
Discrete Optimization
Lecture-13

Ngày 21 tháng 11 năm 2011

Discrete Optimization Lecture-13

The Max-Flow Min-Cut problem

Discussion
The max-flow min-cut problem is a central problem in discrete
optimization with many applications.
We shall study this problem, look at some applications, learn
how it interacts with linear programming and explore the Ford
Fulkerson algorithm.

Definition
A network is a directed graph D(V ,E) with a function
c : E −→ R+, called capacity and two specified vertices S,T
(source and sink or terminal).

We denote by N+(v) the edges in G of the form v → x and by
N−(v) the edges x → v .

Discrete Optimization Lecture-13

The Max-Flow Min-Cut problem

Discussion
The max-flow min-cut problem is a central problem in discrete
optimization with many applications.
We shall study this problem, look at some applications, learn
how it interacts with linear programming and explore the Ford
Fulkerson algorithm.

Definition
A network is a directed graph D(V ,E) with a function
c : E −→ R+, called capacity and two specified vertices S,T
(source and sink or terminal).

We denote by N+(v) the edges in G of the form v → x and by
N−(v) the edges x → v .

Discrete Optimization Lecture-13

The Max-Flow Min-Cut problem

Discussion
The max-flow min-cut problem is a central problem in discrete
optimization with many applications.
We shall study this problem, look at some applications, learn
how it interacts with linear programming and explore the Ford
Fulkerson algorithm.

Definition
A network is a directed graph D(V ,E) with a function
c : E −→ R+, called capacity and two specified vertices S,T
(source and sink or terminal).

We denote by N+(v) the edges in G of the form v → x and by
N−(v) the edges x → v .

Discrete Optimization Lecture-13

The Max-Flow Min-Cut problem

Discussion
The max-flow min-cut problem is a central problem in discrete
optimization with many applications.
We shall study this problem, look at some applications, learn
how it interacts with linear programming and explore the Ford
Fulkerson algorithm.

Definition
A network is a directed graph D(V ,E) with a function
c : E −→ R+, called capacity and two specified vertices S,T
(source and sink or terminal).

We denote by N+(v) the edges in G of the form v → x and by
N−(v) the edges x → v .

Discrete Optimization Lecture-13

Example-1

A network with integer capacities.

 17 4

 3 8
 15 6 5 4 8

 7 4 4 12

5
 6 1 4 7

 9 6

 5 6

S

A

C

E

B

D

F

TG

H

I

Discrete Optimization Lecture-13

Preliminaries

Definition
A flow is a function f : E −→ R+ such that:

The amount of flow through each edge does not exceed its
capacity (f (e) ≤ c(e) ∀e ∈ E).
For every internal vertex (not S or T) “what comes in must
go out.”∑

e∈N−(v) f (e) =
∑

e∈N+(v) f (e).

The size of a flow f is
∑

e∈N+(S) f (e).

Observation∑
e∈N+(S) f (e) =

∑
e∈N−(T) f (e)

Discrete Optimization Lecture-13

Preliminaries

Definition
A flow is a function f : E −→ R+ such that:

The amount of flow through each edge does not exceed its
capacity (f (e) ≤ c(e) ∀e ∈ E).

For every internal vertex (not S or T) “what comes in must
go out.”∑

e∈N−(v) f (e) =
∑

e∈N+(v) f (e).

The size of a flow f is
∑

e∈N+(S) f (e).

Observation∑
e∈N+(S) f (e) =

∑
e∈N−(T) f (e)

Discrete Optimization Lecture-13

Preliminaries

Definition
A flow is a function f : E −→ R+ such that:

The amount of flow through each edge does not exceed its
capacity (f (e) ≤ c(e) ∀e ∈ E).
For every internal vertex (not S or T) “what comes in must
go out.”∑

e∈N−(v) f (e) =
∑

e∈N+(v) f (e).

The size of a flow f is
∑

e∈N+(S) f (e).

Observation∑
e∈N+(S) f (e) =

∑
e∈N−(T) f (e)

Discrete Optimization Lecture-13

Preliminaries

Definition
A flow is a function f : E −→ R+ such that:

The amount of flow through each edge does not exceed its
capacity (f (e) ≤ c(e) ∀e ∈ E).
For every internal vertex (not S or T) “what comes in must
go out.”∑

e∈N−(v) f (e) =
∑

e∈N+(v) f (e).

The size of a flow f is
∑

e∈N+(S) f (e).

Observation∑
e∈N+(S) f (e) =

∑
e∈N−(T) f (e)

Discrete Optimization Lecture-13

Preliminaries

Definition
A flow is a function f : E −→ R+ such that:

The amount of flow through each edge does not exceed its
capacity (f (e) ≤ c(e) ∀e ∈ E).
For every internal vertex (not S or T) “what comes in must
go out.”∑

e∈N−(v) f (e) =
∑

e∈N+(v) f (e).

The size of a flow f is
∑

e∈N+(S) f (e).

Observation∑
e∈N+(S) f (e) =

∑
e∈N−(T) f (e)

Discrete Optimization Lecture-13

Preliminaries

Definition
A flow is a function f : E −→ R+ such that:

The amount of flow through each edge does not exceed its
capacity (f (e) ≤ c(e) ∀e ∈ E).
For every internal vertex (not S or T) “what comes in must
go out.”∑

e∈N−(v) f (e) =
∑

e∈N+(v) f (e).

The size of a flow f is
∑

e∈N+(S) f (e).

