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The Max-Flow Min-Cut problem

Discussion
The max-flow min-cut problem is a central problem in discrete
optimization with many applications.

We shall study this problem, look at some applications, learn
how it interacts with linear programming and explore the Ford
Fulkerson algorithm.
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A network is a directed graph D(V, E) with a function
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The Max-Flow Min-Cut problem

The max-flow min-cut problem is a central problem in discrete
optimization with many applications.

We shall study this problem, look at some applications, learn
how it interacts with linear programming and explore the Ford
Fulkerson algorithm.

A network is a directed graph D(V, E) with a function
c: E — R, called capacity and two specified vertices S, T
(source and sink or terminal).

We denote by N (v) the edges in G of the form v — x and by
N~(v) the edges x — v.
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A network with integer capacities.
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Preliminaries

A flow /s a function f : E — RT such that:
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Preliminaries

A flow /s a function f : E — RT such that:
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go out.”
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Preliminaries

A flow /s a function f : E — RT such that:

@ The amount of flow through each edge does not exceed its
capacity (f(e) < c(e) Ve € E).

@ For every internal vertex (not S or T) “what comes in must
go out.”

> een-(v) [(€) = Xeen+(v) f(€).

The size of a flow fis } - n+(s) f(8).
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Preliminaries

Aflow is a function f : E — R™ such that:
@ The amount of flow through each edge does not exceed its
capacity (f(e) < c(e) Ve € E).
@ For every internal vertex (not S or T) “what comes in must
go out.”

> een-(v) [(€) = Xeen+(v) f(€).

The size of a flow fis } - n+(s) f(8).

Observation
> een+(s) f(€) = Xeen-(1) f(€)
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The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:
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The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:

Q Letx(e) e € E be variables.
Q maximize 3. n+(s) X(€) Subject to:
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The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:

Q Letx(e) e € E be variables.
Q maximize 3 .. y+(s) X(€) subject to:
o x(e) <c(e)vVee V(E)
® > cen+(v) X(€) = Xoen-(v) X(€) VV € {S, T}
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The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:
Q Letx(e) e € E be variables.
Q maximize 3 .. y+(s) X(€) subject to:
o x(e) <c(e)vVee V(E)

U ZeeN+(v) X(e) = ZeeN*(v) X(e) Vv ¢ {87 T}
e x(e) > 0.
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The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:
Q Letx(e) e € E be variables.
Q maximize 3 .. y+(s) X(€) subject to:
o x(e) <c(e)vVee V(E)

U ZeeN+(v) X(e) = ZeeN*(v) X(e) Vv ¢ {Sv T}
e x(e) > 0.

Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?
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The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:
Q Letx(e) e € E be variables.
Q maximize 3 .. y+(s) X(€) subject to:
o x(e) <c(e)vVee V(E)

U ZeeN+(v) X(e) = ZeeN*(v) X(e) Vv ¢ {Sv T}
e x(e) > 0.

Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Or do we need to add a constraint that x(e) must be integers?
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Integer Linear Programs: ILP
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Integer Linear Programs: ILP

@ Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?
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@ After all, there might be only finitely many feasible
solutions.
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@ Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?

@ After all, there might be only finitely many feasible
solutions.

@ NO! ILP are among the most difficult computational
problems to solve.
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Integer Linear Programs: ILP

@ Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?

@ After all, there might be only finitely many feasible
solutions.

@ NO! ILP are among the most difficult computational
problems to solve.

@ But for some linear programs the simplex method is
guaranteed to produce an integral solution.
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Integer Linear Programs: ILP

@ Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?

@ After all, there might be only finitely many feasible
solutions.

@ NO! ILP are among the most difficult computational
problems to solve.

@ But for some linear programs the simplex method is
guaranteed to produce an integral solution.

As network flows in applications can be quite large, we seek an
alternative, more effcicent algorithm for solving netwrok flow
problems: preferably a combinatorial algorithm.

Discrete Optimization Lecture-13




An example

In this network an entry of the form n/m represents a flow of size m through an edge with
capacity n.

Let us try to fill in the “?” so that the flow represented by this diagram will be a proper
flow.




Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

We shall first go through the algorithm, execute it on a sample
and then identify its components analyse it and prove the
min-cut max-flow theorem.

