
Discrete Optimization
Graphs

Ngày 20 tháng 7 năm 2011

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Let d(v1),d(v2), . . . ,d(vn) be the degree sequence of the
vertices of the graph G(V ,E). Then

∑n
i=1 d(vi) = 2|E |.

Observation

If dG(v) ≥ 2 ∀v ∈ V (G) then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

If G is a connected graph and dG(vi) = 1 then G \ {vi}
remains connected.
If Ck is a cycle in G and e ∈ E(G) ∩ Ck then G \ {e}
remains connected.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Let d(v1),d(v2), . . . ,d(vn) be the degree sequence of the
vertices of the graph G(V ,E). Then

∑n
i=1 d(vi) = 2|E |.

Observation

If dG(v) ≥ 2 ∀v ∈ V (G) then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

If G is a connected graph and dG(vi) = 1 then G \ {vi}
remains connected.
If Ck is a cycle in G and e ∈ E(G) ∩ Ck then G \ {e}
remains connected.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Let d(v1),d(v2), . . . ,d(vn) be the degree sequence of the
vertices of the graph G(V ,E). Then

∑n
i=1 d(vi) = 2|E |.

Observation

If dG(v) ≥ 2 ∀v ∈ V (G) then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

If G is a connected graph and dG(vi) = 1 then G \ {vi}
remains connected.
If Ck is a cycle in G and e ∈ E(G) ∩ Ck then G \ {e}
remains connected.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Let d(v1),d(v2), . . . ,d(vn) be the degree sequence of the
vertices of the graph G(V ,E). Then

∑n
i=1 d(vi) = 2|E |.

Observation
If dG(v) ≥ 2 ∀v ∈ V (G) then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

If G is a connected graph and dG(vi) = 1 then G \ {vi}
remains connected.
If Ck is a cycle in G and e ∈ E(G) ∩ Ck then G \ {e}
remains connected.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Let d(v1),d(v2), . . . ,d(vn) be the degree sequence of the
vertices of the graph G(V ,E). Then

∑n
i=1 d(vi) = 2|E |.

Observation
If dG(v) ≥ 2 ∀v ∈ V (G) then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

If G is a connected graph and dG(vi) = 1 then G \ {vi}
remains connected.
If Ck is a cycle in G and e ∈ E(G) ∩ Ck then G \ {e}
remains connected.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Let d(v1),d(v2), . . . ,d(vn) be the degree sequence of the
vertices of the graph G(V ,E). Then

∑n
i=1 d(vi) = 2|E |.

Observation
If dG(v) ≥ 2 ∀v ∈ V (G) then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

If G is a connected graph and dG(vi) = 1 then G \ {vi}
remains connected.

If Ck is a cycle in G and e ∈ E(G) ∩ Ck then G \ {e}
remains connected.

Discrete Optimization Graphs

Lecture 6: Graphs

In this class we shall prove some simple, useful theorems about
graphs. We start with very simple obseravations.

Theorem (6-1)

Let d(v1),d(v2), . . . ,d(vn) be the degree sequence of the
vertices of the graph G(V ,E). Then

∑n
i=1 d(vi) = 2|E |.

Observation
If dG(v) ≥ 2 ∀v ∈ V (G) then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

If G is a connected graph and dG(vi) = 1 then G \ {vi}
remains connected.
If Ck is a cycle in G and e ∈ E(G) ∩ Ck then G \ {e}
remains connected.

Discrete Optimization Graphs

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

Adjacency Matrix (smetimes called incidence matrix)

Adjacency list

(The adjacency matrix)

Let G(V ,E) be a labeled graph of order n. The adjacency
matrix of G denoted by A(G) is the n × n matrix defined by:

Ai,j =

{
0 if i = j or (i , j) 6∈ E(G)
1 if (i , j) ∈ E(G)

Comment
This representation can also be used for digraphs or weighted
graphs. For a simple graph, the matrix is symmetric. In weighted
graphs 1′s will be replaced by the weight of the edge (i , j).

Discrete Optimization Graphs

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

Adjacency Matrix (smetimes called incidence matrix)
Adjacency list

(The adjacency matrix)

Let G(V ,E) be a labeled graph of order n. The adjacency
matrix of G denoted by A(G) is the n × n matrix defined by:

Ai,j =

{
0 if i = j or (i , j) 6∈ E(G)
1 if (i , j) ∈ E(G)

Comment
This representation can also be used for digraphs or weighted
graphs. For a simple graph, the matrix is symmetric. In weighted
graphs 1′s will be replaced by the weight of the edge (i , j).