Observation∑
e∈N+(S) f (e) =

∑
e∈N−(T) f (e)

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

Observation
The maximal flow in a network can be found by a linear
program as follows:

1 Let x(e) e ∈ E be variables.
2 maximize

∑
e∈N+(S) x(e) subject to:

x(e) ≤ c(e) ∀e ∈ V (E)∑
e∈N+(v) x(e) =

∑
e∈N−(v) x(e) ∀v 6∈ {S,T}

x(e) ≥ 0.

Question
Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Or do we need to add a constraint that x(e) must be integers?

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

Observation
The maximal flow in a network can be found by a linear
program as follows:

1 Let x(e) e ∈ E be variables.

2 maximize
∑

e∈N+(S) x(e) subject to:

x(e) ≤ c(e) ∀e ∈ V (E)∑
e∈N+(v) x(e) =

∑
e∈N−(v) x(e) ∀v 6∈ {S,T}

x(e) ≥ 0.

Question
Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Or do we need to add a constraint that x(e) must be integers?

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

Observation
The maximal flow in a network can be found by a linear
program as follows:

1 Let x(e) e ∈ E be variables.
2 maximize

∑
e∈N+(S) x(e) subject to:

x(e) ≤ c(e) ∀e ∈ V (E)∑
e∈N+(v) x(e) =

∑
e∈N−(v) x(e) ∀v 6∈ {S,T}

x(e) ≥ 0.

Question
Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Or do we need to add a constraint that x(e) must be integers?

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

Observation
The maximal flow in a network can be found by a linear
program as follows:

1 Let x(e) e ∈ E be variables.
2 maximize

∑
e∈N+(S) x(e) subject to:

x(e) ≤ c(e) ∀e ∈ V (E)

∑
e∈N+(v) x(e) =

∑
e∈N−(v) x(e) ∀v 6∈ {S,T}

x(e) ≥ 0.

Question
Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Or do we need to add a constraint that x(e) must be integers?

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

Observation
The maximal flow in a network can be found by a linear
program as follows:

1 Let x(e) e ∈ E be variables.
2 maximize

∑
e∈N+(S) x(e) subject to:

x(e) ≤ c(e) ∀e ∈ V (E)∑
e∈N+(v) x(e) =

∑
e∈N−(v) x(e) ∀v 6∈ {S,T}

x(e) ≥ 0.

Question
Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Or do we need to add a constraint that x(e) must be integers?

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

Observation
The maximal flow in a network can be found by a linear
program as follows:

1 Let x(e) e ∈ E be variables.
2 maximize

∑
e∈N+(S) x(e) subject to:

x(e) ≤ c(e) ∀e ∈ V (E)∑
e∈N+(v) x(e) =

∑
e∈N−(v) x(e) ∀v 6∈ {S,T}

x(e) ≥ 0.

Question
Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Or do we need to add a constraint that x(e) must be integers?

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

Observation
The maximal flow in a network can be found by a linear
program as follows:

1 Let x(e) e ∈ E be variables.
2 maximize

∑
e∈N+(S) x(e) subject to:

x(e) ≤ c(e) ∀e ∈ V (E)∑
e∈N+(v) x(e) =

∑
e∈N−(v) x(e) ∀v 6∈ {S,T}

x(e) ≥ 0.

Question
Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Or do we need to add a constraint that x(e) must be integers?

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

Observation
The maximal flow in a network can be found by a linear
program as follows:

1 Let x(e) e ∈ E be variables.
2 maximize

∑
e∈N+(S) x(e) subject to:

x(e) ≤ c(e) ∀e ∈ V (E)∑
e∈N+(v) x(e) =

∑
e∈N−(v) x(e) ∀v 6∈ {S,T}

x(e) ≥ 0.

Question
Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?

Or do we need to add a constraint that x(e) must be integers?

Discrete Optimization Lecture-13

The max-flow problem as an LP problem

Given a network, we wish to efficiently find a maximal flow .

Observation
The maximal flow in a network can be found by a linear
program as follows:

1 Let x(e) e ∈ E be variables.
2 maximize

∑
e∈N+(S) x(e) subject to:

x(e) ≤ c(e) ∀e ∈ V (E)∑
e∈N+(v) x(e) =

∑
e∈N−(v) x(e) ∀v 6∈ {S,T}

x(e) ≥ 0.

Question
Suppose all capacities are integers and the flows cannot be
broken into fractions. Will the optimal solution be integers?
Or do we need to add a constraint that x(e) must be integers?

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

Question

Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?
After all, there might be only finitely many feasible
solutions.
NO! ILP are among the most difficult computational
problems to solve.
But for some linear programs the simplex method is
guaranteed to produce an integral solution.

Comment
As network flows in applications can be quite large, we seek an
alternative, more effcicent algorithm for solving netwrok flow
problems: preferably a combinatorial algorithm.

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

Question
Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?

After all, there might be only finitely many feasible
solutions.
NO! ILP are among the most difficult computational
problems to solve.
But for some linear programs the simplex method is
guaranteed to produce an integral solution.

Comment
As network flows in applications can be quite large, we seek an
alternative, more effcicent algorithm for solving netwrok flow
problems: preferably a combinatorial algorithm.

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

Question
Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?
After all, there might be only finitely many feasible
solutions.

NO! ILP are among the most difficult computational
problems to solve.
But for some linear programs the simplex method is
guaranteed to produce an integral solution.

Comment
As network flows in applications can be quite large, we seek an
alternative, more effcicent algorithm for solving netwrok flow
problems: preferably a combinatorial algorithm.

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

Question
Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?
After all, there might be only finitely many feasible
solutions.
NO! ILP are among the most difficult computational
problems to solve.

