Discrete Optimization

Moshe Rosenfeld

Hanoi 2011 moishe@u.washington.edu

Name:

1 Assignment-6

Due: Thursday Oct. 27

Please submit your answer in a neat, readable properly organized format.

In general, a * in exercises indicates a more challenging problem, ** a highly challenging problem.

- 1. Search the internet and find an application that uses an SDR.
- 2. Express the following matrix as a linear combination of permutation matrices:

1	3	6	0	1	
	1	3	1	5	
	2	0	4	4	
ĺ	4	1	5	0	Ϊ

- 3. Construct a cubic graph which does not have a perfect matching.
- 4. Let A_1, A_2, \ldots, A_n be finite sets. Show that if:

$$\sum_{1 \le i \le j \le n} \frac{|A_i \cap A_j|}{|A_i||A_j|} < 1$$

then the sets A_1, A_2, \ldots, A_n have a system of distinct representatives.

5. Do the sets:

 $\{2,4,7\},\{1,7,3\},\{2,4,7,3\},\{3,5,1\},\{3,6,2,4\},\{1,2,3,4\},\{5,2,4,7\}$

have an SDR (set of ditinct representatives)?

6. If there is a matching M_1 that saturates a set A_1 of vertices and a matching M_2 that saturates another set of vertices A_2 then there is a matching M_3 that saturates $A_1 \cup a_2$ where $a_2 \in A_2$.