Discrete Optimization Graphs

Ngày 20 tháng 7 năm 2011

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.
Theorem (6-1)
Let $d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)$ be the degree sequence of the vertices of the graph $G(V, E)$. Then $\sum_{i=1}^{n} d\left(v_{i}\right)=2|E|$.

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.
Theorem (6-1)
Let $d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)$ be the degree sequence of the vertices of the graph $G(V, E)$. Then $\sum_{i=1}^{n} d\left(v_{i}\right)=2|E|$.

Observation

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.

Theorem (6-1)

Let $d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)$ be the degree sequence of the vertices of the graph $G(V, E)$. Then $\sum_{i=1}^{n} d\left(v_{i}\right)=2|E|$.

Observation

- If $d_{G}(v) \geq 2 \forall v \in V(G)$ then G contains cycles.

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.
Theorem (6-1)
Let $d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)$ be the degree sequence of the vertices of the graph $G(V, E)$. Then $\sum_{i=1}^{n} d\left(v_{i}\right)=2|E|$.

Observation

- If $d_{G}(v) \geq 2 \forall v \in V(G)$ then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.
Theorem (6-1)
Let $d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)$ be the degree sequence of the vertices of the graph $G(V, E)$. Then $\sum_{i=1}^{n} d\left(v_{i}\right)=2|E|$.

Observation

- If $d_{G}(v) \geq 2 \forall v \in V(G)$ then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

- If G is a connected graph and $d_{G}\left(v_{i}\right)=1$ then $G \backslash\left\{v_{i}\right\}$ remains connected.

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.
Theorem (6-1)
Let $d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)$ be the degree sequence of the vertices of the graph $G(V, E)$. Then $\sum_{i=1}^{n} d\left(v_{i}\right)=2|E|$.

Observation

- If $d_{G}(v) \geq 2 \forall v \in V(G)$ then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

- If G is a connected graph and $d_{G}\left(v_{i}\right)=1$ then $G \backslash\left\{v_{i}\right\}$ remains connected.
- If C_{k} is a cycle in G and $e \in E(G) \cap C_{k}$ then $G \backslash\{e\}$ remains connected.

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

- Adjacency Matrix (smetimes called incidence matrix)

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

- Adjacency Matrix (smetimes called incidence matrix)
- Adjacency list

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

- Adjacency Matrix (smetimes called incidence matrix)
- Adjacency list

(The adjacency matrix)

Let $G(V, E)$ be a labeled graph of order n. The adjacency matrix of G denoted by $A(G)$ is the $n \times n$ matrix defined by:

$$
A_{i, j}= \begin{cases}0 & \text { if } i=j \text { or }(i, j) \notin E(G) \\ 1 & \text { if }(i, j) \in E(G)\end{cases}
$$

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

- Adjacency Matrix (smetimes called incidence matrix)
- Adjacency list

(The adjacency matrix)

Let $G(V, E)$ be a labeled graph of order n. The adjacency matrix of G denoted by $A(G)$ is the $n \times n$ matrix defined by:

$$
A_{i, j}= \begin{cases}0 & \text { if } i=j \text { or }(i, j) \notin E(G) \\ 1 & \text { if }(i, j) \in E(G)\end{cases}
$$

Comment

This representation can also be used for digraphs or weighted graphs. For a simple graph, the matrix is symmetric. In weighted graphs 1's will be replaced by the weight of the edge (i, j).

Adcacency matrix representation of a digraph

| $0:$ | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| :---: | :--- |
| $1:$ | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| $2:$ | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| $3:$ | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 4: | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| $5:$ | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| $6:$ | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| $7:$ | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $8:$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| $9:$ | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| $10:$ | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| $11:$ | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| $12:$ | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| $13:$ | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| $14:$ | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| $15:$ | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| $16:$ | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| $17:$ | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| $18:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| $19:$ | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| |
| | | | | | \mathbf{A} | Simpl | | | | | | | | | | | | | | |

