}}=\sum_{k=0}^{n-1}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}\left(x^{k+1}+k x^{\underline{k}}\right)= \\
\sum_{k=0}^{n-1}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\} k x^{\underline{k}}+\left\{\begin{array}{c}
n-1 \\
k-1
\end{array}\right\} x^{\underline{k}}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{\underline{k}}
\end{gathered}
$$

Follows from the triangular relation.

The Stirling numbers of the first kind are defined by a closely related relation:
It counts in how many ways you can arrange n objects into k disjoint cycles. So for example, the partitions $\{[1,3][2,5,4]\}$ and $\{[1,3][2,4,5]\}$ are distinct but $\{[3,1],[5,4,2]\}$ is the same as the first partition.

The Stirling numbers of the first kind are defined by a closely related relation:
It counts in how many ways you can arrange n objects into k disjoint cycles. So for example, the partitions $\{[1,3][2,5,4]\}$ and $\{[1,3][2,4,5]\}$ are distinct but $\{[3,1],[5,4,2]\}$ is the same as the first partition.
We leave it to you to show that:
(a)

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=(n-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

The Stirling numbers of the first kind are defined by a closely related relation:
It counts in how many ways you can arrange n objects into k disjoint cycles. So for example, the partitions $\{[1,3][2,5,4]\}$ and $\{[1,3][2,4,5]\}$ are distinct but $\{[3,1],[5,4,2]\}$ is the same as the first partition.
We leave it to you to show that:
(1)

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=(n-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

(2) Let $x^{\bar{n}}=x(x+1) \ldots(x+n-1)$

The Stirling numbers of the first kind are defined by a closely related relation:
It counts in how many ways you can arrange n objects into k disjoint cycles. So for example, the partitions $\{[1,3][2,5,4]\}$ and $\{[1,3][2,4,5]\}$ are distinct but $\{[3,1],[5,4,2]\}$ is the same as the first partition.
We leave it to you to show that:
(1)

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=(n-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

(2) Let $x^{\bar{n}}=x(x+1) \ldots(x+n-1)$
(3) $x^{\bar{n}}=\sum_{k=0}^{n} x^{k}$

The Stirling numbers of the first kind are defined by a closely related relation:
It counts in how many ways you can arrange n objects into k disjoint cycles. So for example, the partitions $\{[1,3][2,5,4]\}$ and $\{[1,3][2,4,5]\}$ are distinct but $\{[3,1],[5,4,2]\}$ is the same as the first partition.
We leave it to you to show that:
(1)

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=(n-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

(2) Let $x^{\bar{n}}=x(x+1) \ldots(x+n-1)$
(3) $x^{\bar{n}}=\sum_{k=0}^{n} x^{k}$
(4)

$$
\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]=n!
$$

