Discrete Optimization

Lecture-13

Ngay 21 thang 11 nam 2011

Discrete Optimization Lecture-13

The Max-Flow Min-Cut problem

Discussion
The max-flow min-cut problem is a central problem in discrete
optimization with many applications.

We shall study this problem, look at some applications, learn
how it interacts with linear programming and explore the Ford
Fulkerson algorithm.

Discrete Optimization Lecture-13

The Max-Flow Min-Cut problem

The max-flow min-cut problem is a central problem in discrete
optimization with many applications.

We shall study this problem, look at some applications, learn
how it interacts with linear programming and explore the Ford
Fulkerson algorithm.

A network is a directed graph D(V, E) with a function
c: E — R, called capacity and two specified vertices S, T

(source and sink or terminal).

Discrete Optimization Lecture-13

The Max-Flow Min-Cut problem

The max-flow min-cut problem is a central problem in discrete
optimization with many applications.

We shall study this problem, look at some applications, learn
how it interacts with linear programming and explore the Ford
Fulkerson algorithm.

A network is a directed graph D(V, E) with a function
c: E — R, called capacity and two specified vertices S, T

(source and sink or terminal).

Discrete Optimization Lecture-13

The Max-Flow Min-Cut problem

The max-flow min-cut problem is a central problem in discrete
optimization with many applications.

We shall study this problem, look at some applications, learn
how it interacts with linear programming and explore the Ford
Fulkerson algorithm.

A network is a directed graph D(V, E) with a function
c: E — R, called capacity and two specified vertices S, T
(source and sink or terminal).

We denote by N (v) the edges in G of the form v — x and by
N~(v) the edges x — v.

Discrete Optimization Lecture-13

A network with integer capacities.

Discrete Optimization Lecture-13

Preliminaries

A flow /s a function f : E — RT such that:

Discrete Optimization Lecture-13

Preliminaries

A flow /s a function f : E — RT such that:

@ The amount of flow through each edge does not exceed its
capacity (f(e) < c(e) Ve € E).

Discrete Optimization Lecture-13

Preliminaries

A flow /s a function f : E — RT such that:

@ The amount of flow through each edge does not exceed its
capacity (f(e) < c(e) Ve € E).

@ fFor every internal vertex (not S or T) “what comes in must
go out.”

> eeN-(v) F(8) = Deent(v) f(€)-

Discrete Optimization Lecture-13

Preliminaries

A flow /s a function f : E — RT such that:

@ The amount of flow through each edge does not exceed its
capacity (f(e) < c(e) Ve € E).

@ For every internal vertex (not S or T) “what comes in must
go out.”

> een-(v) [(€) = Xeen+(v) f(€).

Discrete Optimization Lecture-13

Preliminaries

A flow /s a function f : E — RT such that:

@ The amount of flow through each edge does not exceed its
capacity (f(e) < c(e) Ve € E).

@ For every internal vertex (not S or T) “what comes in must
go out.”

> een-(v) [(€) = Xeen+(v) f(€).

The size of a flow fis } - n+(s) f(8).

Discrete Optimization Lecture-13

Preliminaries

Aflow is a function f : E — R™ such that:
@ The amount of flow through each edge does not exceed its
capacity (f(e) < c(e) Ve € E).
@ For every internal vertex (not S or T) “what comes in must
go out.”

> een-(v) [(€) = Xeen+(v) f(€).

The size of a flow fis } - n+(s) f(8).

Observation
> een+(s) f(€) = Xeen-(1) f(€)

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:

Q Letx(e) e € E be variables.

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:

Q Letx(e) e € E be variables.
Q maximize 3. n+(s) X(€) Subject to:

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:

Q Letx(e) e € E be variables.
Q maximize 3 .. y+(s) X(€) subject to:
e x(e) <c(e)vVee V(E)

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:

Q Letx(e) e € E be variables.
Q maximize 3 .. y+(s) X(€) subject to:
o x(e) <c(e)vVee V(E)
® > cen+(v) X(€) = Xoen-(v) X(€) VV € {S, T}

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:
Q Letx(e) e € E be variables.
Q maximize 3 .. y+(s) X(€) subject to:
o x(e) <c(e)vVee V(E)

U ZeeN+(v) X(e) = ZeeN*(v) X(e) Vv ¢ {87 T}
e x(e) > 0.