Adcacency matrix representation of a digraph

0:	0	0	0	1	1	1	1	1	1	0	1	0	1	1	0	0	0	0	1	1
1:	1	0	0	1	0	0	0	0	1	0	1	0	1	1	0	1	0	1	1	0
2:	0	1	0	0	0	1	1	1	1	1	1	0	0	1	0	0	1	0	1	1
3:	0	0	0	0	0	1	0	0	1	1	1	1	1	1	1	1	0	1	1	1
4:	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1
5:	0	0	0	1	1	0	0	0	1	0	1	0	0	1	1	1	1	0	0	0
6:	1	1	0	1	1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1
7:	0	0	0	1	1	1	0	0	0	1	1	0	0	0	0	1	0	1	1	1
8:	1	1	1	1	1	1	1	1	0	1	0	0	1	0	1	0	0	0	0	0
9:	0	1	0	1	1	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0
10:	1	1	0	0	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0
11:	0	1	1	0	0	0	0	1	1	0	1	0	0	1	0	1	0	1	0	1
12:	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	1	1	0	1
13:	0	0	0	0	1	0	0	1	1	1	1	1	1	0	1	1	1	0	1	1
14:	1	0	0	0	0	0	1	0	0	1	1	1	0	0	0	1	0	0	0	0
15:	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1	0	1	0	1	1
16:	0	1	0	1	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	1
17:	0	0	0	1	1	1	1	0	1	1	1	1	0	1	0	1	1	0	0	0
18:	0	0	0	0	1	0	1	0	0	1	1	1	0	1	1	0	1	0	0	0
19:	0	0	1	0	0	1	1	1	1	1	0	1	0	1	0	1	1	1	0	0

A digraph of order 20

Adcacency matrix representation of a graph

| $0:$ | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 70 | 0 | 47 | 78 | 95 | 0 | 0 | 0 | 0 | 0 | 0 | 34 | 0 | 94 | 24 |
| ---: |
| $1:$ | 80 | 0 | 28 | 69 | 96 | 22 | 31 | 0 | 78 | 52 | 0 | 0 | 0 | 0 | 0 | 0 | 73 | 0 | 96 | 43 | 70 | 75 |
| $2:$ | 0 | 28 | 0 | 46 | 58 | 0 | 0 | 0 | 57 | 0 | 0 | 91 | 0 | 13 | 26 | 0 | 0 | 89 | 61 | 0 | 0 | 0 |
| $3:$ | 0 | 69 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 0 | 0 | 0 | 98 | 0 | 0 | 0 | 71 | 0 | 67 | 88 | 98 |
| $4:$ | 0 | 96 | 58 | 0 | 0 | 0 | 11 | 12 | 0 | 69 | 0 | 0 | 80 | 82 | 0 | 0 | 86 | 0 | 0 | 0 | 0 | 99 |
| $5:$ | 0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 79 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 36 | 57 | 0 |
| $6:$ | 0 | 31 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 98 | 0 | 0 | 17 | 0 | 0 | 50 | 0 | 74 | 0 | 11 | 97 | 0 |
| $7:$ | 70 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 31 | 0 | 0 | 50 | 0 | 43 | 20 | 91 | 0 | 31 | 0 | 0 | 0 |
| $8:$ | 0 | 78 | 57 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51 | 0 | 63 | 70 | 10 | 86 | 0 | 0 | 0 | 0 | 10 |
| $9:$ | 47 | 52 | 0 | 33 | 69 | 22 | 98 | 31 | 0 | 0 | 68 | 79 | 0 | 0 | 0 | 91 | 0 | 0 | 40 | 53 | 0 | 0 |
| $10:$ | 78 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 68 | 0 | 0 | 0 | 0 | 56 | 0 | 78 | 0 | 0 | 0 | 0 | 36 |
| $11:$ | 95 | 0 | 91 | 0 | 0 | 79 | 0 | 0 | 51 | 79 | 0 | 0 | 67 | 0 | 0 | 0 | 77 | 0 | 52 | 88 | 11 | 0 |
| $12:$ | 0 | 0 | 0 | 0 | 80 | 0 | 17 | 50 | 0 | 0 | 0 | 67 | 0 | 0 | 0 | 97 | 0 | 47 | 0 | 0 | 0 | 0 |
| $13:$ | 0 | 0 | 13 | 98 | 82 | 0 | 0 | 0 | 63 | 0 | 0 | 0 | 0 | 0 | 0 | 73 | 0 | 0 | 0 | 76 | 94 | 0 |
| $14:$ | 0 | 0 | 26 | 0 | 0 | 0 | 0 | 43 | 70 | 0 | 56 | 0 | 0 | 0 | 0 | 0 | 77 | 18 | 23 | 0 | 0 | 0 |
| $15:$ | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 20 | 10 | 91 | 0 | 0 | 97 | 73 | 0 | 0 | 0 | 0 | 0 | 37 | 0 | 0 |
| $16:$ | 0 | 73 | 0 | 0 | 86 | 0 | 0 | 91 | 86 | 0 | 78 | 77 | 0 | 0 | 77 | 0 | 0 | 0 | 0 | 0 | 0 | 21 |
| $17:$ | 0 | 0 | 89 | 71 | 0 | 50 | 74 | 0 | 0 | 0 | 0 | 0 | 47 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $18:$ | 34 | 96 | 61 | 0 | 0 | 0 | 0 | 31 | 0 | 40 | 0 | 52 | 0 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $19:$ | 0 | 43 | 0 | 67 | 0 | 36 | 11 | 0 | 0 | 53 | 0 | 88 | 0 | 76 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 |
| $20:$ | 94 | 70 | 0 | 88 | 0 | 57 | 97 | 0 | 0 | 0 | 0 | 11 | 0 | 94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $21:$ | 24 | 75 | 0 | 98 | 99 | 0 | 0 | 0 | 10 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 21 | 0 | 0 | 0 | 0 | 0 |

