Discrete Optimization

Ngày 8 tháng 9 năm 2011

Lecture 3: The Assignment Problem

In this lecture we shall learn how to solve the assignment problem efficiently.

Lecture 3: The Assignment Problem

In this lecture we shall learn how to solve the assignment problem efficiently.
(The Hungarian Method)
Observations:

Lecture 3: The Assignment Problem

In this lecture we shall learn how to solve the assignment problem efficiently.
(The Hungarian Method)
Observations:

- Recall: a solution to an $n \times n$ assignment problem is an n-permutation : $\left[i_{1}, i_{2}, \ldots i_{n}\right]$

Lecture 3: The Assignment Problem

In this lecture we shall learn how to solve the assignment problem efficiently.
(The Hungarian Method)
Observations:

- Recall: a solution to an $n \times n$ assignment problem is an n-permutation : $\left[i_{1}, i_{2}, \ldots i_{n}\right]$

Lecture 3: The Assignment Problem

In this lecture we shall learn how to solve the assignment problem efficiently.
(The Hungarian Method)
Observations:

- Recall: a solution to an $n \times n$ assignment problem is an n-permutation : $\left[i_{1}, i_{2}, \ldots i_{n}\right]$

Definition

Two assignment problems of size n are equivalent if any
n - permutation which is optimal to one problem is also optimal for the other.

The Hungarian Method, preliminaries

Example

\cdot| | $C 1$ | $C 2$ | $C 3$ | $C 4$ | | | | P_{1} | P_{2} | P_{3} | P_{4} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J 1$ | 45 | 112 | 114 | 216 | | | W_{1} | 31 | 351 | 123 | 103 |
| $J 2$ | 95 | 52 | 104 | 235 | | | W_{2} | 91 | 51 | 123 | 103 |
| $J 3$ | 90 | 95 | 80 | 180 | | | W_{3} | 81 | 351 | 43 | 103 |
| $J 4$ | 95 | 133 | 141 | 75 | | | W_{4} | 99 | 351 | 123 | 103 |

The Hungarian Method, preliminaries

Example

	$C 1$	$C 2$	$C 3$	$C 4$				P_{1}	P_{2}	P_{3}	P_{4}
$J 1$	45	112	114	216		W_{1}	31	351	123	103	
$J 2$	95	52	104	235			W_{2}	91	51	123	103
$J 3$	90	95	80	180			W_{3}	81	351	43	103
$J 4$	95	133	141	75			W_{4}	99	351	123	103

The permutation $[1,2,3,4]$ is clearly the only permutation that gives an optimal solution to both problems.

The Hungarian Method, preliminaries

Example

	$C 1$	$C 2$	$C 3$	$C 4$				P_{1}	P_{2}	P_{3}	P_{4}
$J 1$	45	112	114	216		W_{1}	31	351	123	103	
$J 2$	95	52	104	235			W_{2}	91	51	123	103
$J 3$	90	95	80	180			W_{3}	81	351	43	103
$J 4$	95	133	141	75			W_{4}	99	351	123	103

The permutation $[1,2,3,4]$ is clearly the only permutation that gives an optimal solution to both problems.

Question

Can you construct an example of a pair of equivalent assignment problems that have five optimal solutions?

The Hungarian Method

(Observations)

The Hungarian Method

(Observations)

- If we reduce the cost of every bid for job number k by the same amount the new assignment problem will be equivalent to the original problem.

The Hungarian Method

(Observations)

- If we reduce the cost of every bid for job number k by the same amount the new assignment problem will be equivalent to the original problem.
- If all bids by company number j will be reduced by the same amount the new assignment problem will be equivalent to the original problem.

The Hungarian Method

(Observations)

- If we reduce the cost of every bid for job number k by the same amount the new assignment problem will be equivalent to the original problem.
- If all bids by company number j will be reduced by the same amount the new assignment problem will be equivalent to the original problem.
- If in an assignment problem all entries are non-negative and if there is an assignment whose cost is 0 then it is an optimal assignment.