But for some linear programs the simplex method is
guaranteed to produce an integral solution.

Comment
As network flows in applications can be quite large, we seek an
alternative, more effcicent algorithm for solving netwrok flow
problems: preferably a combinatorial algorithm.

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

Question
Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?
After all, there might be only finitely many feasible
solutions.
NO! ILP are among the most difficult computational
problems to solve.
But for some linear programs the simplex method is
guaranteed to produce an integral solution.

Comment
As network flows in applications can be quite large, we seek an
alternative, more effcicent algorithm for solving netwrok flow
problems: preferably a combinatorial algorithm.

Discrete Optimization Lecture-13

Integer Linear Programs: ILP

Question
Are linear programs where an added constraint that all
variables in the optimal solution be integers easier to
solve?
After all, there might be only finitely many feasible
solutions.
NO! ILP are among the most difficult computational
problems to solve.
But for some linear programs the simplex method is
guaranteed to produce an integral solution.

Comment
As network flows in applications can be quite large, we seek an
alternative, more effcicent algorithm for solving netwrok flow
problems: preferably a combinatorial algorithm.

Discrete Optimization Lecture-13

An example

 17/3 4/4

 3/?
 15/9 6/6 5/3 8/? 4/2 8/7

 7/5 4/4 4/? 12/?

 6/1 1/1 4/3 5/?
 7/? 9/9

6/1

 5/5 6/?

In this network an entry of the form n/m represents a flow of size m through an edge with
capacity n.

Let us try to fill in the “?” so that the flow represented by this diagram will be a proper
flow.

S

A

C

E

B

D

F

TG

H

I

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

We shall first go through the algorithm, execute it on a sample
and then identify its components analyse it and prove the
min-cut max-flow theorem.

Definition (f -Augmenting Path)

An S − T path P in a network N with a flow f is f − augmenting
if replacing the flow on every edge e ∈ P by the amount on this
edge in P increases the total flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:

Given a flow f on the network N.
Label(S) = (−∞,+,+∞).
For a labelled vertex u do:
Scan(u):

For every vertex v connected by an edge to u in any
direction do:
If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).
If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).
If T is labelled STOP. You have a flow augmenting path.
Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
Given a flow f on the network N.

Label(S) = (−∞,+,+∞).
For a labelled vertex u do:
Scan(u):

For every vertex v connected by an edge to u in any
direction do:
If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).
If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).
If T is labelled STOP. You have a flow augmenting path.
Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
Given a flow f on the network N.
Label(S) = (−∞,+,+∞).

For a labelled vertex u do:
Scan(u):

For every vertex v connected by an edge to u in any
direction do:
If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).
If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).
If T is labelled STOP. You have a flow augmenting path.
Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
Given a flow f on the network N.
Label(S) = (−∞,+,+∞).
For a labelled vertex u do:

Scan(u):

For every vertex v connected by an edge to u in any
direction do:
If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).
If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).
If T is labelled STOP. You have a flow augmenting path.
Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
Given a flow f on the network N.
Label(S) = (−∞,+,+∞).
For a labelled vertex u do:
Scan(u):

For every vertex v connected by an edge to u in any
direction do:
If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).
If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).
If T is labelled STOP. You have a flow augmenting path.
Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
Given a flow f on the network N.
Label(S) = (−∞,+,+∞).
For a labelled vertex u do:
Scan(u):

For every vertex v connected by an edge to u in any
direction do:

If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).
If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).
If T is labelled STOP. You have a flow augmenting path.
Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
Given a flow f on the network N.
Label(S) = (−∞,+,+∞).
For a labelled vertex u do:
Scan(u):

For every vertex v connected by an edge to u in any
direction do:
If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).

If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).
If T is labelled STOP. You have a flow augmenting path.
Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
Given a flow f on the network N.
Label(S) = (−∞,+,+∞).
For a labelled vertex u do:
Scan(u):

For every vertex v connected by an edge to u in any
direction do:
If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).
If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).

If T is labelled STOP. You have a flow augmenting path.
Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
Given a flow f on the network N.
Label(S) = (−∞,+,+∞).
For a labelled vertex u do:
Scan(u):

For every vertex v connected by an edge to u in any
direction do:
If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).
If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).
If T is labelled STOP. You have a flow augmenting path.

Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
Given a flow f on the network N.
Label(S) = (−∞,+,+∞).
For a labelled vertex u do:
Scan(u):

For every vertex v connected by an edge to u in any
direction do:
If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).
If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).
If T is labelled STOP. You have a flow augmenting path.
Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.

Discrete Optimization Lecture-13

Ford-Fulkerson’s Max-Flow Min-Cut Algorithm

The algorithm has two procedures: “Scan” and “Label.”

Ford-Fulkerson flow augmenting algorithm:
Given a flow f on the network N.
Label(S) = (−∞,+,+∞).
For a labelled vertex u do:
Scan(u):

For every vertex v connected by an edge to u in any
direction do:
If u → v and c(u, v) > f (u, v) then
Label(v) = (u,+,w(v) = min{c(u, v)− f (u, v),w(u)}).
If u ← v and f (v ,u) > 0 then
Label(v) = (u,−,min{w(u), f (v ,u)}) (flow can be
decreased).
If T is labelled STOP. You have a flow augmenting path.
Augment the flow and execute the algorithm on the new
flow.

