Discrete Optimization

Moshe Rosenfeld

Hanoi 2011
moishe@u.washington.edu

Name:

1 Assignment-6

Due: Thursday Oct. 27

Please submit your answer in a neat, readable properly organized format.

In general, a^{*} in exercises indicates a more challenging problem, ** a highly challenging problem.

1. Search the internet and find an application that uses an SDR.
2. Express the following matrix as a linear combination of permutation matrices:

$$
\left(\begin{array}{llll}
3 & 6 & 0 & 1 \\
1 & 3 & 1 & 5 \\
2 & 0 & 4 & 4 \\
4 & 1 & 5 & 0
\end{array}\right)
$$

3. Construct a cubic graph which does not have a perfect matching.
4. Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Show that if:

$$
\sum_{1 \leq i<j \leq n} \frac{\left|A_{i} \cap A_{j}\right|}{\left|A_{i}\right|\left|A_{j}\right|}<1
$$

then the sets $A_{1}, A_{2}, \ldots, A_{n}$ have a system of distinct representatives.
5. Do the sets:

$$
\{2,4,7\},\{1,7,3\},\{2,4,7,3\},\{3,5,1\},\{3,6,2,4\},\{1,2,3,4\},\{5,2,4,7\}
$$

have an SDR (set of ditinct representatives)?
6. If there is a matching M_{1} that saturates a set A_{1} of vertices and a matching M_{2} that saturates another set of vertices A_{2} then there is a matching M_{3} that saturates $A_{1} \cup a_{2}$ where $a_{2} \in A_{2}$.