A weighted graph of order 22

The adjacency list

As the name suggests, it is a list of neighbors of every vertex.
The following example should make it clear:

$0: 7,3,15$	$1: 2,13,14$
$2: 1,10,13$	$3: 7,0,15$
$4: 8,9,12,14$	$5: 8,9,11,13$
$6: 8,10,11,13$	$7: 0,3,11,8$
$8: 4,5,6,7$	$9: 4,5,10$
$10: 2,6,9$	$11: 5,6,7,12$
$12: 4,11$	$13: 1,2,5,6$
$14: 1,4,15$	$15: 14,4,3$

A labeled graph of order 16

Graph Traversals

Question

Graph Traversals

Question

- What is the distance from vertex i to vertex j in a graph G ?

Graph Traversals

Question

- What is the distance from vertex i to vertex j in a graph G ?
- Is the graph connected?

Graph Traversals

Question

- What is the distance from vertex i to vertex j in a graph G ?
- Is the graph connected?
- Does it have a cut-vertex?

Graph Traversals

Question

- What is the distance from vertex i to vertex j in a graph G ?
- Is the graph connected?
- Does it have a cut-vertex?

These are some common questions in many applications.

Graph Traversals

Question

- What is the distance from vertex i to vertex j in a graph G ?
- Is the graph connected?
- Does it have a cut-vertex?

These are some common questions in many applications.

Answer

Graph traversals are tools that will help us answer these and many other questions.
There are two fundamental graph traversals:

Graph Traversals

Question

- What is the distance from vertex i to vertex j in a graph G ?
- Is the graph connected?
- Does it have a cut-vertex?

These are some common questions in many applications.

Answer

Graph traversals are tools that will help us answer these and many other questions.

There are two fundamental graph traversals:

- BFS breadth-first-search.

Graph Traversals

Question

- What is the distance from vertex i to vertex j in a graph G ?
- Is the graph connected?
- Does it have a cut-vertex?

These are some common questions in many applications.

Answer

Graph traversals are tools that will help us answer these and many other questions.

There are two fundamental graph traversals:

- BFS breadth-first-search.
- DFS depth-first-search.

Graph Traversals

Question

- What is the distance from vertex i to vertex j in a graph G ?
- Is the graph connected?
- Does it have a cut-vertex?

These are some common questions in many applications.