If T is not labelled the flow is a maximum flow.
Discrete Optimization Lecture-13

Example

Let N be the network:

S → A : 3 S → C : 7
A→ B : 5 A→ D : 4 A→ C : 2
B→ D : 2 B → T : 8
C→ B : 1 C → D : 4
D→ T : 3

Label(S) = (−∞,+,+∞)

Label(C) = (S,+,7) Label(A) = (S,+,3)
Scan(C) :
Label(B) = (C, +, 1) Label(D) = (C, +, 4)
Scan(B) :
Label(T) = (B, +, 1)
STOP! You have a flow augmenting path.

Discrete Optimization Lecture-13

Example

Let N be the network:

S → A : 3 S → C : 7
A→ B : 5 A→ D : 4 A→ C : 2
B→ D : 2 B → T : 8
C→ B : 1 C → D : 4
D→ T : 3

Label(S) = (−∞,+,+∞)

Label(C) = (S,+,7) Label(A) = (S,+,3)
Scan(C) :
Label(B) = (C, +, 1) Label(D) = (C, +, 4)
Scan(B) :
Label(T) = (B, +, 1)
STOP! You have a flow augmenting path.

Discrete Optimization Lecture-13

Example

Let N be the network:

S → A : 3 S → C : 7
A→ B : 5 A→ D : 4 A→ C : 2
B→ D : 2 B → T : 8
C→ B : 1 C → D : 4
D→ T : 3

Label(S) = (−∞,+,+∞)

Label(C) = (S,+,7) Label(A) = (S,+,3)

Scan(C) :
Label(B) = (C, +, 1) Label(D) = (C, +, 4)
Scan(B) :
Label(T) = (B, +, 1)
STOP! You have a flow augmenting path.

Discrete Optimization Lecture-13

Example

Let N be the network:

S → A : 3 S → C : 7
A→ B : 5 A→ D : 4 A→ C : 2
B→ D : 2 B → T : 8
C→ B : 1 C → D : 4
D→ T : 3

Label(S) = (−∞,+,+∞)

Label(C) = (S,+,7) Label(A) = (S,+,3)
Scan(C) :
Label(B) = (C, +, 1) Label(D) = (C, +, 4)

Scan(B) :
Label(T) = (B, +, 1)
STOP! You have a flow augmenting path.

Discrete Optimization Lecture-13

Example

Let N be the network:

S → A : 3 S → C : 7
A→ B : 5 A→ D : 4 A→ C : 2
B→ D : 2 B → T : 8
C→ B : 1 C → D : 4
D→ T : 3

Label(S) = (−∞,+,+∞)

Label(C) = (S,+,7) Label(A) = (S,+,3)
Scan(C) :
Label(B) = (C, +, 1) Label(D) = (C, +, 4)
Scan(B) :
Label(T) = (B, +, 1)

STOP! You have a flow augmenting path.

Discrete Optimization Lecture-13

Example

Let N be the network:

S → A : 3 S → C : 7
A→ B : 5 A→ D : 4 A→ C : 2
B→ D : 2 B → T : 8
C→ B : 1 C → D : 4
D→ T : 3

Label(S) = (−∞,+,+∞)

Label(C) = (S,+,7) Label(A) = (S,+,3)
Scan(C) :
Label(B) = (C, +, 1) Label(D) = (C, +, 4)
Scan(B) :
Label(T) = (B, +, 1)
STOP! You have a flow augmenting path.

Discrete Optimization Lecture-13

Using backflow: an example

Discrete Optimization Lecture-13

Analysis

Question
How bad can the Ford-Fulkerson algorithm be?

Answer
If you are not careful with the slection of your augmenting path,
the algorithm can behave very bad indeed..

Be careful how you select your augmenting paths.

 A

 1020 1020

 S 1 T

 1020 1020

 B

Discrete Optimization Lecture-13

Analysis

Question
How bad can the Ford-Fulkerson algorithm be?

Answer
If you are not careful with the slection of your augmenting path,
the algorithm can behave very bad indeed..

Be careful how you select your augmenting paths.

 A

 1020 1020

 S 1 T

 1020 1020

 B

Discrete Optimization Lecture-13

Analysis

Question
How bad can the Ford-Fulkerson algorithm be?

Answer
If you are not careful with the slection of your augmenting path,
the algorithm can behave very bad indeed..

Be careful how you select your augmenting paths.

 A

 1020 1020

 S 1 T

 1020 1020

 B

Discrete Optimization Lecture-13

Analysis

Question
How bad can the Ford-Fulkerson algorithm be?

Answer
If you are not careful with the slection of your augmenting path,
the algorithm can behave very bad indeed..

Be careful how you select your augmenting paths.

 A

 1020 1020

 S 1 T

 1020 1020

 B

Discrete Optimization Lecture-13

Analysis

Question
So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer

A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f ′(e) = c(e) or for some edge e with f (e) > 0, f ′(e) = 0.
How can we use this observation to bound the number of
iterations?
At any iteration we have three types of edges:

Edges e for which f (e) < c(e).
Edges e for which f (e) > 0
Edges e for which f (e) = c(e).

Discrete Optimization Lecture-13

Analysis

Question
So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer

A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f ′(e) = c(e) or for some edge e with f (e) > 0, f ′(e) = 0.
How can we use this observation to bound the number of
iterations?
At any iteration we have three types of edges:

Edges e for which f (e) < c(e).
Edges e for which f (e) > 0
Edges e for which f (e) = c(e).

Discrete Optimization Lecture-13

Analysis

Question
So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer
A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f ′(e) = c(e) or for some edge e with f (e) > 0, f ′(e) = 0.

How can we use this observation to bound the number of
iterations?
At any iteration we have three types of edges:

Edges e for which f (e) < c(e).
Edges e for which f (e) > 0
Edges e for which f (e) = c(e).

