Discrete Optimization

Graphs

Ngay 20 thang 7 nam 2011

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Letd(vq),d(v2),...,d(vn) be the degree sequence of the
vertices of the graph G(V, E). Then Y"1, d(v;) = 2|E]|.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Letd(vq),d(v2),...,d(vn) be the degree sequence of the
vertices of the graph G(V, E). Then Y"1, d(v;) = 2|E]|.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Letd(vq),d(v2),...,d(vn) be the degree sequence of the
vertices of the graph G(V, E). Then Y"1, d(v;) = 2|E]|.

@ Ifdg(v) > 2Vv e V(G) then G contains cycles.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Letd(vq),d(v2),...,d(vn) be the degree sequence of the
vertices of the graph G(V, E). Then Y"1, d(v;) = 2|E]|.

@ Ifdg(v) > 2Vv e V(G) then G contains cycles.

Corolary (6-2)
A tree has vertices of degree 1. Such vertices are called leaves.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Letd(vq),d(v2),...,d(vn) be the degree sequence of the
vertices of the graph G(V, E). Then Y"1, d(v;) = 2|E]|.

@ Ifdg(v) > 2Vv e V(G) then G contains cycles.

Corolary (6-2)
A tree has vertices of degree 1. Such vertices are called leaves.

@ If G is a connected graph and dg(v;) = 1 then G\ {v;}
remains connected.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Letd(vq),d(v2),...,d(vn) be the degree sequence of the
vertices of the graph G(V, E). Then Y"1, d(v;) = 2|E]|.

@ Ifdg(v) > 2Vv e V(G) then G contains cycles.

Corolary (6-2)
A tree has vertices of degree 1. Such vertices are called leaves.

@ If G is a connected graph and dg(v;) = 1 then G\ {v;}
remains connected.

@ IfCxisacyclein G ande € E(G)n C then G\ {e}
remains connected.

Discrete Optimization Graphs

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

@ Adjacency Matrix (smetimes called incidence matrix)

Discrete Optimization Graphs

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

@ Adjacency Matrix (smetimes called incidence matrix)
@ Adjacency list

Discrete Optimization Graphs

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

@ Adjacency Matrix (smetimes called incidence matrix)
@ Adjacency list

(The adjacency matrix)

Let G(V, E) be a labeled graph of order n. The adjacency
matrix of G denoted by A(G) is the n x n matrix defined by:

ay={§ Fiziori) ¢EO)
YT () € EG)

Discrete Optimization Graphs

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

@ Adjacency Matrix (smetimes called incidence matrix)
@ Adjacency list

(The adjacency matrix)

Let G(V, E) be a labeled graph of order n. The adjacency
matrix of G denoted by A(G) is the n x n matrix defined by:

ay={§ Fiziori) ¢EO)
YT () € EG)

This representation can also be used for digraphs or weighted
graphs. For a simple graph, the matrix is symmetric. In weighted
graphs 1's will be replaced by the weight of the edge (i,).

”
Discrete Optimization Graphs

a digraph

o
=
©
-
c
(<))
N
(<))
L.
Q.
(<))
-

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:

A simple graph of order 20

L
Q.
(1]
S

=

©
(1]
—

n O O OO T T O~ 00O

O e co—mo——9OO0—~0—~00O0O

U= c—~o—~0coo—~0cOo " T T OO OoO0O —

-—nlﬂ- co~o 0000 T~ "0 =0 —~ ——

— S —=O == === com o~ —O0 ——O —

c cooc—mo—mco 000 —~0—~00 —~O

Q ————o 0O~ T OO0~~~ — m

s ——o—~cOo—~o—~oO0O0—~000O0OO ﬂ

m coo—~0coococoo0 "~ —O —~—— m

o e O~ O~~~ OO~ —O rm

(<) co~——0 0 —~—0 "9~ —~O O — — — =)

juy = e cCoo " T "o~ —O — _m.
e —r OO0 00O~ m
—o o~ =m0~ O~~~ — .W.b
ettt Ot OO~ OO ——— O — =
—cococo —~———~— —om—moo——m—o <
—_—O OO~~~ SCooc oo OoO—~—00
coccocccco—~o—C00000O —~
co—~coo—~o~—~—ToOo0O0 —~00O
oo~ mo— 00 ~000O0O
S LA AR N LRSS A AT B0 R