Discrete Optimization Graphs

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

Adjacency Matrix (smetimes called incidence matrix)
Adjacency list

(The adjacency matrix)

Let G(V ,E) be a labeled graph of order n. The adjacency
matrix of G denoted by A(G) is the n × n matrix defined by:

Ai,j =

{
0 if i = j or (i , j) 6∈ E(G)
1 if (i , j) ∈ E(G)

Comment
This representation can also be used for digraphs or weighted
graphs. For a simple graph, the matrix is symmetric. In weighted
graphs 1′s will be replaced by the weight of the edge (i , j).

Discrete Optimization Graphs

Mathematical representation of graphs

Two structures are commonly used to represent graphs:

Adjacency Matrix (smetimes called incidence matrix)
Adjacency list

(The adjacency matrix)

Let G(V ,E) be a labeled graph of order n. The adjacency
matrix of G denoted by A(G) is the n × n matrix defined by:

Ai,j =

{
0 if i = j or (i , j) 6∈ E(G)
1 if (i , j) ∈ E(G)

Comment
This representation can also be used for digraphs or weighted
graphs. For a simple graph, the matrix is symmetric. In weighted
graphs 1′s will be replaced by the weight of the edge (i , j).

Discrete Optimization Graphs

Adcacency matrix representation of a digraph

 0: 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1
 1: 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0
 2: 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1
 3: 1 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1
 4: 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0
 5: 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0
 6: 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 1
 7: 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0
 8: 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1
 9: 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1
10: 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0
11: 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0
12: 0 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0
13: 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1
14: 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0
15: 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0
16: 0 0 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1
17: 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1
18: 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0
19: 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0

A simple graph of order 20

Discrete Optimization Graphs

Adcacency matrix representation of a digraph

 0: 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1
 1: 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0
 2: 0 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1
 3: 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1
 4: 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1
 5: 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0
 6: 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1
 7: 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 1 1
 8: 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0
 9: 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0
10: 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0
11: 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1
12: 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1
13: 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1
14: 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0
15: 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1
16: 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1
17: 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0
18: 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 0
19: 0 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0

 A digraph of order 20

Discrete Optimization Graphs

Adcacency matrix representation of a graph

0: 0 80 0 0 0 0 0 70 0 47 78 95 0 0 0 0 0 0 34 0 94 24
 1: 80 0 28 69 96 22 31 0 78 52 0 0 0 0 0 0 73 0 96 43 70 75
 2: 0 28 0 46 58 0 0 0 57 0 0 91 0 13 26 0 0 89 61 0 0 0
 3: 0 69 46 0 0 0 0 0 0 33 0 0 0 98 0 0 0 71 0 67 88 98
 4: 0 96 58 0 0 0 11 12 0 69 0 0 80 82 0 0 86 0 0 0 0 99
 5: 0 22 0 0 0 0 0 0 0 22 0 79 0 0 0 0 0 50 0 36 57 0
 6: 0 31 0 0 11 0 0 0 0 98 0 0 17 0 0 50 0 74 0 11 97 0
 7: 70 0 0 0 12 0 0 0 0 31 0 0 50 0 43 20 91 0 31 0 0 0
 8: 0 78 57 0 0 0 0 0 0 0 0 51 0 63 70 10 86 0 0 0 0 10
 9: 47 52 0 33 69 22 98 31 0 0 68 79 0 0 0 91 0 0 40 53 0 0
10: 78 0 0 0 0 0 0 0 0 68 0 0 0 0 56 0 78 0 0 0 0 36
11: 95 0 91 0 0 79 0 0 51 79 0 0 67 0 0 0 77 0 52 88 11 0
12: 0 0 0 0 80 0 17 50 0 0 0 67 0 0 0 97 0 47 0 0 0 0
13: 0 0 13 98 82 0 0 0 63 0 0 0 0 0 0 73 0 0 0 76 94 0
14: 0 0 26 0 0 0 0 43 70 0 56 0 0 0 0 0 77 18 23 0 0 0
15: 0 0 0 0 0 0 50 20 10 91 0 0 97 73 0 0 0 0 0 37 0 0
16: 0 73 0 0 86 0 0 91 86 0 78 77 0 0 77 0 0 0 0 0 0 21
17: 0 0 89 71 0 50 74 0 0 0 0 0 47 0 18 0 0 0 0 0 0 0
18: 34 96 61 0 0 0 0 31 0 40 0 52 0 0 23 0 0 0 0 0 0 0
19: 0 43 0 67 0 36 11 0 0 53 0 88 0 76 0 37 0 0 0 0 0 0
20: 94 70 0 88 0 57 97 0 0 0 0 11 0 94 0 0 0 0 0 0 0 0
21: 24 75 0 98 99 0 0 0 10 0 36 0 0 0 0 0 21 0 0 0 0 0

A weighted graph of order 22

Discrete Optimization Graphs

The adjacency list

.