Discrete Optimization Lecture-13

Analysis

Question
So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer
A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f ′(e) = c(e) or for some edge e with f (e) > 0, f ′(e) = 0.
How can we use this observation to bound the number of
iterations?

At any iteration we have three types of edges:

Edges e for which f (e) < c(e).
Edges e for which f (e) > 0
Edges e for which f (e) = c(e).

Discrete Optimization Lecture-13

Analysis

Question
So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer
A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f ′(e) = c(e) or for some edge e with f (e) > 0, f ′(e) = 0.
How can we use this observation to bound the number of
iterations?
At any iteration we have three types of edges:

Edges e for which f (e) < c(e).
Edges e for which f (e) > 0
Edges e for which f (e) = c(e).

Discrete Optimization Lecture-13

Analysis

Question
So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer
A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f ′(e) = c(e) or for some edge e with f (e) > 0, f ′(e) = 0.
How can we use this observation to bound the number of
iterations?
At any iteration we have three types of edges:

Edges e for which f (e) < c(e).

Edges e for which f (e) > 0
Edges e for which f (e) = c(e).

Discrete Optimization Lecture-13

Analysis

Question
So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer
A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f ′(e) = c(e) or for some edge e with f (e) > 0, f ′(e) = 0.
How can we use this observation to bound the number of
iterations?
At any iteration we have three types of edges:

Edges e for which f (e) < c(e).
Edges e for which f (e) > 0

Edges e for which f (e) = c(e).

Discrete Optimization Lecture-13

Analysis

Question
So how efficient is the Ford-Fulkerson algorithm? The size of
the network should not depend on the capacity values. Can we
estimate the number of “scans” in term of the number of edges
and vertices?

Answer
A closer study of the algorithm shows that at every
augmentation of a flow f either for some edge
e, f ′(e) = c(e) or for some edge e with f (e) > 0, f ′(e) = 0.
How can we use this observation to bound the number of
iterations?
At any iteration we have three types of edges:

Edges e for which f (e) < c(e).
Edges e for which f (e) > 0
Edges e for which f (e) = c(e).

Discrete Optimization Lecture-13

Analysis, continued

We define a network Nf = (V ,Ef) as follows:
If f ((x , y)) < c((x , y)) then (x , y) ∈ Ef .

If f ((x , y)) > 0 then (y , x) ∈ Ef

Note that if 0 < f ((x , y)) < c((x , y)) then both
(x , y) and (y , x) ∈ Ef .

Observation

Let α(N) be the length of the shortest S − T path in the
network N.
Let A(N) = {e ∈ E | e ∈ some shortest S − T path}.
If N ′ = (V ,E ∪ {(y , x)}) (x , y) ∈ E then
α(N ′) = α(N) and A(N ′) = A(N).

Discrete Optimization Lecture-13

Analysis, continued

We define a network Nf = (V ,Ef) as follows:
If f ((x , y)) < c((x , y)) then (x , y) ∈ Ef .
If f ((x , y)) > 0 then (y , x) ∈ Ef

Note that if 0 < f ((x , y)) < c((x , y)) then both
(x , y) and (y , x) ∈ Ef .

Observation

Let α(N) be the length of the shortest S − T path in the
network N.
Let A(N) = {e ∈ E | e ∈ some shortest S − T path}.
If N ′ = (V ,E ∪ {(y , x)}) (x , y) ∈ E then
α(N ′) = α(N) and A(N ′) = A(N).

Discrete Optimization Lecture-13

Analysis, continued

We define a network Nf = (V ,Ef) as follows:
If f ((x , y)) < c((x , y)) then (x , y) ∈ Ef .
If f ((x , y)) > 0 then (y , x) ∈ Ef

Note that if 0 < f ((x , y)) < c((x , y)) then both
(x , y) and (y , x) ∈ Ef .

Observation

Let α(N) be the length of the shortest S − T path in the
network N.
Let A(N) = {e ∈ E | e ∈ some shortest S − T path}.
If N ′ = (V ,E ∪ {(y , x)}) (x , y) ∈ E then
α(N ′) = α(N) and A(N ′) = A(N).

Discrete Optimization Lecture-13

Analysis, continued

We define a network Nf = (V ,Ef) as follows:
If f ((x , y)) < c((x , y)) then (x , y) ∈ Ef .
If f ((x , y)) > 0 then (y , x) ∈ Ef

Note that if 0 < f ((x , y)) < c((x , y)) then both
(x , y) and (y , x) ∈ Ef .

Observation

Let α(N) be the length of the shortest S − T path in the
network N.
Let A(N) = {e ∈ E | e ∈ some shortest S − T path}.
If N ′ = (V ,E ∪ {(y , x)}) (x , y) ∈ E then
α(N ′) = α(N) and A(N ′) = A(N).

Discrete Optimization Lecture-13

Analysis, continued

We define a network Nf = (V ,Ef) as follows:
If f ((x , y)) < c((x , y)) then (x , y) ∈ Ef .
If f ((x , y)) > 0 then (y , x) ∈ Ef

Note that if 0 < f ((x , y)) < c((x , y)) then both
(x , y) and (y , x) ∈ Ef .

Observation
Let α(N) be the length of the shortest S − T path in the
network N.

Let A(N) = {e ∈ E | e ∈ some shortest S − T path}.
If N ′ = (V ,E ∪ {(y , x)}) (x , y) ∈ E then
α(N ′) = α(N) and A(N ′) = A(N).