Adcacency matrix representation of a graph

0: 0 80 0 0 0 0 0 70 0 47 78 95 0 0 0 0 0 0 34 0 94 24
1: 80 0 28 69 96 22 31 0 78 52 0 0 0 0 0 0 73 0 96 43 70 75
2: 0 28 0 46 58 0 0 0 57 0 0 91 0 13 26 0 0 89 61 0 0 0
3: 0 69 46 0 0 0 0 0 0 33 0 0 0 98 0 0 0 71 0 67 88 98
4: 0 96 58 0 0 0 11 12 0 69 0 0 80 82 0 0 86 0 0 0 0 99
5: 0 22 0 0 0 0 0 0 0 22 0 79 0 0 0 0 0 50 0 36 57 0
6: 0 31 0 0 11 0 0 0 0 98 0 0 17 0 0 50 0 74 0 11 97 0
7: 70 0 0 0 12 0 0 0 0 31 0 0 50 0 43 20 91 0 31 0 0 0
8: 0 78 57 0 0 0 0 0 0 0 0 51 0 63 70 10 86 0 0 0 0 10
9: 47 52 0 33 69 22 98 31 0 0 68 79 0 0 0 91 0 0 40 53 0 0
10: 78 0 0 0 0 0 0 0 0 68 0 0 0 0 56 0 78 0 0 0 0 36
11: 95 0 91 0 0 79 0 0 51 79 0 0 67 0 0 o 77 0 52 88 11 0
12: 0 0 0 0 80 0 17 50 0 0 0 67 0 0 0 97 0 47 0 0 0 0
13: 0 0 13 98 82 0 0 0 63 0 0 0 0 0 0 73 0 0 0 76 94 0
14: 0 0 26 0 0 0 0 43 70 0 56 0 0 0 0 0 77 18 23 0 0 0
15: 0 0 0 0 0 0 50 20 10 91 0 0 97 73 0 0 0 0 0 37 0 0
16: 0 73 0 0 86 0 0 91 86 o 78 77 0 o 77 0 0 0 0 0 0 21
17: 0 0 89 71 0 50 74 0 0 0 0 0 47 0 18 0 0 0 0 0 0 0
18: 34 96 61 0 0 0 0 31 0 40 0 52 0 0 23 0 0 0 0 0 0 0
19: 0 43 0 67 0 36 11 0 0 53 0 88 0 76 0 37 0 0 0 0 0 0
20: 94 70 0 88 0 57 97 0 0 0 0 11 0 94 0 0 0 0 0 0 0 0
21 24 75 0 98 99 0 0 0 10 0 36 0 0 0 0 0 21 0 0 0 0 0

A weighted graph of order 22

screte Optimization Graphs

The adjacency list

As the name suggests, it is a list of neighbors of every vertex.
The following example should make it clear:

0:7,3 15 1:2, 13, 14

2:1,10, 13 3:7,0, 15

4:8,9, 12, 14 5:8,9 11,13

6:8, 10, 11, 13 7:0,3,11, 8

8:4,5,6,7 9:4,5,10

10:2, 6, 9 11:5,6,7, 12

12:4, 11 13:1,2,5,6

14:1,4, 15 15: 14,4, 3

A labeled graph of order 16

Graph Traversals

Discrete Optimization Graphs

Graph Traversals

@ What is the distance from vertex i to vertex j in a graph G?

Discrete Optimization Graphs

Graph Traversals

@ What is the distance from vertex i to vertex j in a graph G?

@ /s the graph connected?

Discrete Optimization Graphs

Graph Traversals

@ What is the distance from vertex i to vertex j in a graph G?

@ /s the graph connected?
@ Does it have a cut-vertex?

Discrete Optimization Graphs

Graph Traversals

@ What is the distance from vertex i to vertex j in a graph G?

@ /s the graph connected?
@ Does it have a cut-vertex?

These are some common questions in many applications. |

Discrete Optimization Graphs

Graph Traversals

@ What is the distance from vertex i to vertex j in a graph G?

@ /s the graph connected?
@ Does it have a cut-vertex?

These are some common questions in many applications. J
Graph traversals are tools that will help us answer these and
many other questions.

There are two fundamental graph traversals:

Discrete Optimization Graphs

Graph Traversals

@ What is the distance from vertex i to vertex j in a graph G?

@ /s the graph connected?
@ Does it have a cut-vertex?

These are some common questions in many applications. J
Graph traversals are tools that will help us answer these and
many other questions.

There are two fundamental graph traversals:
@ BFS breadth-first-search.

