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Computational Complexity

A decision problem is a problem for which the answer is YES or NO
(true or false, 1 or 0 etc.).

Example

Is the graph G 3−colorable?
Is n a compound integer?
Is p a prime number?
Does the given assignment instance have an assignment whose
cost is ≤ 10,000,000,000 VND?
Does the given network have a cut of size ≤ m?
Does the graph G have a vertex cover of size k?
Does the Digraph D have a Hamiltonian cycle?
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Computing models

Our common computing, whether by a computer, calculator, cell-phone
or by hand is an execution of sequential operations. Thus to multiply
456301 ∗ 432 we will execute single digit multiplications and additions
of single digits (including carry over).

There are alternative computing models. One of them is the
Non-Deterministic computing model. In a deterministic computing
model an algorithm will execute on a given instance the same steps in
different runs. In a non-deterministic model it may execute different
steps on the same instance.

There are a few equivalent definitions of the NP (non-deterministic)
computing model. Before discussing the definition we shall examine an
example.
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A non-deterministic algorithm

Example
Suppose we wish to decide whether an integer p is prime. Here is an
“algorithm:”

Repeat 100 times:
Randomly select an integer a < p.
Calculate: b = ap−1 mod p.
If b 6= 1 STOP! p is not prime (composite).
“p is probably prime.”

1 Let p = 998667686017.
2 73998667686016 mod 998667686017 = 1.
3 739998667686016 mod 998667686017 = 1.
4 After 100 random choices a, the algorithm found

a998667686016 mod 998667686017 = 1.
5 “ 998667686017 is probably prime.”
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The class NP

In the 55th attempt of the fourth run, the algorithm calculated:
737998667686016 mod 998667686017 = 402448171978.

998667686017 is not prime.

The same algorithm executed different steps on the same input and
with different results.

Definition
A decision problem A is efficiently certifiable if for every instance of
size n one can attach a certificate and an algorithm B such that:

The size of the certificate C is polynomial in n.
The algorithm B runs in polynomial time on the combined instance
(n,C).
B returns true if and only if n is a true instance for A.
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Examples

To understand this definition we shall study some examples:
Decision problem: Input: n. Output: YES if n is composite?

Certficate: an integer k. Algorithm : gcd(n, k) > 1?.
Certficate: an integer m. Algorithm: mn−1 mod n > 1?.

Decision problem: Input: (G, k).
Output: YES, if G is 3− colorable.
Certificate: a list χ(vi) = j .
Verify: j = 1,2 or 3, (vi , vj) ∈ E(G)⇒ χ(vi) 6= χ(vj).
Decision problem: Input: a graph G.
Output: YES if G is Hamiltonian.

Certifcate: v1, v2, . . . , vn.
Verify: (vi−1, vi) ∨ (vn, v1) ∈ E(G), i = 2, . . .n.
Decision problem: Input a graph G.
Output: YES if G is Eulerian.
Verify that G is connecetd and dG(vi) ≡ 0 mod 2.
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Definition
The class of efficiently certifiable decision problems is called NP
(non-deterministic polynomial).

Definition
The class of decision problems for which there is an efficient algorithm
is denoted by P.

Comment

As clearly demosntrated by the last example, P ⊆ NP.
Notice the difference between the two certificates in the first
example:

In the first example the first certificate actually identifies a divisor of
the input n.
The second certificate does not help us find such a divisor.
But finding a certficate for the second verification is usually quite
easy allowing us to implement the function is_prime(n) in SAGE
and other mathematical packages.
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The Satifiability Problem

Another computing model (heuristic) of the NP computing is the
following example. Suppose you wish to decide whether a given
boolean function f (x1, x2, . . . , xn) in CNF is satisfiable.

You start by choosing a variable x1 and spawn two threads: in one
thread make x1 = T and mark all clauses that are satisfied by this
selection. In the second thread make x1 = F and do the same.