Discrete Optimization Lecture-13

Analysis, continued

We define a network Nf = (V ,Ef) as follows:
If f ((x , y)) < c((x , y)) then (x , y) ∈ Ef .
If f ((x , y)) > 0 then (y , x) ∈ Ef

Note that if 0 < f ((x , y)) < c((x , y)) then both
(x , y) and (y , x) ∈ Ef .

Observation
Let α(N) be the length of the shortest S − T path in the
network N.
Let A(N) = {e ∈ E | e ∈ some shortest S − T path}.

If N ′ = (V ,E ∪ {(y , x)}) (x , y) ∈ E then
α(N ′) = α(N) and A(N ′) = A(N).

Discrete Optimization Lecture-13

Analysis, continued

We define a network Nf = (V ,Ef) as follows:
If f ((x , y)) < c((x , y)) then (x , y) ∈ Ef .
If f ((x , y)) > 0 then (y , x) ∈ Ef

Note that if 0 < f ((x , y)) < c((x , y)) then both
(x , y) and (y , x) ∈ Ef .

Observation
Let α(N) be the length of the shortest S − T path in the
network N.
Let A(N) = {e ∈ E | e ∈ some shortest S − T path}.
If N ′ = (V ,E ∪ {(y , x)}) (x , y) ∈ E then
α(N ′) = α(N) and A(N ′) = A(N).

Discrete Optimization Lecture-13

Final remarks

If f1 is an augmentation of the flow f along a shortest path
in the network N then Nf1 is a subgraph of the netwrok
Nf ∪ {(y , x) | (x , y) ∈ Nf .

Therefore α(Nf1) = α(Nf) but A(Nf−1) (A(Nf).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in Nf is reduced.

When the number of edges in Nf is zero we have a
maximum flow.

So at each augmentation the algorithm will construct first
all shortest paths (Dijkstra’s algorithm) then scan all
edges. So the running time of this algorithm will be
c · |V | · |E |2.

Discrete Optimization Lecture-13

Final remarks

If f1 is an augmentation of the flow f along a shortest path
in the network N then Nf1 is a subgraph of the netwrok
Nf ∪ {(y , x) | (x , y) ∈ Nf .

Therefore α(Nf1) = α(Nf) but A(Nf−1) (A(Nf).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in Nf is reduced.

When the number of edges in Nf is zero we have a
maximum flow.

So at each augmentation the algorithm will construct first
all shortest paths (Dijkstra’s algorithm) then scan all
edges. So the running time of this algorithm will be
c · |V | · |E |2.

Discrete Optimization Lecture-13

Final remarks

If f1 is an augmentation of the flow f along a shortest path
in the network N then Nf1 is a subgraph of the netwrok
Nf ∪ {(y , x) | (x , y) ∈ Nf .

Therefore α(Nf1) = α(Nf) but A(Nf−1) (A(Nf).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in Nf is reduced.

When the number of edges in Nf is zero we have a
maximum flow.

So at each augmentation the algorithm will construct first
all shortest paths (Dijkstra’s algorithm) then scan all
edges. So the running time of this algorithm will be
c · |V | · |E |2.

Discrete Optimization Lecture-13

Final remarks

If f1 is an augmentation of the flow f along a shortest path
in the network N then Nf1 is a subgraph of the netwrok
Nf ∪ {(y , x) | (x , y) ∈ Nf .

Therefore α(Nf1) = α(Nf) but A(Nf−1) (A(Nf).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in Nf is reduced.

When the number of edges in Nf is zero we have a
maximum flow.

So at each augmentation the algorithm will construct first
all shortest paths (Dijkstra’s algorithm) then scan all
edges. So the running time of this algorithm will be
c · |V | · |E |2.

Discrete Optimization Lecture-13

Final remarks

If f1 is an augmentation of the flow f along a shortest path
in the network N then Nf1 is a subgraph of the netwrok
Nf ∪ {(y , x) | (x , y) ∈ Nf .

Therefore α(Nf1) = α(Nf) but A(Nf−1) (A(Nf).

So by choosing an augmentating path along a shortest
path we guarantee that regardless of the capacities sizes,
the number of edges in Nf is reduced.

When the number of edges in Nf is zero we have a
maximum flow.

So at each augmentation the algorithm will construct first
all shortest paths (Dijkstra’s algorithm) then scan all
edges. So the running time of this algorithm will be
c · |V | · |E |2.

Discrete Optimization Lecture-13

Definition
An S − T cut is a set of edges in a netwrok whose removal
disconnects S from T .

Example

The edges (S,A), (S,C), (S,E) form a cut in Example-1.

Theorem
If C is a cut in the network N(V ,E) and f : E → R+ is a flow of
value V0 then c(C) the capcity of the cut is ≤ V0

Corollary (Min Cut Max Flow Theorem)
In a netwrok N(V ,E) the largest flow and the minimum cut have
the same size.

Discrete Optimization Lecture-13

Definition
An S − T cut is a set of edges in a netwrok whose removal
disconnects S from T .

Example

The edges (S,A), (S,C), (S,E) form a cut in Example-1.

Theorem
If C is a cut in the network N(V ,E) and f : E → R+ is a flow of
value V0 then c(C) the capcity of the cut is ≤ V0

Corollary (Min Cut Max Flow Theorem)
In a netwrok N(V ,E) the largest flow and the minimum cut have
the same size.

Discrete Optimization Lecture-13

Definition
An S − T cut is a set of edges in a netwrok whose removal
disconnects S from T .

Example

The edges (S,A), (S,C), (S,E) form a cut in Example-1.