The Hungarian Method

The Hungarian method constructs a sequence of equivalent assignment problems until it identifies a 0 cost assignment.

The Hungarian Method

The Hungarian method constructs a sequence of equivalent assignment problems until it identifies a 0 cost assignment.

The Hungarian Method

The Hungarian method constructs a sequence of equivalent assignment problems until it identifies a 0 cost assignment.

This raises the following questions:

The Hungarian Method

The Hungarian method constructs a sequence of equivalent assignment problems until it identifies a 0 cost assignment.

This raises the following questions:

Question
Does such an equivalent assignment problem always exist?

The Hungarian Method

The Hungarian method constructs a sequence of equivalent assignment problems until it identifies a 0 cost assignment.

This raises the following questions:

Question
Does such an equivalent assignment problem always exist?

The Hungarian Method

The Hungarian method constructs a sequence of equivalent assignment problems until it identifies a 0 cost assignment.

This raises the following questions:

Question
Does such an equivalent assignment problem always exist?
How do we identify a 0 cost assignment?

THE HUNGARIAN METHOD

Definition
 A line in an assignment problem is a column or a row.

THE HUNGARIAN METHOD

Definition
 A line in an assignment problem is a column or a row.

Definition

Two 0 entries in an assignment problem are independent if they are not on the same line.

THE HUNGARIAN METHOD

Definition
 A line in an assignment problem is a column or a row.

Definition
Two 0 entries in an assignment problem are independent if they are not on the same line.
(The Algorithm: reductions)

THE HUNGARIAN METHOD

Definition
 A line in an assignment problem is a column or a row.

Definition

Two 0 entries in an assignment problem are independent if they are not on the same line.
(The Algorithm: reductions)

- 1. Reduce every row by the smallest amount in the row.

THE HUNGARIAN METHOD

Definition
 A line in an assignment problem is a column or a row.

Definition

Two 0 entries in an assignment problem are independent if they are not on the same line.
(The Algorithm: reductions)

- 1. Reduce every row by the smallest amount in the row.
- 2. Reduce every column by the smallest amount in the column.

THE HUNGARIAN METHOD

Definition

A line in an assignment problem is a column or a row.

Definition

Two 0 entries in an assignment problem are independent if they are not on the same line.
(The Algorithm: reductions)

- 1. Reduce every row by the smallest amount in the row.
- 2. Reduce every column by the smallest amount in the column.
- 3. Find the maximum number of independent zeros. If it is n, stop. You found an optimal solution, if not get a new equivalent assignment problem and try to find a bigger independent set of zeros.

The Major Steps
Throughout this discussion n will be the number of companies and m the size of the current independent set of zeros.
(Finding a maximal set of zeros)

The Major Steps

Throughout this discussion n will be the number of companies and m the size of the current independent set of zeros.
(Finding a maximal set of zeros)
(1) A_{1} : Start by a simple greedy selection of zeros. In each row select the first independent zero.

The Major Steps

Throughout this discussion n will be the number of companies and m the size of the current independent set of zeros.
(Finding a maximal set of zeros)
(1) A_{1} : Start by a simple greedy selection of zeros. In each row select the first independent zero.
(2) A_{2} : If you found m independent zeros and $m<n$, then either augment it or find m lines that cover all zeros. See details in a coming slide.

The Major Steps

Throughout this discussion n will be the number of companies and m the size of the current independent set of zeros.
(Finding a maximal set of zeros)
(1) A_{1} : Start by a simple greedy selection of zeros. In each row select the first independent zero.
(2) A_{2} : If you found m independent zeros and $m<n$, then either augment it or find m lines that cover all zeros. See details in a coming slide.
(3) A_{3} : Find the smallest entry d in the current assignment problem which is not covered by the m lines. Note that $d>0$.

