Discrete Optimization Graphs

Ngày 20 tháng 7 năm 2011

Discrete Optimization Graphs

프 에 관 프 어 - - -

= 990

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.

(* E) * E)

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.

Theorem (6-1)

Let $d(v_1), d(v_2), \ldots, d(v_n)$ be the degree sequence of the vertices of the graph G(V, E). Then $\sum_{i=1}^n d(v_i) = 2|E|$.

ヘロト ヘアト ヘビト ヘビト

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.

Theorem (6-1)

Let $d(v_1), d(v_2), \ldots, d(v_n)$ be the degree sequence of the vertices of the graph G(V, E). Then $\sum_{i=1}^n d(v_i) = 2|E|$.

Observation

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.

Theorem (6-1)

Let $d(v_1), d(v_2), \ldots, d(v_n)$ be the degree sequence of the vertices of the graph G(V, E). Then $\sum_{i=1}^n d(v_i) = 2|E|$.

Observation

• If $d_G(v) \ge 2 \ \forall v \in V(G)$ then G contains cycles.

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.

Theorem (6-1)

Let $d(v_1), d(v_2), \ldots, d(v_n)$ be the degree sequence of the vertices of the graph G(V, E). Then $\sum_{i=1}^n d(v_i) = 2|E|$.

Observation

• If $d_G(v) \ge 2 \ \forall v \in V(G)$ then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.

Theorem (6-1)

Let $d(v_1), d(v_2), \ldots, d(v_n)$ be the degree sequence of the vertices of the graph G(V, E). Then $\sum_{i=1}^n d(v_i) = 2|E|$.

Observation

• If $d_G(v) \ge 2 \ \forall v \in V(G)$ then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

 If G is a connected graph and d_G(v_i) = 1 then G \ {v_i} remains connected.

In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations.

Theorem (6-1)

Let $d(v_1), d(v_2), \ldots, d(v_n)$ be the degree sequence of the vertices of the graph G(V, E). Then $\sum_{i=1}^n d(v_i) = 2|E|$.

Observation

• If $d_G(v) \ge 2 \ \forall v \in V(G)$ then G contains cycles.

Corolary (6-2)

A tree has vertices of degree 1. Such vertices are called leaves.

- If G is a connected graph and d_G(v_i) = 1 then G \ {v_i} remains connected.
- If C_k is a cycle in G and e ∈ E(G) ∩ C_k then G \ {e} remains connected.

Two structures are commonly used to represent graphs:

Adjacency Matrix (smetimes called incidence matrix)

< 注入 < 注入 -

Two structures are commonly used to represent graphs:

- Adjacency Matrix (smetimes called incidence matrix)
- Adjacency list

個 とく ヨ とく ヨ とう

3

Two structures are commonly used to represent graphs:

- Adjacency Matrix (smetimes called incidence matrix)
- Adjacency list

(The adjacency matrix)

Let G(V, E) be a labeled graph of order n. The adjacency matrix of G denoted by A(G) is the $n \times n$ matrix defined by:

$$A_{i,j} = \begin{cases} 0 & \text{if } i = j \text{ or } (i,j) \notin E(G) \\ 1 & \text{if } (i,j) \in E(G) \end{cases}$$

Two structures are commonly used to represent graphs:

- Adjacency Matrix (smetimes called incidence matrix)
- Adjacency list

(The adjacency matrix)

Let G(V, E) be a labeled graph of order n. The adjacency matrix of G denoted by A(G) is the $n \times n$ matrix defined by:

$$A_{i,j} = \begin{cases} 0 & \text{if } i = j \text{ or } (i,j) \notin E(G) \\ 1 & \text{if } (i,j) \in E(G) \end{cases}$$

Comment

This representation can also be used for digraphs or weighted graphs. For a simple graph, the matrix is symmetric. In weighted graphs 1's will be replaced by the weight of the edge (i, j).