Theorem
If C is a cut in the network N(V ,E) and f : E → R+ is a flow of
value V0 then c(C) the capcity of the cut is ≤ V0

Corollary (Min Cut Max Flow Theorem)
In a netwrok N(V ,E) the largest flow and the minimum cut have
the same size.

Discrete Optimization Lecture-13

Definition
An S − T cut is a set of edges in a netwrok whose removal
disconnects S from T .

Example

The edges (S,A), (S,C), (S,E) form a cut in Example-1.

Theorem
If C is a cut in the network N(V ,E) and f : E → R+ is a flow of
value V0 then c(C) the capcity of the cut is ≤ V0

Corollary (Min Cut Max Flow Theorem)
In a netwrok N(V ,E) the largest flow and the minimum cut have
the same size.

Discrete Optimization Lecture-13

Circulation

Definition
A weighted directed graph D(V ,E) with a weight function
f (u, v)→ R in which for every vertex v ∈ V:∑

u∈N+(v)
f (v ,u) =

∑
u∈N−(v)

f (u, v)

is called a circulation.

Comment
1. In a circulation the weights do not have to be positive.

2. A network can be converted to a circulation if the total coming
into the sink T is equal to the total coming out of the source S

Discrete Optimization Lecture-13

Circulation

Definition
A weighted directed graph D(V ,E) with a weight function
f (u, v)→ R in which for every vertex v ∈ V:∑

u∈N+(v)
f (v ,u) =

∑
u∈N−(v)

f (u, v)

is called a circulation.

Comment
1. In a circulation the weights do not have to be positive.

2. A network can be converted to a circulation if the total coming
into the sink T is equal to the total coming out of the source S

Discrete Optimization Lecture-13

Circulation

Definition
A weighted directed graph D(V ,E) with a weight function
f (u, v)→ R in which for every vertex v ∈ V:∑

u∈N+(v)
f (v ,u) =

∑
u∈N−(v)

f (u, v)

is called a circulation.

Comment
1. In a circulation the weights do not have to be positive.

2. A network can be converted to a circulation if the total coming
into the sink T is equal to the total coming out of the source S

Discrete Optimization Lecture-13

Circulation

Definition
A weighted directed graph D(V ,E) with a weight function
f (u, v)→ R in which for every vertex v ∈ V:∑

u∈N+(v)
f (v ,u) =

∑
u∈N−(v)

f (u, v)

is called a circulation.

Comment
1. In a circulation the weights do not have to be positive.
2. A network can be converted to a circulation if the total coming
into the sink T is equal to the total coming out of the source S

Discrete Optimization Lecture-13

Circulations

Theorem
If f is a weight function on a circulation D(V ,E) then there is an
N-circulation g on D such that bf (e)c ≤ g(e) ≤ df (e)e ∀e ∈ E.

Let bf (e)c ≥ g(e) ≥ df (e)e be a weight function that
maximizes the number of edges for which g(e) ∈ Z .
Let D1 be the subgraph of D spanned by the edges for
which g(e) is not an integer.
∀e = (x , y) ∈ D1 there must be an edge e′ = (y , x) ∈ D1

D1 contains a cycle C.
Let g′(e) = g(e) + α ∀e ∈ C we get a new weight function.
Clearly α can be chosen so that
bf (e)c ≤ g′(e) + α ≤ df (e)e for at least one edge of the
cycle will be an integer.
This contradicts the choice of g.

Discrete Optimization Lecture-13

Circulations

Theorem
If f is a weight function on a circulation D(V ,E) then there is an
N-circulation g on D such that bf (e)c ≤ g(e) ≤ df (e)e ∀e ∈ E.

Let bf (e)c ≥ g(e) ≥ df (e)e be a weight function that
maximizes the number of edges for which g(e) ∈ Z .

Let D1 be the subgraph of D spanned by the edges for
which g(e) is not an integer.
∀e = (x , y) ∈ D1 there must be an edge e′ = (y , x) ∈ D1

D1 contains a cycle C.
Let g′(e) = g(e) + α ∀e ∈ C we get a new weight function.
Clearly α can be chosen so that
bf (e)c ≤ g′(e) + α ≤ df (e)e for at least one edge of the
cycle will be an integer.
This contradicts the choice of g.

Discrete Optimization Lecture-13

Circulations

Theorem
If f is a weight function on a circulation D(V ,E) then there is an
N-circulation g on D such that bf (e)c ≤ g(e) ≤ df (e)e ∀e ∈ E.

Let bf (e)c ≥ g(e) ≥ df (e)e be a weight function that
maximizes the number of edges for which g(e) ∈ Z .
Let D1 be the subgraph of D spanned by the edges for
which g(e) is not an integer.

∀e = (x , y) ∈ D1 there must be an edge e′ = (y , x) ∈ D1

D1 contains a cycle C.
Let g′(e) = g(e) + α ∀e ∈ C we get a new weight function.
Clearly α can be chosen so that
bf (e)c ≤ g′(e) + α ≤ df (e)e for at least one edge of the
cycle will be an integer.
This contradicts the choice of g.

Discrete Optimization Lecture-13

Circulations

Theorem
If f is a weight function on a circulation D(V ,E) then there is an
N-circulation g on D such that bf (e)c ≤ g(e) ≤ df (e)e ∀e ∈ E.

