Discrete Mathematics

Moshe Rosenfeld

Hanoi 2011 moishe@u.washington.edu

Name:

1 Assignment - 10

Due: Tuesday Nov. 29

2 SAGE-Number Theory

This assignment will prepare us for our next topic: Applications of modual arithmetic. We expect you to be familoar with the following terms:

- **1. Finite fields** GF(q)
- **2.** Primitive elements in GF(q)
- **3.** Square roots in GF(q)
- **4.** $a \mod b$
- 5. $gcd(a,b) = m \cdot a + n \cdot b$ (extended gcd)
- **6.** $a^{-1} \mod b$
- 7. Euler's totiend $\phi(n)$.
- 8. Chinese remainder theorem.
- 9. Fermat's little theorem $a^{p-1} \mod p = 1$.

SAGE exercises

1. Let n be a ten-digit integer (pick your phone number). m a second ten-digit number.

- 2. Can you find integers a, b such that $a \cdot n + b \cdot m = 1000$.
- 3. How many times the digit 0 appears in n!?
- 4. How many digits does n^m have?
- 5. Let p be the smallest prime $\geq n \cdot m$, find it.
- 6. Can you find an integer k such that $k^2 \mod p = n$?
- 7. Factor $(mn)^2 + 1$.
- 8. Calculate $m^n \mod p$.

2.1 Explorations

- 1. How many consecutive integers of the form $a^2 + 6 \cdot b^2$, a, b > 0 can you find? Can you formulate a conjcture based on your exploration?
- 2. 11 is a prime number. Find other integers of the form 11...1 that are prime. Can you form a conjecture, theorem based on your experiment?