As the name suggests, it is a list of neighbors of every vertex.
The following example should make it clear:
0: 7, 3, 15 1: 2, 13, 14
2: 1, 10, 13 3: 7, 0, 15
4: 8, 9, 12, 14 5: 8, 9, 11, 13
6: 8, 10, 11, 13 7: 0, 3, 11, 8
8: 4, 5, 6, 7 9: 4, 5, 10
10: 2, 6, 9 11: 5, 6, 7, 12
12: 4, 11 13: 1, 2, 5, 6
14: 1, 4, 15 15: 14, 4, 3

A labeled graph of order 16

Discrete Optimization Graphs

Graph Traversals

Question

What is the distance from vertex i to vertex j in a graph G?
Is the graph connected?
Does it have a cut-vertex?

These are some common questions in many applications.

Answer
Graph traversals are tools that will help us answer these and
many other questions.
There are two fundamental graph traversals:

BFS breadth-first-search.
DFS depth-first-search.

Both turn out to be useful in many applications.

Discrete Optimization Graphs

Graph Traversals

Question
What is the distance from vertex i to vertex j in a graph G?

Is the graph connected?
Does it have a cut-vertex?

These are some common questions in many applications.

Answer
Graph traversals are tools that will help us answer these and
many other questions.
There are two fundamental graph traversals:

BFS breadth-first-search.
DFS depth-first-search.

Both turn out to be useful in many applications.

Discrete Optimization Graphs

Graph Traversals

Question
What is the distance from vertex i to vertex j in a graph G?
Is the graph connected?

Does it have a cut-vertex?

These are some common questions in many applications.

Answer
Graph traversals are tools that will help us answer these and
many other questions.
There are two fundamental graph traversals:

BFS breadth-first-search.
DFS depth-first-search.

Both turn out to be useful in many applications.

Discrete Optimization Graphs

Graph Traversals

Question
What is the distance from vertex i to vertex j in a graph G?
Is the graph connected?
Does it have a cut-vertex?

These are some common questions in many applications.

Answer
Graph traversals are tools that will help us answer these and
many other questions.
There are two fundamental graph traversals:

BFS breadth-first-search.
DFS depth-first-search.

Both turn out to be useful in many applications.

Discrete Optimization Graphs

Graph Traversals

Question
What is the distance from vertex i to vertex j in a graph G?
Is the graph connected?
Does it have a cut-vertex?

These are some common questions in many applications.

Answer
Graph traversals are tools that will help us answer these and
many other questions.
There are two fundamental graph traversals:

BFS breadth-first-search.
DFS depth-first-search.

Both turn out to be useful in many applications.

Discrete Optimization Graphs

Graph Traversals

Question
What is the distance from vertex i to vertex j in a graph G?
Is the graph connected?
Does it have a cut-vertex?

These are some common questions in many applications.

Answer
Graph traversals are tools that will help us answer these and
many other questions.
There are two fundamental graph traversals:

BFS breadth-first-search.
DFS depth-first-search.

Both turn out to be useful in many applications.

Discrete Optimization Graphs

Graph Traversals

Question
What is the distance from vertex i to vertex j in a graph G?
Is the graph connected?
Does it have a cut-vertex?

These are some common questions in many applications.

Answer
Graph traversals are tools that will help us answer these and
many other questions.
There are two fundamental graph traversals:

BFS breadth-first-search.

DFS depth-first-search.

Both turn out to be useful in many applications.

Discrete Optimization Graphs

Graph Traversals

Question
What is the distance from vertex i to vertex j in a graph G?
Is the graph connected?
Does it have a cut-vertex?

These are some common questions in many applications.

Answer
Graph traversals are tools that will help us answer these and
many other questions.
There are two fundamental graph traversals:

BFS breadth-first-search.
DFS depth-first-search.

Both turn out to be useful in many applications.

Discrete Optimization Graphs

Graph Traversals

Question
What is the distance from vertex i to vertex j in a graph G?
Is the graph connected?
Does it have a cut-vertex?

These are some common questions in many applications.

Answer
Graph traversals are tools that will help us answer these and
many other questions.
There are two fundamental graph traversals:

BFS breadth-first-search.
DFS depth-first-search.

Both turn out to be useful in many applications.
Discrete Optimization Graphs

BFS

BFS of a connected graph G starts with a vertex v ∈ V (G) and
produces a spanning tree T such that a shortest path from
v → w in G is the path from v → w in T .

(BFS Algorithm)

Start with an empty tree T .
Add v to T .
Scan and add all vertices v1, . . . , vdG(v) that are connected
by an edge in G to v and all these edges. Delete v from G.
For each vertex vi of T add all neighbors of vi that are not
yet in T and the edges connecting them to vi and remove
vi from G.
Stop when G is empty.

Discrete Optimization Graphs

BFS

BFS of a connected graph G starts with a vertex v ∈ V (G) and
produces a spanning tree T such that a shortest path from
v → w in G is the path from v → w in T .