Answer

Graph traversals are tools that will help us answer these and many other questions.

There are two fundamental graph traversals:

- BFS breadth-first-search.
- DFS depth-first-search.

Both turn out to be useful in many applications.

BFS of a connected graph G starts with a vertex $v \in V(G)$ and produces a spanning tree T such that a shortest path from $v \rightarrow w$ in G is the path from $v \rightarrow w$ in T.
(BFS Algorithm)

BFS of a connected graph G starts with a vertex $v \in V(G)$ and produces a spanning tree T such that a shortest path from $v \rightarrow w$ in G is the path from $v \rightarrow w$ in T.

(BFS Algorithm)

- Start with an empty tree T.

BFS of a connected graph G starts with a vertex $v \in V(G)$ and produces a spanning tree T such that a shortest path from $v \rightarrow w$ in G is the path from $v \rightarrow w$ in T.

(BFS Algorithm)

- Start with an empty tree T.
- Add v to T.

BFS of a connected graph G starts with a vertex $v \in V(G)$ and produces a spanning tree T such that a shortest path from $v \rightarrow w$ in G is the path from $v \rightarrow w$ in T.

(BFS Algorithm)

- Start with an empty tree T.
- Add v to T.
- Scan and add all vertices $v_{1}, \ldots, v_{d_{G}(v)}$ that are connected by an edge in G to v and all these edges. Delete v from G.

BFS of a connected graph G starts with a vertex $v \in V(G)$ and produces a spanning tree T such that a shortest path from $v \rightarrow w$ in G is the path from $v \rightarrow w$ in T.

(BFS Algorithm)

- Start with an empty tree T.
- Add v to T.
- Scan and add all vertices $v_{1}, \ldots, v_{d_{G}(v)}$ that are connected by an edge in G to v and all these edges. Delete v from G.
- For each vertex v_{i} of T add all neighbors of v_{i} that are not yet in T and the edges connecting them to v_{i} and remove v_{i} from G.

BFS of a connected graph G starts with a vertex $v \in V(G)$ and produces a spanning tree T such that a shortest path from $v \rightarrow w$ in G is the path from $v \rightarrow w$ in T.

(BFS Algorithm)

- Start with an empty tree T.
- Add v to T.
- Scan and add all vertices $v_{1}, \ldots, v_{d_{G}(v)}$ that are connected by an edge in G to v and all these edges. Delete v from G.
- For each vertex v_{i} of T add all neighbors of v_{i} that are not yet in T and the edges connecting them to v_{i} and remove v_{i} from G.
- Stop when G is empty.

Example

Comment

$B F S$ can be used to detect whether G is connected. It can also be applied to Digraphs.

Example

Comment

BFS can be used to detect whether G is connected. It can also be applied to Digraphs.

Recall: a knight's move on a chess board is one square in one direction (horizontal or vertical) followed by two squares in the perpendicular direction.
In the following 8×8 chessboard some of the squares are white and some are black. Two squares are marked by S and F Your goal is to find the smallest number of knight moves starting at S and ending at F . A knight is not allowed to use a black box.

Example

Comment

BFS can be used to detect whether G is connected. It can also be applied to Digraphs.

Recall: a knight's move on a chess board is one square in one direction (horizontal or vertical) followed by two squares in the perpendicular direction.
In the following 8×8 chessboard some of the squares are white and some are black. Two squares are marked by S and F Your goal is to find the smallest number of knight moves starting at S and ending at F . A knight is not allowed to use a black box.

Question

How would you solve this puzzle?

Example: knigths move on a chessboard.

Remark
The graph will be built conceptually. We can actually build the BFS tree on the chessboard.

Example: knigths move on a chessboard.

Remark

The graph will be built conceptually. We can actually build the BFS tree on the chessboard.

	A	B	C	D	E	F	G	H
1		\square	\square			S	\square	
2	\square	\square		\square	\square			
3			\square			\square	\square	
4				\square	\square	\square		
5		\square	\square				F	\square
6			\square			\square		
7	\square	\square					\square	\square
8	\square	\square						

Bảng: The knights shortest path

