Discrete Mathematics

Moshe Rosenfeld

Hanoi 2011
moishe@u.washington.edu

Name:

1 Assignment - 10

Due: Tuesday Nov. 29

2 SAGE-Number Theory

This assignment will prepare us for our next topic: Applications of modual arithmetic. We expect you to be familoar with the following terms:

1. Finite fields $G F(q)$
2. Primitive elements in $G F(q)$
3. Square roots in $G F(q)$
4. $a \bmod b$
5. $\operatorname{gcd}(a, b)=m \cdot a+n \cdot b$ (extended gcd)
6. $a^{-1} \bmod b$
7. Euler's totiend $\phi(n)$.
8. Chinese remainder theorem.
9. Fermat's little theorem $a^{p-1} \bmod p=1$.

SAGE exercises

1. Let n be a ten-digit integer (pick your phone number). m a second ten-digit number.
2. Can you find integers a, b such that $a \cdot n+b \cdot m=1000$.
3. How many times the digit 0 appears in $n!$?
4. How many digits does n^{m} have?
5. Let p be the smallest prime $\geq n \cdot m$, find it.
6. Can you find an integer k such that $k^{2} \bmod p=n$?
7. Factor $(m n)^{2}+1$.
8. Calculate $m^{n} \bmod p$.

2.1 Explorations

1. How many consecutive integers of the form $a^{2}+6 \cdot b^{2}, a, b>0$ can you find? Can you formulate a conjcture based on your exploraion?
2. 11 is a prime number. Find other integers of the form $11 \ldots 1$ that are prime. Can you form a conjecture, theorem based on your experiment?