Let bf (e)c ≥ g(e) ≥ df (e)e be a weight function that
maximizes the number of edges for which g(e) ∈ Z .
Let D1 be the subgraph of D spanned by the edges for
which g(e) is not an integer.
∀e = (x , y) ∈ D1 there must be an edge e′ = (y , x) ∈ D1

D1 contains a cycle C.
Let g′(e) = g(e) + α ∀e ∈ C we get a new weight function.
Clearly α can be chosen so that
bf (e)c ≤ g′(e) + α ≤ df (e)e for at least one edge of the
cycle will be an integer.
This contradicts the choice of g.

Discrete Optimization Lecture-13

Circulations

Theorem
If f is a weight function on a circulation D(V ,E) then there is an
N-circulation g on D such that bf (e)c ≤ g(e) ≤ df (e)e ∀e ∈ E.

Let bf (e)c ≥ g(e) ≥ df (e)e be a weight function that
maximizes the number of edges for which g(e) ∈ Z .
Let D1 be the subgraph of D spanned by the edges for
which g(e) is not an integer.
∀e = (x , y) ∈ D1 there must be an edge e′ = (y , x) ∈ D1

D1 contains a cycle C.

Let g′(e) = g(e) + α ∀e ∈ C we get a new weight function.
Clearly α can be chosen so that
bf (e)c ≤ g′(e) + α ≤ df (e)e for at least one edge of the
cycle will be an integer.
This contradicts the choice of g.

Discrete Optimization Lecture-13

Circulations

Theorem
If f is a weight function on a circulation D(V ,E) then there is an
N-circulation g on D such that bf (e)c ≤ g(e) ≤ df (e)e ∀e ∈ E.

Let bf (e)c ≥ g(e) ≥ df (e)e be a weight function that
maximizes the number of edges for which g(e) ∈ Z .
Let D1 be the subgraph of D spanned by the edges for
which g(e) is not an integer.
∀e = (x , y) ∈ D1 there must be an edge e′ = (y , x) ∈ D1

D1 contains a cycle C.
Let g′(e) = g(e) + α ∀e ∈ C we get a new weight function.

Clearly α can be chosen so that
bf (e)c ≤ g′(e) + α ≤ df (e)e for at least one edge of the
cycle will be an integer.
This contradicts the choice of g.

Discrete Optimization Lecture-13

Circulations

Theorem
If f is a weight function on a circulation D(V ,E) then there is an
N-circulation g on D such that bf (e)c ≤ g(e) ≤ df (e)e ∀e ∈ E.

Let bf (e)c ≥ g(e) ≥ df (e)e be a weight function that
maximizes the number of edges for which g(e) ∈ Z .
Let D1 be the subgraph of D spanned by the edges for
which g(e) is not an integer.
∀e = (x , y) ∈ D1 there must be an edge e′ = (y , x) ∈ D1

D1 contains a cycle C.
Let g′(e) = g(e) + α ∀e ∈ C we get a new weight function.
Clearly α can be chosen so that
bf (e)c ≤ g′(e) + α ≤ df (e)e for at least one edge of the
cycle will be an integer.

This contradicts the choice of g.

Discrete Optimization Lecture-13

Circulations

Theorem
If f is a weight function on a circulation D(V ,E) then there is an
N-circulation g on D such that bf (e)c ≤ g(e) ≤ df (e)e ∀e ∈ E.

Let bf (e)c ≥ g(e) ≥ df (e)e be a weight function that
maximizes the number of edges for which g(e) ∈ Z .
Let D1 be the subgraph of D spanned by the edges for
which g(e) is not an integer.
∀e = (x , y) ∈ D1 there must be an edge e′ = (y , x) ∈ D1

D1 contains a cycle C.
Let g′(e) = g(e) + α ∀e ∈ C we get a new weight function.
Clearly α can be chosen so that
bf (e)c ≤ g′(e) + α ≤ df (e)e for at least one edge of the
cycle will be an integer.
This contradicts the choice of g.

Discrete Optimization Lecture-13

Summary

Remark

If all capacities in a netwrok N(V ,e) are integers then the
maximum flow is also an integer.
If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.
Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.

Netwrokflows have numerous applications in discrete
optimization. We shall attempt to see some in the exercises.

Discrete Optimization Lecture-13

Summary

Remark
If all capacities in a netwrok N(V ,e) are integers then the
maximum flow is also an integer.

If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.
Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.

Netwrokflows have numerous applications in discrete
optimization. We shall attempt to see some in the exercises.

Discrete Optimization Lecture-13

Summary

Remark
If all capacities in a netwrok N(V ,e) are integers then the
maximum flow is also an integer.
If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.

Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.

Netwrokflows have numerous applications in discrete
optimization. We shall attempt to see some in the exercises.

Discrete Optimization Lecture-13

Summary

Remark
If all capacities in a netwrok N(V ,e) are integers then the
maximum flow is also an integer.
If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.
Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.

Netwrokflows have numerous applications in discrete
optimization. We shall attempt to see some in the exercises.

Discrete Optimization Lecture-13

Summary

Remark
If all capacities in a netwrok N(V ,e) are integers then the
maximum flow is also an integer.
If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.
Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.

Netwrokflows have numerous applications in discrete
optimization. We shall attempt to see some in the exercises.

Discrete Optimization Lecture-13

Summary

Remark
If all capacities in a netwrok N(V ,e) are integers then the
maximum flow is also an integer.
If all capacities are rational then the Ford-Fulkerson
algorithm will terminate.
Curiously, there are small netwroks with irrational
capacities for which the Ford-Fulkerson algorithm will run
forever.

Netwrokflows have numerous applications in discrete
optimization. We shall attempt to see some in the exercises.

Discrete Optimization Lecture-13