(BFS Algorithm)
Start with an empty tree T .

Add v to T .
Scan and add all vertices v1, . . . , vdG(v) that are connected
by an edge in G to v and all these edges. Delete v from G.
For each vertex vi of T add all neighbors of vi that are not
yet in T and the edges connecting them to vi and remove
vi from G.
Stop when G is empty.

Discrete Optimization Graphs

BFS

BFS of a connected graph G starts with a vertex v ∈ V (G) and
produces a spanning tree T such that a shortest path from
v → w in G is the path from v → w in T .

(BFS Algorithm)
Start with an empty tree T .
Add v to T .

Scan and add all vertices v1, . . . , vdG(v) that are connected
by an edge in G to v and all these edges. Delete v from G.
For each vertex vi of T add all neighbors of vi that are not
yet in T and the edges connecting them to vi and remove
vi from G.
Stop when G is empty.

Discrete Optimization Graphs

BFS

BFS of a connected graph G starts with a vertex v ∈ V (G) and
produces a spanning tree T such that a shortest path from
v → w in G is the path from v → w in T .

(BFS Algorithm)
Start with an empty tree T .
Add v to T .
Scan and add all vertices v1, . . . , vdG(v) that are connected
by an edge in G to v and all these edges. Delete v from G.

For each vertex vi of T add all neighbors of vi that are not
yet in T and the edges connecting them to vi and remove
vi from G.
Stop when G is empty.

Discrete Optimization Graphs

BFS

BFS of a connected graph G starts with a vertex v ∈ V (G) and
produces a spanning tree T such that a shortest path from
v → w in G is the path from v → w in T .

(BFS Algorithm)
Start with an empty tree T .
Add v to T .
Scan and add all vertices v1, . . . , vdG(v) that are connected
by an edge in G to v and all these edges. Delete v from G.
For each vertex vi of T add all neighbors of vi that are not
yet in T and the edges connecting them to vi and remove
vi from G.

Stop when G is empty.

Discrete Optimization Graphs

BFS

BFS of a connected graph G starts with a vertex v ∈ V (G) and
produces a spanning tree T such that a shortest path from
v → w in G is the path from v → w in T .

(BFS Algorithm)
Start with an empty tree T .
Add v to T .
Scan and add all vertices v1, . . . , vdG(v) that are connected
by an edge in G to v and all these edges. Delete v from G.
For each vertex vi of T add all neighbors of vi that are not
yet in T and the edges connecting them to vi and remove
vi from G.
Stop when G is empty.

Discrete Optimization Graphs

Example

Comment
BFS can be used to detect whether G is connected. It can also
be applied to Digraphs.

Recall: a knight’s move on a chess board is one square in one
direction (horizontal or vertical) followed by two squares in the
perpendicular direction.
In the following 8× 8 chessboard some of the squares are
white and some are black. Two squares are marked by S and F
Your goal is to find the smallest number of knight moves starting
at S and ending at F . A knight is not allowed to use a black box.

Question
How would you solve this puzzle?

Discrete Optimization Graphs

Example

Comment
BFS can be used to detect whether G is connected. It can also
be applied to Digraphs.

Recall: a knight’s move on a chess board is one square in one
direction (horizontal or vertical) followed by two squares in the
perpendicular direction.
In the following 8× 8 chessboard some of the squares are
white and some are black. Two squares are marked by S and F
Your goal is to find the smallest number of knight moves starting
at S and ending at F . A knight is not allowed to use a black box.

Question
How would you solve this puzzle?

Discrete Optimization Graphs

Example

Comment
BFS can be used to detect whether G is connected. It can also
be applied to Digraphs.

Recall: a knight’s move on a chess board is one square in one
direction (horizontal or vertical) followed by two squares in the
perpendicular direction.
In the following 8× 8 chessboard some of the squares are
white and some are black. Two squares are marked by S and F
Your goal is to find the smallest number of knight moves starting
at S and ending at F . A knight is not allowed to use a black box.

Question
How would you solve this puzzle?

Discrete Optimization Graphs

Example: knigths move on a chessboard.

Remark
The graph will be built conceptually. We can actually build the
BFS tree on the chessboard.

A B C D E F G H
1 � � S �
2 � � � �
3 � � �
4 � � �
5 � � F �
6 � �
7 � � � �
8 � �

Bảng: The knights shortest path

Discrete Optimization Graphs

Example: knigths move on a chessboard.

Remark
The graph will be built conceptually. We can actually build the
BFS tree on the chessboard.

A B C D E F G H
1 � � S �
2 � � � �
3 � � �
4 � � �
5 � � F �
6 � �
7 � � � �
8 � �

Bảng: The knights shortest path

Discrete Optimization Graphs