Adcacency matrix representation of a digraph

0:	0	0	1	1	1	1	0	1	1	1	0	1	0	1	0	1	0	0	0	1
1:	0	0	1	1	0	0	1	0	0	0	1	0	1	0	1	1	0	1	0	0
2:	1	1	0	0	0	1	0	0	0	1	1	0	1	1	0	0	1	1	0	1
3:	1	1	0	0	1	0	1	1	0	1	0	0	0	1	0	1	0	1	0	1
4:	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1	1	0	0
5:	1	0	1	0	1	0	0	1	0	0	0	1	1	0	1	1	0	0	1	0
6:	0	1	0	1	0	0	0	1	0	1	1	0	0	1	1	1	0	0	0	1
7:	1	0	0	1	0	1	1	0	1	1	0	0	1	0	0	0	0	0	0	0
8:	1	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	1
9:	1	0	1	1	0	0	1	1	0	0	1	0	1	0	0	1	0	0	1	1
10:	0	1	1	0	1	0	1	0	0	1	0	0	0	1	1	0	1	0	0	0
11:	1	0	0	0	0	1	0	0	1	0	0	0	1	0	1	0	1	1	1	0
12:	0	1	1	0	0	1	0	1	1	1	0	1	0	0	1	0	1	0	1	0
13:	1	0	1	1	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	1
14:	0	1	0	0	0	1	1	0	0	0	1	1	1	0	0	1	1	1	1	0
15:	1	1	0	1	1	1	1	0	0	1	0	0	0	0	1	0	0	1	0	0
16:	0	0	1	0	1	0	0	0	1	0	1	1	1	1	1	0	0	0	0	1
17:	0	1	1	1	1	0	0	0	0	0	0	1	0	0	1	1	0	0	0	1
18:	0	0	0	0	0	1	0	0	0	1	0	1	1	0	1	0	0	0	0	0
19:	1	0	1	1	0	0	1	0	1	1	0	0	0	1	0	0	1	1	0	0

A simple graph of order 20

Discrete Optimization Graphs

回 とくきとくきとう

3

Adcacency matrix representation of a digraph

0. 1: 2: 0 3. 0 4. 5: 6. 7: 8. 9: 1011: 12: 13. 14: 15: 0 16: 17: 0 18: 0 19: 0 0 0

A digraph of order 20

Discrete Optimization Graphs

ъ

프 🖌 🛪 프 🕨

Adcacency matrix representation of a graph

0:	0	80	0	0	0	0	0	70	0	47	78	95	0	0	0	0	0	0	34	0	94	24
1:	80	0	28	69	96	22	31	0	78	52	0	0	0	0	0	0	73	0	96	43	70	75
2:	0	28	0	46	58	0	0	0	57	0	0	91	0	13	26	0	0	89	61	0	0	0
3:	0	69	46	0	0	0	0	0	0	33	0	0	0	98	0	0	0	71	0	67	88	98
4:	0	96	58	0	0	0	11	12	0	69	0	0	80	82	0	0	86	0	0	0	0	99
5:	0	22	0	0	0	0	0	0	0	22	0	79	0	0	0	0	0	50	0	36	57	0
6:	0	31	0	0	11	0	0	0	0	98	0	0	17	0	0	50	0	74	0	11	97	0
7:	70	0	0	0	12	0	0	0	0	31	0	0	50	0	43	20	91	0	31	0	0	0
8:	0	78	57	0	0	0	0	0	0	0	0	51	0	63	70	10	86	0	0	0	0	10
9:	47	52	0	33	69	22	98	31	0	0	68	79	0	0	0	91	0	0	40	53	0	0
10:	78	0	0	0	0	0	0	0	0	68	0	0	0	0	56	0	78	0	0	0	0	36
11:	95	0	91	0	0	79	0	0	51	79	0	0	67	0	0	0	77	0	52	88	11	0
12:	0	0	0	0	80	0	17	50	0	0	0	67	0	0	0	97	0	47	0	0	0	0
13:	0	0	13	98	82	0	0	0	63	0	0	0	0	0	0	73	0	0	0	76	94	0
14:	0	0	26	0	0	0	0	43	70	0	56	0	0	0	0	0	77	18	23	0	0	0
15:	0	0	0	0	0	0	50	20	10	91	0	0	97	73	0	0	0	0	0	37	0	0
16:	0	73	0	0	86	0	0	91	86	0	78	77	0	0	77	0	0	0	0	0	0	21
17:	0	0	89	71	0	50	74	0	0	0	0	0	47	0	18	0	0	0	0	0	0	0
18:	34	96	61	0	0	0	0	31	0	40	0	52	0	0	23	0	0	0	0	0	0	0
19:	0	43	0	67	0	36	11	0	0	53	0	88	0	76	0	37	0	0	0	0	0	0
20:	94	70	0	88	0	57	97	0	0	0	0	11	0	94	0	0	0	0	0	0	0	0
21:	24	75	0	98	99	0	0	0	10	0	36	0	0	0	0	0	21	0	0	0	0	0

A weighted graph of order 22

(▲ 臣 ▶ | ▲ 臣 ▶ | □ 臣

As the name suggests, it is a list of neighbors of every vertex. The following example should make it clear:

<mark>0:</mark> 7, 3, 15	<mark>1</mark> :2,13,14
<mark>2:</mark> 1, 10, 13	<mark>3:</mark> 7, 0, 15
<mark>4:</mark> 8, 9, 12, 14	<mark>5:</mark> 8, 9, 11, 13
<mark>6:</mark> 8, 10, 11, 13	<mark>7:</mark> 0, 3, 11, 8
<mark>8</mark> : 4, 5, 6, 7	<mark>9:</mark> 4, 5, 10
<mark>10:</mark> 2, 6, 9	<mark>11:</mark> 5, 6, 7, 12
<mark>12</mark> : 4, 11	<mark>13:</mark> 1, 2, 5, 6
<mark>14:</mark> 1, 4, 15	<mark>15:</mark> 14, 4, 3

A labeled graph of order 16

Discrete Optimization Graphs

Question

Discrete Optimization Graphs

ヘロト 人間 とくほとくほとう

E 990

Question

• What is the distance from vertex i to vertex j in a graph G?