Each thread spawns two new threads: in one x2 = T and the other
x2 = F . Each thread marks the additional clauses that are
satisfied.
All current threads work in parallel.
After 100 assignments there will be 2100 threads.
Computation ends when a thread discovers a T assignment to all
clauses.
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Non-Deterministic Computing

If f (x1, x2, . . . , xn) is satisfiable then a path of length ≤ n along the
“correct” threads will indentify the assignment for which
f (x1, x2, . . . , xn) = T .

The non-deterministic nature of this process should be clear now.
Assume that at every execution we flip a coin and if it falls on HEAD
we assign xi = T and if it is TAIL we assign xi = F .

If we were “lucky” at every step we will identify the answer in no more
than n steps. Also, every execution may execute different steps.

The generalization to any other decision problem is straight forward.
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Comment

A decision problem P ∈ P can be easily adjusted to an efficient
algorithm for solving a similar general problem.
Example. Suppose we wish to find the chromatic number of a
graph G. We can use the decision problem “Is G k-colorable” no
more than log n times to determine χ(G).
Another class of problems is called P-Space problems (again, P
stands for polynomial).
In this model we are only concerned about the amount of memory
needed to solve a problem.
For example the Satisfiability problem belongs to P-Space.
The space we need is for a single integer whose binary
representation has length n (the number of variables in
f (x1, . . . , xn).
As we shall see, this implies that NP⊆ P-Space
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The class NP

We can summarise:

The class NP contains the problems for which a given answer can be
verified quickly.

A central question in Mathematics and CS is: P = NP ?

This means that if an answer can be verified quickly, does it
necessarily mean that an answer can also be found quickly?

Examples

Input: (n,m) Verify n = k ·m can be verified very quickly.
But given n can the divisor m be found quickly ?

The subset sum problem: given a list of integers
A = (a1,a2, . . . ,an) and an integer k .
Is there a subset B ⊂ A such that

∑
ai∈B ai = k?

This is easily verifiable using less than n additions. But we do not
know how to find B.
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The class NP-Complete

Question
Among all NP complete problems, are there problems that are more
difficult than all other NP problems?

Answer
In 1971 Steven Cook of the University of Toronto in his paper The
complexity of theorem proving procedures introduced the class of NP
problems (even though it is not mentioned explicitly in this paper).
He proved that every NP problem is polynomially reducible to the SAT
problem.

This means that if you had a “black box” that could efficiently solve any
instance of a SAT problem then you can efficiently solve any problem
in NP.
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NPC problems

Cook’s seminal paper was almost immediately followed by papers
identifying other such “black boxes.” We studied two such problems:

3-SAT.

3-colorabilty of graphs.
This means that our class, K53, knows 3 “black boxes” that are NPC.

To prove that a decison problem A ∈ NPC we need first to prove that it
is in NP and then prove that one of the “black boxes” is polynomially
reducible to it.

Currently, hundreds of such “black boxes” have been identified.

() Discrete Optimization Lecture-15 Ngày 6 tháng 12 năm 2011 12 / 21



NPC problems

Cook’s seminal paper was almost immediately followed by papers
identifying other such “black boxes.” We studied two such problems:

3-SAT.
3-colorabilty of graphs.

This means that our class, K53, knows 3 “black boxes” that are NPC.

To prove that a decison problem A ∈ NPC we need first to prove that it
is in NP and then prove that one of the “black boxes” is polynomially
reducible to it.

Currently, hundreds of such “black boxes” have been identified.

() Discrete Optimization Lecture-15 Ngày 6 tháng 12 năm 2011 12 / 21



NPC problems

Cook’s seminal paper was almost immediately followed by papers
identifying other such “black boxes.” We studied two such problems:

3-SAT.
3-colorabilty of graphs.

This means that our class, K53, knows 3 “black boxes” that are NPC.

To prove that a decison problem A ∈ NPC we need first to prove that it
is in NP and then prove that one of the “black boxes” is polynomially
reducible to it.