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:
Q Letx(e) e € E be variables.
Q maximize 3 .. y+(s) X(€) subject to:
o x(e) <c(e)vVee V(E)

U ZeeN+(v) X(e) = ZeeN*(v) X(e) Vv ¢ {Sv T}
e x(e) > 0.

Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:
Q Letx(e) e € E be variables.
Q maximize 3 .. y+(s) X(€) subject to:
o x(e) <c(e)vVee V(E)

U ZeeN+(v) X(e) = ZeeN*(v) X(e) Vv ¢ {Sv T}
e x(e) > 0.

Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

The maximal flow in a network can be found by a linear
program as follows:
Q Letx(e) e € E be variables.
Q maximize 3 .. y+(s) X(€) subject to:
o x(e) <c(e)vVee V(E)

U ZeeN+(v) X(e) = ZeeN*(v) X(e) Vv ¢ {Sv T}
e x(e) > 0.

Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Or do we need to add a constraint that x(e) must be integers?

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

@ Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

@ Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?

@ After all, there might be only finitely many feasible
solutions.

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

@ Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?

@ After all, there might be only finitely many feasible
solutions.

@ NO! ILP are among the most difficult computational
problems to solve.

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

@ Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?

@ After all, there might be only finitely many feasible
solutions.

@ NO! ILP are among the most difficult computational
problems to solve.

@ But for some linear programs the simplex method is
guaranteed to produce an integral solution.

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

@ Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?

@ After all, there might be only finitely many feasible
solutions.

@ NO! ILP are among the most difficult computational
problems to solve.

@ But for some linear programs the simplex method is
guaranteed to produce an integral solution.

As network flows in applications can be quite large, we seek an
alternative, more effcicent algorithm for solving netwrok flow
problems: preferably a combinatorial algorithm.

Discrete Optimization Lecture-13

An example

In this network an entry of the form n/m represents a flow of size m through an edge with
capacity n.

Let us try to fill in the “?” so that the flow represented by this diagram will be a proper
flow.

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

We shall first go through the algorithm, execute it on a sample
and then identify its components analyse it and prove the
min-cut max-flow theorem.

Definition (

An S — T path P in a network N with a flow f is f — augmenting
if replacing the flow on every edge e € P by the amount on this
edge in P increases the total flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—oo, +, +00).

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
o Ifu— vandc(u,v) > f(u,v) then
Label(v) = (u,+, w(v) = min{c(u,v) — f(u,v), w(u)}).

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
e If u— vandc(u,v) > f(u, v) then
Label(v) = (u,+, w(v) = min{c(u, v) — f(u,v), w(u)}).
e Ifu+ vandf(v,u) > 0then
Label(v) = (u, —, min{w(u), f(v,u)}) (flow can be
decreased).

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
e If u— vandc(u,v) > f(u, v) then
Label(v) = (u,+, w(v) = min{c(u, v) — f(u,v), w(u)}).
e If u+ vandf(v,u) > 0then
Label(v) = (u,—, min{w(u), f(v,u)}) (flow can be
decreased).
o If T is labelled STOP. You have a flow augmenting path.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
o Ifu— vandc(u,v) > f(u, v) then
Label(v) = (u,+, w(v) = min{c(u, v) — f(u,v), w(u)}).
e If u+ vandf(v,u) > 0then
Label(v) = (u,—, min{w(u), f(v,u)}) (flow can be
decreased).
o If T is labelled STOP. You have a flow augmenting path.
e Augment the flow and execute the algorithm on the new
flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
@ Given a flow f on the network N.
@ Label(S) = (—o0, +, +00).
@ For a labelled vertex u do:
@ Scan(u):
e For every vertex v connected by an edge to u in any
direction do:
o Ifu— vandc(u,v) > f(u, v) then
Label(v) = (u,+, w(v) = min{c(u, v) — f(u,v), w(u)}).
e If u+ vandf(v,u) > 0then
Label(v) = (u,—, min{w(u), f(v,u)}) (flow can be
decreased).
o If T is labelled STOP. You have a flow augmenting path.
e Augment the flow and execute the algorithm on the new
flow.