Definition (

An S — T path P in a network N with a flow f is f — augmenting
if replacing the flow on every edge e € P by the amount on this
edge in P increases the total flow.
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—oo, +, +00).
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
o Ifu— vandc(u,v) > f(u,v) then
Label(v) = (u,+, w(v) = min{c(u,v) — f(u,v), w(u)}).
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
e If u— vandc(u,v) > f(u, v) then
Label(v) = (u,+, w(v) = min{c(u, v) — f(u,v), w(u)}).
e Ifu+ vandf(v,u) > 0then
Label(v) = (u, —, min{w(u), f(v,u)}) (flow can be
decreased).
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
e If u— vandc(u,v) > f(u, v) then
Label(v) = (u,+, w(v) = min{c(u, v) — f(u,v), w(u)}).
e If u+ vandf(v,u) > 0then
Label(v) = (u,—, min{w(u), f(v,u)}) (flow can be
decreased).
o If T is labelled STOP. You have a flow augmenting path.
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
o Ifu— vandc(u,v) > f(u, v) then
Label(v) = (u,+, w(v) = min{c(u, v) — f(u,v), w(u)}).
e If u+ vandf(v,u) > 0then
Label(v) = (u,—, min{w(u), f(v,u)}) (flow can be
decreased).
o If T is labelled STOP. You have a flow augmenting path.
e Augment the flow and execute the algorithm on the new
flow.
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Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
o Ifu— vandc(u,v) > f(u, v) then
Label(v) = (u,+, w(v) = min{c(u, v) — f(u,v), w(u)}).
e If u+ vandf(v,u) > 0then
Label(v) = (u,—, min{w(u), f(v,u)}) (flow can be
decreased).
o If T is labelled STOP. You have a flow augmenting path.
e Augment the flow and execute the algorithm on the new
flow.

@ If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13



Let N be the network:

S—A:3 §—~C:7

A—-B:5 A—-D:4 A—-C: 2
B—-D:2 B—~T:8

C—B:1 C—D: 4
D—-T:3
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Let N be the network:

S—A:3 §—~C:7

A—-B:5 A—-D:4 A—-C: 2
B—-D:2 B—~T:8

C—B:1 C—D: 4
D—-T:3

@ Label(S) = (—o0,+, +00)
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Let N be the network:

S—A:3 §—~C:7

A—-B:5 A—-D:4 A—-C: 2
B—-D:2 B—~T:8

C—B:1 C—D: 4
D—-T:3

@ Label(S) = (—o0,+, +0)
@ Label(C) = (S,+,7) Label(A) = (S,+,3)
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Let N be the network:

S—A:
A— B:
B— D:
C—+B:
D—T:

@ Label(S) =
@ Label(C) =

3

5
2
1
3

@ Scan(
Label(

C):
B) =

S—C:
A—D:
B—T:
C—D:

A—-C: 2

N OO P

(=00, 4, +00)
(S, +.

7) Label(A) = (S, +,3)

(C,+ 1) Label(D) = (C, +, 4)
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Let N be the network:

S—A:3 §—~C:7

A—-B:5 A—-D:4 A—-C: 2
B—-D:2 B—~T:8

C—B:1 C—D: 4
D—-T:3

@ Label(S) = (—oo, +, +0)
@ Label(C) = (S,+,7) Label(A) = (S,+,3)

@ Scan(C):

Label(B) = (C, +, 1) Label(D) = (C, +, 4)
@ Scan(B) :

Label(T) = (B, +, 1)
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Let N be the network:

S—A:3 §—~C:7

A—-B:5 A—-D:4 A—-C: 2
B—-D:2 B—~T:8

C—B:1 C—D: 4
D—-T:3

@ Label(S) = (—oo, +, +0)
@ Label(C) =(S,+,7) Label(A)=(S,+,3)
@ Scan(C):

Label(B) = (C, +, 1) Label(D) = (C, +, 4)
@ Scan(B) :

Label(T) = (B, +, 1)
@ STOP! You have a flow augmenting path.
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Using backflow: an example

Figure 7.26 What is the value of the depicted flow? Is it a maximum flow? What is the
minimum cut?
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How bad can the Ford-Fulkerson algorithm be?
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How bad can the Ford-Fulkerson algorithm be?

If you are not careful with the slection of your augmenting path,
the algorithm can behave very bad indeed..
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How bad can the Ford-Fulkerson algorithm be?

If you are not careful with the slection of your augmenting path,
the algorithm can behave very bad indeed..
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How bad can the Ford-Fulkerson algorithm be?

If you are not careful with the slection of your augmenting path,
the algorithm can behave very bad indeed..

Be careful how you select your augmenting paths.
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So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?
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Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer
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Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer

@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) =0.
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Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) =0.
@ How can we use this observation to bound the number of
iterations?
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@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) =0.
@ How can we use this observation to bound the number of
iterations?

@ At any iteration we have three types of edges:
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Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) =0.
@ How can we use this observation to bound the number of
iterations?

@ At any iteration we have three types of edges:
e Edges e for which f(e) < c(e).
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the network should not depend on the capacity values. Can we
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Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) = 0.

@ How can we use this observation to bound the number of
iterations?

@ At any iteration we have three types of edges:

e Edges e for which f(e) < c(e).
e Edges e for which f(e) > 0
e Edges e for which f(e) = c(e).
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Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
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We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef
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Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef

@ Note that if 0 < f((x, y)) < c((x, y)) then both
(Xay) and (y,X) € Ef-
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o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef

@ Note thatif 0 < f((x, y)) < c((x, y)) then both
(Xay) and (yvx) € Ef-

@ Let a(N) be the length of the shortest S — T path in the
network N.
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Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef

@ Note thatif 0 < f((x, y)) < c((x, y)) then both
(Xay) and (yvx) € Ef-

@ Let a(N) be the length of the shortest S — T path in the
network N.