The Major Steps

Throughout this discussion n will be the number of companies and m the size of the current independent set of zeros.
(Finding a maximal set of zeros)
(1) A_{1} : Start by a simple greedy selection of zeros. In each row select the first independent zero.
(2) A_{2} : If you found m independent zeros and $m<n$, then either augment it or find m lines that cover all zeros. See details in a coming slide.
(3) A_{3} : Find the smallest entry d in the current assignment problem which is not covered by the m lines. Note that $d>0$.
(4) A_{4} : Reduce all entries in the current assignment problem by d.

The Major Steps

Throughout this discussion n will be the number of companies and m the size of the current independent set of zeros.
(Finding a maximal set of zeros)
(1) A_{1} : Start by a simple greedy selection of zeros. In each row select the first independent zero.
(2) A_{2} : If you found m independent zeros and $m<n$, then either augment it or find m lines that cover all zeros. See details in a coming slide.
(3) A_{3} : Find the smallest entry d in the current assignment problem which is not covered by the m lines. Note that $d>0$.
(4) A_{4} : Reduce all entries in the current assignment problem by d.
(5) A_{5} : Add d to every entry on the m lines.

The Major Steps

Throughout this discussion n will be the number of companies and m the size of the current independent set of zeros.
(Finding a maximal set of zeros)
(1) A_{1} : Start by a simple greedy selection of zeros. In each row select the first independent zero.
(2) A_{2} : If you found m independent zeros and $m<n$, then either augment it or find m lines that cover all zeros. See details in a coming slide.
(3) A_{3} : Find the smallest entry d in the current assignment problem which is not covered by the m lines. Note that $d>0$.
(4) A_{4} : Reduce all entries in the current assignment problem by d.
(5) A_{5} : Add d to every entry on the m lines.
(6) $A_{6}:$ Go back to step A_{1}.

Questions

Question

Questions

Question
(1) Clearly, the algorithm introduces new zeros, but also removes some (the ones on the intersection of two lines). Can this algorithm cycle forever?

Questions

Question

(1) Clearly, the algorithm introduces new zeros, but also removes some (the ones on the intersection of two lines). Can this algorithm cycle forever?
(2) Can you always find m lines that cover all zeros?

Questions

Question

(1) Clearly, the algorithm introduces new zeros, but also removes some (the ones on the intersection of two lines). Can this algorithm cycle forever?
(2) Can you always find m lines that cover all zeros?
(3) How can you find the m lines?

Questions

Question

(1) Clearly, the algorithm introduces new zeros, but also removes some (the ones on the intersection of two lines). Can this algorithm cycle forever?
(2) Can you always find m lines that cover all zeros?
(3) How can you find the m lines?

Answer

Claim: the algorithm never returns a previous assignment instance.

Questions

Question

(1) Clearly, the algorithm introduces new zeros, but also removes some (the ones on the intersection of two lines). Can this algorithm cycle forever?
(2) Can you always find m lines that cover all zeros?
(3) How can you find the m lines?

Answer

Claim: the algorithm never returns a previous assignment instance.

Questions

Question

(1) Clearly, the algorithm introduces new zeros, but also removes some (the ones on the intersection of two lines). Can this algorithm cycle forever?
(2) Can you always find m lines that cover all zeros?
(3) How can you find the m lines?

Answer

Claim: the algorithm never returns a previous assignment instance.
Proof: Let $X=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i, j}$.
The reducions will reduce X by $d \times n^{2}$. The additions will increase the current total by $m \times n \times d$. Since $m<n$ the resulting total will be $X-(n-m) n \times d<X$ hence a new equivalent instance of the previous assignment problem.