ヘロン 人間 とくほ とくほ とう

= 990

Question

- What is the distance from vertex i to vertex j in a graph G?
- Is the graph connected?

<ロ> <同> <同> < 回> < 回> < 回> = 三

Question

- What is the distance from vertex i to vertex j in a graph G?
- Is the graph connected?
- Does it have a cut-vertex?

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Question

- What is the distance from vertex i to vertex j in a graph G?
- Is the graph connected?
- Does it have a cut-vertex?

These are some common questions in many applications.

・ 回 と ・ ヨ と ・ ヨ と …

Question

- What is the distance from vertex i to vertex j in a graph G?
- Is the graph connected?
- Does it have a cut-vertex?

These are some common questions in many applications.

Answer

Graph traversals are tools that will help us answer these and many other questions.

There are two fundamental graph traversals:

Question

- What is the distance from vertex i to vertex j in a graph G?
- Is the graph connected?
- Does it have a cut-vertex?

These are some common questions in many applications.

Answer

Graph traversals are tools that will help us answer these and many other questions.

There are two fundamental graph traversals:

• BFS breadth-first-search.

・ 回 ト ・ ヨ ト ・ ヨ ト

Question

- What is the distance from vertex i to vertex j in a graph G?
- Is the graph connected?
- Does it have a cut-vertex?

These are some common questions in many applications.

Answer

Graph traversals are tools that will help us answer these and many other questions.

There are two fundamental graph traversals:

- BFS breadth-first-search.
- DFS depth-first-search.

・ 回 ト ・ ヨ ト ・ ヨ ト

Question

- What is the distance from vertex i to vertex j in a graph G?
- Is the graph connected?
- Does it have a cut-vertex?

These are some common questions in many applications.

Answer

Graph traversals are tools that will help us answer these and many other questions.

There are two fundamental graph traversals:

- BFS breadth-first-search.
- DFS depth-first-search.

Both turn out to be useful in many applications.

(BFS Algorithm)

Discrete Optimization Graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

(BFS Algorithm)

• Start with an empty tree T.

(日本) (日本) (日本)

3

(BFS Algorithm)

- Start with an empty tree T.
- Add v to T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

(BFS Algorithm)

- Start with an empty tree T.
- Add v to T.
- Scan and add all vertices v₁,..., v_{d_G(v)} that are connected by an edge in G to v and all these edges. Delete v from G.

ヘロン 人間 とくほ とくほ とう

(BFS Algorithm)

- Start with an empty tree T.
- Add v to T.
- Scan and add all vertices v₁,..., v_{d_G(v)} that are connected by an edge in G to v and all these edges. Delete v from G.
- For each vertex v_i of T add all neighbors of v_i that are not yet in T and the edges connecting them to v_i and remove v_i from G.

イロト イポト イヨト イヨト 一日

(BFS Algorithm)

- Start with an empty tree T.
- Add v to T.
- Scan and add all vertices v₁,..., v_{d_G(v)} that are connected by an edge in G to v and all these edges. Delete v from G.
- For each vertex v_i of T add all neighbors of v_i that are not yet in T and the edges connecting them to v_i and remove v_i from G.
- Stop when G is empty.

イロト イポト イヨト イヨト 一日

Example

Comment

BFS can be used to detect whether G is connected. It can also be applied to Digraphs.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Comment

BFS can be used to detect whether G is connected. It can also be applied to Digraphs.

Recall: a knight's move on a chess board is one square in one direction (horizontal or vertical) followed by two squares in the perpendicular direction. In the following 8×8 chessboard some of the squares are white and some are black. Two squares are marked by *S* and *F* Your goal is to find the smallest number of knight moves starting at *S* and ending at *F*. A knight is not allowed to use a black box.

Comment

BFS can be used to detect whether G is connected. It can also be applied to Digraphs.

Recall: a knight's move on a chess board is one square in one direction (horizontal or vertical) followed by two squares in the perpendicular direction. In the following 8×8 chessboard some of the squares are white and some are black. Two squares are marked by *S* and *F* Your goal is to find the smallest number of knight moves starting at *S* and ending at *F*. A knight is not allowed to use a black box.

Question

How would you solve this puzzle?

イロト イポト イヨト イヨト

Example: knigths move on a chessboard.

Remark

The graph will be built conceptually. We can actually build the BFS tree on the chessboard.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Example: knigths move on a chessboard.

Remark

The graph will be built conceptually. We can actually build the BFS tree on the chessboard.

Bång: The knights shortest path