Currently, hundreds of such “black boxes” have been identified.

() Discrete Optimization Lecture-15 Ngày 6 tháng 12 năm 2011 12 / 21



NPC problems

Cook’s seminal paper was almost immediately followed by papers
identifying other such “black boxes.” We studied two such problems:

3-SAT.
3-colorabilty of graphs.

This means that our class, K53, knows 3 “black boxes” that are NPC.

To prove that a decison problem A ∈ NPC we need first to prove that it
is in NP and then prove that one of the “black boxes” is polynomially
reducible to it.

Currently, hundreds of such “black boxes” have been identified.

() Discrete Optimization Lecture-15 Ngày 6 tháng 12 năm 2011 12 / 21



NPC problems

Cook’s seminal paper was almost immediately followed by papers
identifying other such “black boxes.” We studied two such problems:

3-SAT.
3-colorabilty of graphs.

This means that our class, K53, knows 3 “black boxes” that are NPC.

To prove that a decison problem A ∈ NPC we need first to prove that it
is in NP and then prove that one of the “black boxes” is polynomially
reducible to it.

Currently, hundreds of such “black boxes” have been identified.

() Discrete Optimization Lecture-15 Ngày 6 tháng 12 năm 2011 12 / 21



NPC problems

Cook’s seminal paper was almost immediately followed by papers
identifying other such “black boxes.” We studied two such problems:

3-SAT.
3-colorabilty of graphs.

This means that our class, K53, knows 3 “black boxes” that are NPC.

To prove that a decison problem A ∈ NPC we need first to prove that it
is in NP and then prove that one of the “black boxes” is polynomially
reducible to it.

Currently, hundreds of such “black boxes” have been identified.

() Discrete Optimization Lecture-15 Ngày 6 tháng 12 năm 2011 12 / 21



The central theme of Discrete Optimization is finding practical,
efficient, solutions to problems. Thus understanding what is feasible
and what is not is a key issue in Discrete Optimization. If we know that
a problem is “hard” we may opt to seek alternative solutions.

For instance, we shall soon see that the TSP is NPC. The alternative
solution was to develop an approximation algorithm, preferably with a
performance gurantee.

Another striking example was the chromatic index of a graph. The
problem is χ1(G) = ∆(G) is known to be in NPC, Yet we identified an
efficient algorithm that guaranteed a coloring by no more than
∆(G) + 1 colors.

Finally, the problem is G1 isomorphic to G2 is clearly in NP. It is not
known whether it is in NPC or in P. It is suspected that it might be “in
between” the two classes if indeed NP 6= P.
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NPC Black Boxes

Theorem
3-SAT is reducible to the problem:

Input: G, k Output: YES if α(G) ≥ k.

Chứng minh.

Assume that the 3-SAT instance has n boolean variables x1, x2, . . . , xn
and m clauses (vi,1 ∨ vi,2,∨vi,3) i = 1,2, . . .m.
Each vi,j = xk or vi,j = ¬xk .

Construct a graph G with 3k vertices labeled by
{vi,j | 1 ≤ k ≤ m, 1 ≤ j ≤ 3}.
(vi,j , vi,j ′) ∈ E(G) (this will create a disjoint set of k triangles in G).
(vi,j , vi ′,j ′) ∈ E(G) if vi,j = xt and vi ′,j ′ = ¬xt .
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Clearly α(G) ≤ k .

α(G) = k if and only if the 3-SAT instance is satisfiable.

Corollary
The problem:

Input: (G,m) Output: G has a vertex cover of size ≤ k is NPC.

Chứng minh.

G has a vertex cover of size ≤ m if it has an independent set of size
≥ |V (G)| −m.
So we can use the vertex cover black box to solve the independent set
problem.