@ Let A(N)={ec E | e c some shortest S — T pathj.
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Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef

@ Note thatif 0 < f((x, y)) < c((x, y)) then both
(Xay) and (yvx) € Ef-

@ Let a(N) be the length of the shortest S — T path in the
network N.
@ Let A(N) ={ec E | e € some shortest S — T path}.

@ IFN' =(V,EU{(y,x)}) (x,y) € E then
a(N') = a(N) and A(N') = A(N).
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Final remarks

If f; is an augmentation of the flow f along a shortest path
in the network N then Ny, is a subgraph of the netwrok

NrU{(y,x) | (x,y) € Nr.
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Final remarks

If f; is an augmentation of the flow f along a shortest path
in the network N then Ny, is a subgraph of the netwrok
NfU {(y,X) | (va) € Nf'

Therefore a(Ny, ) = a(Nr) but A(Nr_1) € A(Ny).
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Final remarks

If f; is an augmentation of the flow f along a shortest path
in the network N then Ny, is a subgraph of the netwrok

NfU {(y,X) | (Xv.y) € Nf'
Therefore a(Ny, ) = a(Nr) but A(Nr_1) € A(Ny).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in N, is reduced.
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Therefore a(Ny, ) = a(Nr) but A(Nr_1) € A(Ny).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in N, is reduced.

When the number of edges in N; is zero we have a
maximum flow.
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Final remarks

If f; is an augmentation of the flow f along a shortest path
in the network N then Ny, is a subgraph of the netwrok

NfU {(y,X) | (Xv.y) € Nf'
Therefore a(Ny, ) = a(Nr) but A(Nr_1) € A(Ny).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in N, is reduced.

When the number of edges in N; is zero we have a
maximum flow.

So at each augmentation the algorithm will construct first
all shortest paths (Dijkstra’s algorithm) then scan all
edges. So the running time of this algorithm will be
c-|V|-|EA.
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Definition

An S — T cut is a set of edges in a netwrok whose removal
disconnects S from T.
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The edges (S, A), (S, C), (S, E) form a cut in Example-1.
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An S — T cut is a set of edges in a netwrok whose removal
disconnects S from T.

The edges (S, A), (S, C), (S, E) form a cut in Example-1.

If C is a cut in the network N(V,E) and f : E — R* is a flow of
value Vy then c¢(C) the capcity of the cut is < V,
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Definition
An S — T cut is a set of edges in a netwrok whose removal
disconnects S from T.

The edges (S, A), (S, C), (S, E) form a cut in Example-1.

If C is a cut in the network N(V,E) and f : E — R* is a flow of
value Vy then c¢(C) the capcity of the cut is < V,

Corollary (

In a netwrok N(V, E) the largest flow and the minimum cut have
the same size.

V.
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Circulation

Definition
A weighted directed graph D(V, E) with a weight function
f(u,v) — R in which for every vertex v € V:

o fvyu)= > f(u,v)

ueN+(v) ueN=(v)

is called a circulation.
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A weighted directed graph D(V, E) with a weight function
f(u,v) — R in which for every vertex v € V:

o fvyu)= > f(u,v)

ueN+(v) ueN=(v)

is called a circulation.

1. In a circulation the weights do not have to be positive.
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Circulation

A weighted directed graph D(V, E) with a weight function
f(u,v) — R in which for every vertex v € V:

o fvyu)= > f(u,v)

ueN+(v) ueN=(v)

is called a circulation.

1. In a circulation the weights do not have to be positive.

2. A network can be converted to a circulation if the total coming
info the sink T is equal to the total coming out of the source S
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Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.
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Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let [f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.
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If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.
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Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

@ Ve = (x,y) € D, there must be an edge € = (y, x) € D;
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Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

@ Ve = (x,y) € Dy there must be an edge € = (y, x) € D;
@ D, contains a cycle C.
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Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

@ Ve = (x,y) € Dy there must be an edge € = (y, x) € D;
@ D, contains a cycle C.
@ Let g'(e) = g(e) + a Ve € C we get a new weight function.
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Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

@ Ve = (x,y) € Dy there must be an edge € = (y, x) € D;
@ D, contains a cycle C.
@ Let g'(e) = g(e) + a Ve € C we get a new weight function.

@ Clearly a can be chosen so that
|f(e)] < d'(e)+ a < [f(e)] for at least one edge of the
cycle will be an integer.
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Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

@ Ve = (x,y) € Dy there must be an edge € = (y, x) € D;
@ D, contains a cycle C.
@ Let g'(e) = g(e) + a Ve € C we get a new weight function.

@ Clearly a can be chosen so that
|f(e)] < d'(e)+ «a < [f(e)] for at least one edge of the
cycle will be an integer.

@ This contradicts the choice of g.
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Summary

@ If all capacities in a netwrok N(V, e) are integers then the
maximum flow is also an integer.
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maximum flow is also an integer.

@ If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.
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@ If all capacities in a netwrok N(V, e) are integers then the
maximum flow is also an integer.

@ If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.

@ Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.
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Summary

@ If all capacities in a netwrok N(V, e) are integers then the
maximum flow is also an integer.

@ If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.

@ Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.

Netwrokflows have numerous applications in discrete
optimization. We shall attempt to see some in the exercises.
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