Discrete Optimization Graphs

Graph Traversals

@ What is the distance from vertex i to vertex j in a graph G?

@ /s the graph connected?
@ Does it have a cut-vertex?

These are some common questions in many applications. J
Graph traversals are tools that will help us answer these and
many other questions.

There are two fundamental graph traversals:
@ BFS breadth-first-search.
@ DFS depth-first-search.

Discrete Optimization Graphs

Graph Traversals

@ What is the distance from vertex i to vertex j in a graph G?

@ /s the graph connected?
@ Does it have a cut-vertex?

These are some common questions in many applications. J
Graph traversals are tools that will help us answer these and
many other questions.

There are two fundamental graph traversals:
@ BFS breadth-first-search.
@ DFS depth-first-search.

Both turn out to be useful in many applications. |

Discrete Optimization Graphs

BFS of a connected graph G starts with a vertex v € V(G) and
produces a spanning tree T such that a shortest path from
v — win Gis the path fromv — win T.

(BFS Algorithm)

Discrete Optimization Graphs

BFS of a connected graph G starts with a vertex v € V(G) and
produces a spanning tree T such that a shortest path from
v — win Gis the path fromv — win T.

(BFS Algorithm)

@ Start with an empty tree T.

Discrete Optimization Graphs

BFS of a connected graph G starts with a vertex v € V(G) and
produces a spanning tree T such that a shortest path from
v — win Gis the path fromv — win T.

(BFS Algorithm)

@ Start with an empty tree T.
@ AddvioT.

Discrete Optimization Graphs

BFS of a connected graph G starts with a vertex v € V(G) and
produces a spanning tree T such that a shortest path from
v — win Gis the path fromv — win T.

(BFS Algorithm)

@ Start with an empty tree T.
@ AddvioT.

@ Scan and add all vertices vy, . . ., V4, that are connected
by an edge in G to v and all these edges. Delete v from G.

Discrete Optimization Graphs

BFS of a connected graph G starts with a vertex v € V(G) and
produces a spanning tree T such that a shortest path from
v — win Gis the path fromv — win T.

(BFS Algorithm)

@ Start with an empty tree T.
@ AddvioT.

@ Scan and add all vertices vy, . . ., V4, that are connected
by an edge in G to v and all these edges. Delete v from G.

@ For each vertex v; of T add all neighbors of v; that are not
yetin T and the edges connecting them to v; and remove
v; from G.

Discrete Optimization Graphs

BFS of a connected graph G starts with a vertex v € V(G) and
produces a spanning tree T such that a shortest path from
v — win Gis the path fromv — win T.

(BFS Algorithm)

@ Start with an empty tree T.
@ AddvioT.

@ Scan and add all vertices vy, . . ., V4, that are connected
by an edge in G to v and all these edges. Delete v from G.

@ For each vertex v; of T add all neighbors of v; that are not
yetin T and the edges connecting them to v; and remove
v; from G.

@ Stop when G is empty.

Discrete Optimization Graphs

BFS can be used to detect whether G is connected. It can also
be applied to Digraphs.

Discrete Optimization Graphs

Comment

BFS can be used to detect whether G is connected. It can also
be applied to Digraphs.

Recall: a knight’'s move on a chess board is one square in one
direction (horizontal or vertical) followed by two squares in the
perpendicular direction.

In the following 8 x 8 chessboard some of the squares are
white and some are black. Two squares are marked by S and F
Your goal is to find the smallest number of knight moves starting
ats and ending at F . A knight is not allowed to use a black box.

Discrete Optimization Graphs

Comment

BFS can be used to detect whether G is connected. It can also
be applied to Digraphs.

Recall: a knight’'s move on a chess board is one square in one
direction (horizontal or vertical) followed by two squares in the
perpendicular direction.

In the following 8 x 8 chessboard some of the squares are
white and some are black. Two squares are marked by S and F
Your goal is to find the smallest number of knight moves starting
ats and ending at F . A knight is not allowed to use a black box.

How would you solve this puzzle?

Discrete Optimization Graphs

Example: knigths move on a chessboard.

The graph will be built conceptually. We can actually build the
BFS tree on the chessboard.

Discrete Optimization Graphs

Example: knigths move on a chessboard.

The graph will be built conceptually. We can actually build the
BFS tree on the chessboard.

A CIDIE|F|G|H

B
H N |
|

H N F| a

DO N[O O K| WIN =

Bang: The knights shortest path

Discrete Optimization Graphs

