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Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Let d(v1),d(v2), . . . ,d(vn) be the degree sequence of the
vertices of the graph G(V ,E). Then

∑n
i=1 d(vi) = 2|E |.

Observation

If dG(v) ≥ 2 ∀v ∈ V (G) then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

If G is a connected graph and dG(vi) = 1 then G \ {vi}
remains connected.
If Ck is a cycle in G and e ∈ E(G) ∩ Ck then G \ {e}
remains connected.
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Mathematical representation of graphs

Two structures are commonly used to represent graphs:

Adjacency Matrix (smetimes called incidence matrix)

Adjacency list

(The adjacency matrix)

Let G(V ,E) be a labeled graph of order n. The adjacency
matrix of G denoted by A(G) is the n × n matrix defined by:

Ai,j =

{
0 if i = j or (i , j) 6∈ E(G)
1 if (i , j) ∈ E(G)

Comment
This representation can also be used for digraphs or weighted
graphs. For a simple graph, the matrix is symmetric. In weighted
graphs 1′s will be replaced by the weight of the edge (i , j).
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Adcacency matrix representation of a digraph

 0:   0   0   1   1   1   1   0   1   1   1   0   1   0   1   0   1   0   0   0   1
 1:   0   0   1   1   0   0   1   0   0   0   1   0   1   0   1   1   0   1   0   0
 2:   1   1   0   0   0   1   0   0   0   1   1   0   1   1   0   0   1   1   0   1
 3:   1   1   0   0   1   0   1   1   0   1   0   0   0   1   0   1   0   1   0   1
 4:   1   0   0   1   0   1   0   0   0   0   1   0   0   0   0   1   1   1   0   0
 5:   1   0   1   0   1   0   0   1   0   0   0   1   1   0   1   1   0   0   1   0
 6:   0   1   0   1   0   0   0   1   0   1   1   0   0   1   1   1   0   0   0   1
 7:   1   0   0   1   0   1   1   0   1   1   0   0   1   0   0   0   0   0   0   0
 8:   1   0   0   0   0   0   0   1   0   0   0   1   1   0   0   0   1   0   0   1
 9:   1   0   1   1   0   0   1   1   0   0   1   0   1   0   0   1   0   0   1   1
10:   0   1   1   0   1   0   1   0   0   1   0   0   0   1   1   0   1   0   0   0
11:   1   0   0   0   0   1   0   0   1   0   0   0   1   0   1   0   1   1   1   0
12:   0   1   1   0   0   1   0   1   1   1   0   1   0   0   1   0   1   0   1   0
13:   1   0   1   1   0   0   1   0   0   0   1   0   0   0   0   0   1   0   0   1
14:   0   1   0   0   0   1   1   0   0   0   1   1   1   0   0   1   1   1   1   0
15:   1   1   0   1   1   1   1   0   0   1   0   0   0   0   1   0   0   1   0   0
16:   0   0   1   0   1   0   0   0   1   0   1   1   1   1   1   0   0   0   0   1
17:   0   1   1   1   1   0   0   0   0   0   0   1   0   0   1   1   0   0   0   1
18:   0   0   0   0   0   1   0   0   0   1   0   1   1   0   1   0   0   0   0   0
19:   1   0   1   1   0   0   1   0   1   1   0   0   0   1   0   0   1   1   0   0

A simple graph of order 20
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Adcacency matrix representation of a digraph

 0:   0   0   0   1   1   1   1   1   1   0   1   0   1   1   0   0   0   0   1   1
 1:   1   0   0   1   0   0   0   0   1   0   1   0   1   1   0   1   0   1   1   0
 2:   0   1   0   0   0   1   1   1   1   1   1   0   0   1   0   0   1   0   1   1
 3:   0   0   0   0   0   1   0   0   1   1   1   1   1   1   1   1   0   1   1   1
 4:   0   0   0   0   0   1   1   1   1   1   0   0   0   0   0   1   1   0   1   1
 5:   0   0   0   1   1   0   0   0   1   0   1   0   0   1   1   1   1   0   0   0
 6:   1   1   0   1   1   1   0   0   1   0   0   0   1   0   0   1   0   0   0   1
 7:   0   0   0   1   1   1   0   0   0   1   1   0   0   0   0   1   0   1   1   1
 8:   1   1   1   1   1   1   1   1   0   1   0   0   1   0   1   0   0   0   0   0
 9:   0   1   0   1   1   0   1   0   0   0   0   0   0   1   1   0   0   0   1   0
10:   1   1   0   0   1   0   0   1   1   1   0   1   0   1   0   1   1   1   1   0
11:   0   1   1   0   0   0   0   1   1   0   1   0   0   1   0   1   0   1   0   1
12:   0   0   0   0   1   1   0   0   0   1   0   0   0   0   0   0   1   1   0   1
13:   0   0   0   0   1   0   0   1   1   1   1   1   1   0   1   1   1   0   1   1
14:   1   0   0   0   0   0   1   0   0   1   1   1   0   0   0   1   0   0   0   0
15:   0   0   0   0   0   1   0   0   0   0   0   1   0   1   1   0   1   0   1   1
16:   0   1   0   1   1   1   1   0   1   0   0   0   0   0   0   1   0   0   0   1
17:   0   0   0   1   1   1   1   0   1   1   1   1   0   1   0   1   1   0   0   0
18:   0   0   0   0   1   0   1   0   0   1   1   1   0   1   1   0   1   0   0   0
19:   0   0   1   0   0   1   1   1   1   1   0   1   0   1   0   1   1   1   0   0