@ If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Let N be the network:

S—A:3 §—~C:7

A—-B:5 A—-D:4 A—-C: 2
B—-D:2 B—~T:8

C—B:1 C—D: 4
D—-T:3

Discrete Optimization Lecture-13

Let N be the network:

S—A:3 §—~C:7

A—-B:5 A—-D:4 A—-C: 2
B—-D:2 B—~T:8

C—B:1 C—D: 4
D—-T:3

@ Label(S) = (—o0,+, +00)

Discrete Optimization Lecture-13

Let N be the network:

S—A:3 §—~C:7

A—-B:5 A—-D:4 A—-C: 2
B—-D:2 B—~T:8

C—B:1 C—D: 4
D—-T:3

@ Label(S) = (—o0,+, +0)
@ Label(C) = (S,+,7) Label(A) = (S,+,3)

Discrete Optimization Lecture-13

Let N be the network:

S—A:
A— B:
B— D:
C—+B:
D—T:

@ Label(S) =
@ Label(C) =

3

5
2
1
3

@ Scan(
Label(

C):
B) =

S—C:
A—D:
B—T:
C—D:

A—-C: 2

N OO P

(=00, 4, +00)
(S, +.

7) Label(A) = (S, +,3)

(C,+ 1) Label(D) = (C, +, 4)

Discrete Optimization Lecture-13

Let N be the network:

S—A:3 §—~C:7

A—-B:5 A—-D:4 A—-C: 2
B—-D:2 B—~T:8

C—B:1 C—D: 4
D—-T:3

@ Label(S) = (—oo, +, +0)
@ Label(C) = (S,+,7) Label(A) = (S,+,3)

@ Scan(C):

Label(B) = (C, +, 1) Label(D) = (C, +, 4)
@ Scan(B) :

Label(T) = (B, +, 1)

Discrete Optimization Lecture-13

Let N be the network:

S—A:3 §—~C:7

A—-B:5 A—-D:4 A—-C: 2
B—-D:2 B—~T:8

C—B:1 C—D: 4
D—-T:3

@ Label(S) = (—oo, +, +0)
@ Label(C) =(S,+,7) Label(A)=(S,+,3)
@ Scan(C):

Label(B) = (C, +, 1) Label(D) = (C, +, 4)
@ Scan(B) :

Label(T) = (B, +, 1)
@ STOP! You have a flow augmenting path.

Discrete Optimization Lecture-13

Using backflow: an example

Figure 7.26 What is the value of the depicted flow? Is it a maximum flow? What is the
minimum cut?

Discrete Optimization Lectu

How bad can the Ford-Fulkerson algorithm be?

Discrete Optimization Lecture-13

How bad can the Ford-Fulkerson algorithm be?

If you are not careful with the slection of your augmenting path,
the algorithm can behave very bad indeed..

Discrete Optimization Lecture-13

How bad can the Ford-Fulkerson algorithm be?

If you are not careful with the slection of your augmenting path,
the algorithm can behave very bad indeed..

Discrete Optimization Lecture-13

How bad can the Ford-Fulkerson algorithm be?

If you are not careful with the slection of your augmenting path,
the algorithm can behave very bad indeed..

Be careful how you select your augmenting paths.

Discrete Optimization Lecture-13

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Discrete Optimization Lecture-13

Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer

Discrete Optimization Lecture-13

Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer

@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) =0.

Discrete Optimization Lecture-13

Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) =0.
@ How can we use this observation to bound the number of
iterations?

Discrete Optimization Lecture-13

Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer

@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) =0.
@ How can we use this observation to bound the number of
iterations?

@ At any iteration we have three types of edges:

Discrete Optimization Lecture-13

Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) =0.
@ How can we use this observation to bound the number of
iterations?

@ At any iteration we have three types of edges:
e Edges e for which f(e) < c(e).

Discrete Optimization Lecture-13

Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) = 0.

@ How can we use this observation to bound the number of
iterations?

@ At any iteration we have three types of edges:

e Edges e for which f(e) < c(e).
e Edges e for which f(e) > 0

Discrete Optimization Lecture-13

Analysis

So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

@ A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f'(e) = c(e) or for some edge e with f(e) > 0, f'(e) = 0.

@ How can we use this observation to bound the number of
iterations?

@ At any iteration we have three types of edges:

e Edges e for which f(e) < c(e).
e Edges e for which f(e) > 0
e Edges e for which f(e) = c(e).