Augmenting Paths

Definition

An alternating path is a sequence $\left\{a_{r_{1} c_{1}}, a_{r_{2}} c_{2}, \ldots, a_{r_{k}} c_{k}\right\}$ of entries in the current assignment matrix such that:

Augmenting Paths

Definition

An alternating path is a sequence $\left\{a_{r_{1} c_{1}}, a_{r_{2}} c_{2}, \ldots, a_{r_{k}} c_{k}\right\}$ of entries in the current assignment matrix such that:

Augmenting Paths

Definition

An alternating path is a sequence $\left\{a_{r_{1} c_{1}}, a_{r_{2} c_{2}}, \ldots, a_{r_{k}} c_{k}\right\}$ of entries in the current assignment matrix such that: 1. $a_{r_{j} c_{j}}=0 \forall j$
2. $c_{j+1}=c_{j}$ if j is odd and $r_{j+1}=r_{j}$ if j is even.
3. if $|i-j|>1$ then $r_{i} \neq r_{j}$ and $c_{i} \neq c_{j}$.
4. The zeros on the path start with a non-selected zero and alternate between selected zeros and non-selected zeros.

Augmenting Paths

Definition

An alternating path is a sequence $\left\{a_{r_{1} c_{1}}, a_{r_{2} c_{2}}, \ldots, a_{r_{k} c_{k}}\right\}$ of entries in the current assignment matrix such that: 1. $a_{r_{j} c_{j}}=0 \forall j$
2. $c_{j+1}=c_{j}$ if j is odd and $r_{j+1}=r_{j}$ if j is even.
3. if $|i-j|>1$ then $r_{i} \neq r_{j}$ and $c_{i} \neq c_{j}$.
4. The zeros on the path start with a non-selected zero and alternate between selected zeros and non-selected zeros.

Definition
If there is no selected zero on column number c_{k} then the path is an augmenting path.

Augmenting Paths

Definition

An alternating path is a sequence $\left\{a_{r_{1} c_{1}}, a_{r_{2} c_{2}}, \ldots, a_{r_{k} c_{k}}\right\}$ of entries in the current assignment matrix such that: 1. $a_{r_{j} c_{j}}=0 \forall j$
2. $c_{j+1}=c_{j}$ if j is odd and $r_{j+1}=r_{j}$ if j is even.
3. if $|i-j|>1$ then $r_{i} \neq r_{j}$ and $c_{i} \neq c_{j}$.
4. The zeros on the path start with a non-selected zero and alternate between selected zeros and non-selected zeros.

Definition
If there is no selected zero on column number c_{k} then the path is an augmenting path.

Augmenting Paths

Definition

An alternating path is a sequence $\left\{a_{r_{1} c_{1}}, a_{r_{2} c_{2}}, \ldots, a_{r_{k}} c_{k}\right\}$ of entries in the current assignment matrix such that: 1. $a_{r_{j} c_{j}}=0 \forall j$
2. $c_{j+1}=c_{j}$ if j is odd and $r_{j+1}=r_{j}$ if j is even.
3. if $|i-j|>1$ then $r_{i} \neq r_{j}$ and $c_{i} \neq c_{j}$.
4. The zeros on the path start with a non-selected zero and alternate between selected zeros and non-selected zeros.

Definition

If there is no selected zero on column number c_{k} then the path is an augmenting path.

Note that if we find an augmenting path, we can get a larger set of independent zeros by removing the independent zeros along the augmenting path and replacing them by the other zeros.

(Augmenting paths)

1. Once we find a set of independent zeros we can try to augment it. If we fail, we will be able to find a set of lines that covers all zeros whose size is equal to the number of independent zeros (that such a set of lines exists will be proved later).

(Augmenting paths)

1. Once we find a set of independent zeros we can try to augment it. If we fail, we will be able to find a set of lines that covers all zeros whose size is equal to the number of independent zeros (that such a set of lines exists will be proved later).

(Augmenting paths)

1. Once we find a set of independent zeros we can try to augment it. If we fail, we will be able to find a set of lines that covers all zeros whose size is equal to the number of independent zeros (that such a set of lines exists will be proved later).
2. Starting with a zero on a row with no independent zero (such a zero exists as every row contains zeros and there are only $m<n$ independent zeros), we build an alternating path.