We can also use the independent set black box to solve the vertex
cover problem.
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We conclude with two more problems, the set cover problem and the
TSP. Let S be the set of all students in HUS. Given S1,S2, . . . ,Sn
subsets of students and an integer k .

Decision problem: are there subsets Si1 ,Si2 , . . . ,Sik such that:⋃k
n=1 Sin = S?.

Theorem
The set cover “black box” can efficiently solve the vertex cover problem.

Chứng minh.

Question
Is this problem similar to any of the problems we discussed so far?

Answer
Indeed it is! and it is easy to reduce the vertex cover to it.
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Hamiltonian Cycles

Except for the 3− colorability, all reductions we studied were quite
simple. We will end our discussion by studying a more complicated
example: the TSP.

We first show that the problem:

Input: digraph G.

Output: YES if G has a Hamitonian cycle.

Is in NPC.
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Hamiltonian cycle is NPC

We shall show how a black-box that can effciently find Hamiltonian
cycles in A Digraph can decide whether a given instance of 3-SAT is
satisfiable.

Let F (x0, x1, . . . , xn−1) be a given 3-SAT instance with k clauses. The
graph that will help us decide whether F is satisfiable will be
constructed in two steps.

We start with n bi-diretional paths, each of length 3k + 3.
Pi = vi,1

→←− vi2
→←− . . . →←− vi,3k+3

For i = 0,1, . . . ,n − 1 we add edges
vi,1 → {vi+1,1, vi+1,3k+3} and vi,1 ← {vi+1,1, vi+1,3k+3} (index
arithmetic is done mod n).
We add two additional vertices:
t , s : t → s, s→ {v0,1, v0,3k+3} and {vn−1,1, vn−1,3k=3} → t .
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So far our graph has n(3k + 3) + 2 vertices. It has many different
Hamiltonian cycles, 2n of them.
There are 2n possible truth assignment to the variables x1, x2, . . . , xn.
The idea is to associate every truth assignment with one of the cycles
and use the clauses to “force” a Hamiltonian cycle if and only if
F (x0, x1, . . . , xn−1) is satisfiable.

We also note that once a Hamiltonian cycle enters a path Pi it has to
traverse the path in the same direction with no interruption.
Also since t → s is the only edge entering s it must be contained in
every Hamiltonian cycle.

We now add k vertices corresponding to the k clauses C1,C2, . . . ,Ck .
We use the following example to describe the edges connectiing these
vertices to the current vertices.

Assume that Ci = (x3 ∨ ¬x9 ∨ ¬x67). We add the edges:
vi,9 → ci , ci → vi,10, ci → vi,27, ci ← vi,28, ci → vi,201, ci ← vi,202.
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Assume that F (x1, x2, . . . , xn) is satisfiable. For instance assume that
x0 = T , x1 = T , x2 = F etc. and assume that Ci = (x0 ∨ ¬xi ∨ xj) is a
clause which is satisfied by the choice x0 = T .

Our graph will have the following Hamiltonian cycle:

t → s→ vi,3 → ci → vi,4 → . . .→ vi,3k+3 → . . .→ t

Conversely, if the graph is Hamiltonian, for every path Pi traversed by
the cycle either the vertex ci is traversed from right to left (we will
assign it the value F) or from left to right (in which case it will be
assigned F). It is easy to see that each clause Ci will be satisfied by
this assignment.
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The TSP is NPC

This is a real easy reduction to the Hamiltonian cycle problem.

Given a diGraph D(V ,E). Construct a TSP instance with “cities” vi and
ω(vi , vj) = 1 if (vi , vj) ∈ E(D) and ω(vi , vj) = 10 otherwise. Now ask
the TSP blackbox whether this instance has a tour of weight ≤ n.

Clearly, this TSP instance has a tour of weight n if and only if D is
Hamiltonian.

This brings us back to the first lecture. We started with two problems
that looked almost identical.

And now we learned that one, the assignment problem can be solved
effciently while the TSP problem is very difficult.
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