Discrete Optimization Lecture-13

Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.

Discrete Optimization Lecture-13

Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef

Discrete Optimization Lecture-13

Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef

@ Note that if 0 < f((x, y)) < c((x, y)) then both
(Xay) and (y,X) € Ef-

Discrete Optimization Lecture-13

Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef

@ Note thatif 0 < f((x, y)) < c((x, y)) then both
(Xay) and (yvx) € Ef-

Discrete Optimization Lecture-13

Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef

@ Note thatif 0 < f((x, y)) < c((x, y)) then both
(Xay) and (yvx) € Ef-

@ Let a(N) be the length of the shortest S — T path in the
network N.

Discrete Optimization Lecture-13

Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef

@ Note thatif 0 < f((x, y)) < c((x, y)) then both
(Xay) and (yvx) € Ef-

@ Let a(N) be the length of the shortest S — T path in the
network N.

@ Let A(N)={ec E | e c some shortest S — T pathj.

Discrete Optimization Lecture-13

Analysis, continued

We define a network Ny = (V, E¢) as follows:
o If f((x.¥)) < c((x.)) then (x,) € Er.
@ If f((x,y)) > Othen (y,x) € Ef

@ Note thatif 0 < f((x, y)) < c((x, y)) then both
(Xay) and (yvx) € Ef-

@ Let a(N) be the length of the shortest S — T path in the
network N.
@ Let A(N) ={ec E | e € some shortest S — T path}.

@ IFN' =(V,EU{(y,x)}) (x,y) € E then
a(N') = a(N) and A(N') = A(N).

Discrete Optimization Lecture-13

Final remarks

If f; is an augmentation of the flow f along a shortest path
in the network N then Ny, is a subgraph of the netwrok

NrU{(y,x) | (x,y) € Nr.

Discrete Optimization Lecture-13

Final remarks

If f; is an augmentation of the flow f along a shortest path
in the network N then Ny, is a subgraph of the netwrok
NfU {(y,X) | (va) € Nf'

Therefore a(Ny,) = a(Nr) but A(Nr_1) € A(Ny).

Discrete Optimization Lecture-13

Final remarks

If f; is an augmentation of the flow f along a shortest path
in the network N then Ny, is a subgraph of the netwrok

NfU {(y,X) | (Xv.y) € Nf'
Therefore a(Ny,) = a(Nr) but A(Nr_1) € A(Ny).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in N, is reduced.

Discrete Optimization Lecture-13

Final remarks

If f; is an augmentation of the flow f along a shortest path
in the network N then Ny, is a subgraph of the netwrok

NfU {(y,X) | (Xv.y) € Nf'
Therefore a(Ny,) = a(Nr) but A(Nr_1) € A(Ny).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in N, is reduced.

When the number of edges in N; is zero we have a
maximum flow.

Discrete Optimization Lecture-13

Final remarks

If f; is an augmentation of the flow f along a shortest path
in the network N then Ny, is a subgraph of the netwrok

NfU {(y,X) | (Xv.y) € Nf'
Therefore a(Ny,) = a(Nr) but A(Nr_1) € A(Ny).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in N, is reduced.

When the number of edges in N; is zero we have a
maximum flow.

So at each augmentation the algorithm will construct first
all shortest paths (Dijkstra’s algorithm) then scan all
edges. So the running time of this algorithm will be
c-|V|-|EA.

Discrete Optimization Lecture-13

Definition

An S — T cut is a set of edges in a netwrok whose removal
disconnects S from T.

Discrete Optimization Lecture-13

Definition
An S — T cut is a set of edges in a netwrok whose removal
disconnects S from T.

The edges (S, A), (S, C), (S, E) form a cut in Example-1.

Discrete Optimization Lecture-13

Definition
An S — T cut is a set of edges in a netwrok whose removal
disconnects S from T.

The edges (S, A), (S, C), (S, E) form a cut in Example-1.

If C is a cut in the network N(V,E) and f : E — R* is a flow of
value Vy then c¢(C) the capcity of the cut is < V,

Discrete Optimization Lecture-13

Definition
An S — T cut is a set of edges in a netwrok whose removal
disconnects S from T.

The edges (S, A), (S, C), (S, E) form a cut in Example-1.