(Augmenting paths)

1. Once we find a set of independent zeros we can try to augment it. If we fail, we will be able to find a set of lines that covers all zeros whose size is equal to the number of independent zeros (that such a set of lines exists will be proved later).
2. Starting with a zero on a row with no independent zero (such a zero exists as every row contains zeros and there are only $m<n$ independent zeros), we build an alternating path.
3. If the path ends in a selected independent zero, mark the column as essential.

(Augmenting paths)

1. Once we find a set of independent zeros we can try to augment it. If we fail, we will be able to find a set of lines that covers all zeros whose size is equal to the number of independent zeros (that such a set of lines exists will be proved later).
2. Starting with a zero on a row with no independent zero (such a zero exists as every row contains zeros and there are only $m<n$ independent zeros), we build an alternating path.
3. If the path ends in a selected independent zero, mark the column as essential.
4. Continue searching for alternating paths avoiding the essential columns. If you find an augmenting path use it to get a larger set of independent zeros.

(Augmenting paths)

1. Once we find a set of independent zeros we can try to augment it. If we fail, we will be able to find a set of lines that covers all zeros whose size is equal to the number of independent zeros (that such a set of lines exists will be proved later).
2. Starting with a zero on a row with no independent zero (such a zero exists as every row contains zeros and there are only $m<n$ independent zeros), we build an alternating path.
3. If the path ends in a selected independent zero, mark the column as essential.
4. Continue searching for alternating paths avoiding the essential columns. If you find an augmenting path use it to get a larger set of independent zeros.
5. The essetial columns plus all the rows that contain zeros not on essntial columns will be a set of m lines that covers all zeros.

Summary

(Final steps)

1. When you found m lines that cover all zeros, you completed step number A_{2} of the Hungarian Method.

Summary

(Final steps)

1. When you found m lines that cover all zeros, you completed step number A_{2} of the Hungarian Method.

Summary

(Final steps)

1. When you found m lines that cover all zeros, you completed step number A_{2} of the Hungarian Method.
2. We go now to step number A_{3} and repeat until we find a 0-cost assignment.

Summary

(Final steps)

1. When you found m lines that cover all zeros, you completed step number A_{2} of the Hungarian Method.
2. We go now to step number A_{3} and repeat until we find a 0-cost assignment.

(Summary)

What remains to be done is to prove the correctness of the assertions in the algorithm.

Summary

- 1. We proved that the reductions never cycle back to a previous instance. Furthermore, every time we reach step number A_{6} the sum of all costs is reduced. This cannot go on for ever. The only reason for it to stop is when $m=n$ or we found a 0 cost assignment.

Summary

- 1. We proved that the reductions never cycle back to a previous instance. Furthermore, every time we reach step number A_{6} the sum of all costs is reduced. This cannot go on for ever. The only reason for it to stop is when $m=n$ or we found a 0 cost assignment.
- 2. We still need to prove that if m is the maximum size of an independent set then there is a set of m lines that covers all zeros.

Summary

- 1. We proved that the reductions never cycle back to a previous instance. Furthermore, every time we reach step number A_{6} the sum of all costs is reduced. This cannot go on for ever. The only reason for it to stop is when $m=n$ or we found a 0 cost assignment.
- 2. We still need to prove that if m is the maximum size of an independent set then there is a set of m lines that covers all zeros.
- 3. We need to analyze the execution time of this algorithm as a function of n.

Summary

- 1. We proved that the reductions never cycle back to a previous instance. Furthermore, every time we reach step number A_{6} the sum of all costs is reduced. This cannot go on for ever. The only reason for it to stop is when $m=n$ or we found a 0 cost assignment.
- 2. We still need to prove that if m is the maximum size of an independent set then there is a set of m lines that covers all zeros.
- 3. We need to analyze the execution time of this algorithm as a function of n.
- 4. We would like to find the appropriate mathematical tools to deal with this and similar problems.