     A digraph of order 20
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Adcacency matrix representation of a graph

0:   0  80   0   0   0   0   0  70   0  47  78  95   0   0   0   0   0   0  34   0  94  24
 1:  80   0  28  69  96  22  31   0  78  52   0   0   0   0   0   0  73   0  96  43  70  75
 2:   0  28   0  46  58   0   0   0  57   0   0  91   0  13  26   0   0  89  61   0   0   0
 3:   0  69  46   0   0   0   0   0   0  33   0   0   0  98   0   0   0  71   0  67  88  98
 4:   0  96  58   0   0   0  11  12   0  69   0   0  80  82   0   0  86   0   0   0   0  99
 5:   0  22   0   0   0   0   0   0   0  22   0  79   0   0   0   0   0  50   0  36  57   0
 6:   0  31   0   0  11   0   0   0   0  98   0   0  17   0   0  50   0  74   0  11  97   0
 7:  70   0   0   0  12   0   0   0   0  31   0   0  50   0  43  20  91   0  31   0   0   0
 8:   0  78  57   0   0   0   0   0   0   0   0  51   0  63  70  10  86   0   0   0   0  10
 9:  47  52   0  33  69  22  98  31   0   0  68  79   0   0   0  91   0   0  40  53   0   0
10:  78   0   0   0   0   0   0   0   0  68   0   0   0   0  56   0  78   0   0   0   0  36
11:  95   0  91   0   0  79   0   0  51  79   0   0  67   0   0   0  77   0  52  88  11   0
12:   0   0   0   0  80   0  17  50   0   0   0  67   0   0   0  97   0  47   0   0   0   0
13:   0   0  13  98  82   0   0   0  63   0   0   0   0   0   0  73   0   0   0  76  94   0
14:   0   0  26   0   0   0   0  43  70   0  56   0   0   0   0   0  77  18  23   0   0   0
15:   0   0   0   0   0   0  50  20  10  91   0   0  97  73   0   0   0   0   0  37   0   0
16:   0  73   0   0  86   0   0  91  86   0  78  77   0   0  77   0   0   0   0   0   0  21
17:   0   0  89  71   0  50  74   0   0   0   0   0  47   0  18   0   0   0   0   0   0   0
18:  34  96  61   0   0   0   0  31   0  40   0  52   0   0  23   0   0   0   0   0   0   0
19:   0  43   0  67   0  36  11   0   0  53   0  88   0  76   0  37   0   0   0   0   0   0
20:  94  70   0  88   0  57  97   0   0   0   0  11   0  94   0   0   0   0   0   0   0   0
21:  24  75   0  98  99   0   0   0  10   0  36   0   0   0   0   0  21   0   0   0   0   0

A weighted graph of order 22
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The adjacency list

.

As the name suggests, it is a list of neighbors of every vertex.
The following example should make it clear:
0: 7, 3, 15 1: 2, 13, 14
2: 1, 10, 13 3: 7, 0, 15
4: 8, 9, 12, 14 5: 8, 9, 11, 13
6: 8, 10, 11, 13 7: 0, 3, 11, 8
8: 4, 5, 6, 7 9: 4, 5, 10
10: 2, 6, 9 11: 5, 6, 7, 12
12: 4, 11 13: 1, 2, 5, 6
14: 1, 4, 15 15: 14, 4, 3

A labeled graph of order 16
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Graph Traversals

Question

What is the distance from vertex i to vertex j in a graph G?
Is the graph connected?
Does it have a cut-vertex?

These are some common questions in many applications.

Answer
Graph traversals are tools that will help us answer these and
many other questions.
There are two fundamental graph traversals:

BFS breadth-first-search.
DFS depth-first-search.

Both turn out to be useful in many applications.
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BFS

BFS of a connected graph G starts with a vertex v ∈ V (G) and
produces a spanning tree T such that a shortest path from
v → w in G is the path from v → w in T .

(BFS Algorithm)

Start with an empty tree T .
Add v to T .
Scan and add all vertices v1, . . . , vdG(v) that are connected
by an edge in G to v and all these edges. Delete v from G.
For each vertex vi of T add all neighbors of vi that are not
yet in T and the edges connecting them to vi and remove
vi from G.
Stop when G is empty.
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Example

Comment
BFS can be used to detect whether G is connected. It can also
be applied to Digraphs.

Recall: a knight’s move on a chess board is one square in one
direction (horizontal or vertical) followed by two squares in the
perpendicular direction.
In the following 8× 8 chessboard some of the squares are
white and some are black. Two squares are marked by S and F
Your goal is to find the smallest number of knight moves starting
at S and ending at F . A knight is not allowed to use a black box.

Question
How would you solve this puzzle?
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Example: knigths move on a chessboard.

Remark
The graph will be built conceptually. We can actually build the
BFS tree on the chessboard.

A B C D E F G H
1 � � S �
2 � � � �
3 � � �
4 � � �
5 � � F �
6 � �
7 � � � �
8 � �

Bảng: The knights shortest path
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