If C is a cut in the network N(V,E) and f : E — R* is a flow of
value Vy then c¢(C) the capcity of the cut is < V,

Corollary (

In a netwrok N(V, E) the largest flow and the minimum cut have
the same size.

V.

Discrete Optimization Lecture-13

Circulation

Definition
A weighted directed graph D(V, E) with a weight function
f(u,v) — R in which for every vertex v € V:

o fvyu)= > f(u,v)

ueN+(v) ueN=(v)

is called a circulation.

Discrete Optimization Lecture-13

Circulation

A weighted directed graph D(V, E) with a weight function
f(u,v) — R in which for every vertex v € V:

o fvyu)= > f(u,v)

ueN+(v) ueN=(v)

is called a circulation.

1. In a circulation the weights do not have to be positive.

Discrete Optimization Lecture-13

Circulation

A weighted directed graph D(V, E) with a weight function
f(u,v) — R in which for every vertex v € V:

o fvyu)= > f(u,v)

ueN+(v) ueN=(v)

is called a circulation.

1. In a circulation the weights do not have to be positive.

Discrete Optimization Lecture-13

Circulation

A weighted directed graph D(V, E) with a weight function
f(u,v) — R in which for every vertex v € V:

o fvyu)= > f(u,v)

ueN+(v) ueN=(v)

is called a circulation.

1. In a circulation the weights do not have to be positive.

2. A network can be converted to a circulation if the total coming
info the sink T is equal to the total coming out of the source S

Discrete Optimization Lecture-13

Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

Discrete Optimization Lecture-13

Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let [f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

Discrete Optimization Lecture-13

Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

Discrete Optimization Lecture-13

Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

@ Ve = (x,y) € D, there must be an edge € = (y, x) € D;

Discrete Optimization Lecture-13

Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

@ Ve = (x,y) € Dy there must be an edge € = (y, x) € D;
@ D, contains a cycle C.

Discrete Optimization Lecture-13

Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

@ Ve = (x,y) € Dy there must be an edge € = (y, x) € D;
@ D, contains a cycle C.
@ Let g'(e) = g(e) + a Ve € C we get a new weight function.

Discrete Optimization Lecture-13

Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

@ Ve = (x,y) € Dy there must be an edge € = (y, x) € D;
@ D, contains a cycle C.
@ Let g'(e) = g(e) + a Ve € C we get a new weight function.

@ Clearly a can be chosen so that
|f(e)] < d'(e)+ a < [f(e)] for at least one edge of the
cycle will be an integer.

Discrete Optimization Lecture-13

Circulations

If f is a weight function on a circulation D(V, E) then there is an
N-circulation g on D such that |f(e)] < g(e) < [f(e)] Ve € E.

o Let |f(e)| > g(e) > [f(e)] be a weight function that
maximizes the number of edges for which g(e) € Z.

@ Let Dy be the subgraph of D spanned by the edges for
which g(e) is not an integer.

@ Ve = (x,y) € Dy there must be an edge € = (y, x) € D;
@ D, contains a cycle C.
@ Let g'(e) = g(e) + a Ve € C we get a new weight function.

@ Clearly a can be chosen so that
|f(e)] < d'(e)+ «a < [f(e)] for at least one edge of the
cycle will be an integer.

@ This contradicts the choice of g.

Discrete Optimization Lecture-13

Summary

Discrete Optimization Lecture-13

Summary

@ If all capacities in a netwrok N(V, e) are integers then the
maximum flow is also an integer.

Discrete Optimization Lecture-13

Summary

@ If all capacities in a netwrok N(V, e) are integers then the
maximum flow is also an integer.

@ If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.

Discrete Optimization Lecture-13

Summary

@ If all capacities in a netwrok N(V, e) are integers then the
maximum flow is also an integer.

@ If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.

@ Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.

Discrete Optimization Lecture-13

Summary

@ If all capacities in a netwrok N(V, e) are integers then the
maximum flow is also an integer.

@ If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.

@ Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.

Discrete Optimization Lecture-13

Summary

@ If all capacities in a netwrok N(V, e) are integers then the
maximum flow is also an integer.

@ If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.

@ Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.

Netwrokflows have numerous applications in discrete
optimization. We shall attempt to see some in the exercises.

Discrete Optimization Lecture-13

