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1 Introduction

“Polyhedron” means different things to different people. There is very little
in common between the meaning of the word in topology and in geometry.
But even if we confine attention to geometry of the 3-dimensional Euclidean
space – as we shall do from now on – “polyhedron” can mean either a solid
(as in “Platonic solids”, convex polyhedron, and other contexts), or a surface
(such as the polyhedral models constructed from cardboard using “nets”,
which were introduced by Albrecht Dürer [17] in 1525, or, in a more mod-
ern version, by Aleksandrov [1]), or the 1-dimensional complex consisting of
points (“vertices”) and line-segments (“edges”) organized in a suitable way
into polygons (“faces”) subject to certain restrictions (“skeletal polyhedra”,
diagrams of which have been presented first by Luca Pacioli [44] in 1498 and
attributed to Leonardo da Vinci). The last alternative is the least usual one
– but it is close to what seems to be the most useful approach to the theory
of general polyhedra. Indeed, it does not restrict faces to be planar, and
it makes possible to retrieve the other characterizations in circumstances in
which they reasonably apply: If the faces of a “surface” polyhedron are sim-
ple polygons, in most cases the polyhedron is unambiguously determined by
the boundary circuits of the faces. And if the polyhedron itself is without
selfintersections, then the “solid” can be found from the faces. These reasons,
as well as some others, seem to warrant the choice of our approach.

Before deciding on the particular choice of definition, the following facts
– which I often mention at the start of courses or lectures on polyhedra –
should be considered. The regular polyhedra were enumerated by the math-
ematicians of ancient Greece; an account of these five “Platonic solids” is
the final topic of Euclid’s “Elements” [18]. Although this list was considered
to be complete, two millennia later Kepler [38] found two additional regular
polyhedra, and in the early 1800’s Poinsot [45] found these two as well as
two more; Cauchy [7] soon proved that there are no others. But in the 1920’s
Petrie and Coxeter found (see [8]) three new regular polyhedra, and proved
the completeness of that enumeration. However, in 1977 I found [21] a whole
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lot of new regular polyhedra, and soon thereafter Dress proved [15], [16] that
one needs to add just one more polyhedron to make my list complete. Then,
about ten years ago I found [22] a whole slew of new regular polyhedra, and
so far nobody claimed to have found them all.

How come that results established by such accomplished mathematicians
as Euclid, Cauchy, Coxeter, Dress were seemingly disproved after a while?
The answer is simple – all the results mentioned are completely valid; what
changed is the meaning in which the word “polyhedron” is used. As long
as different people interpret the concept in different ways there is always
the possibility that results true under one interpretation are false with other
understandings. As a matter of fact, even slight variations in the definitions
of concepts often entail significant changes in results.

In some ways the present situation concerning polyhedra is somewhat
analogous to the one that developed in ancient Greece after the discovery of
incommensurable quantities. Although many of the results in geometry were
not affected by the existence of such quantities, it was philosophically and
logically important to find a reasonable and effective approach for dealing
with them. In recent years, several papers dealing with more or less general
polyhedra appeared. However, the precise boundaries of the concept of poly-
hedra are mostly not explicitly stated, and even if explanations are given –
they appear rather arbitrary and tailored to the needs of the moment [12] or
else aimed at objects with great symmetry [40]. The main purpose of this
paper is to present an internally consistent and quite general approach, and
to illustrate its effectiveness by a number of examples.

In the detailed discussions presented in the following sections we shall
introduce various restrictions as appropriate to the classes of polyhedra con-
sidered. However, I believe that in order to develop any general theory of
polyhedra we should be looking for a definition that satisfies the following
(admittedly somewhat fuzzy) conditions.

(i) The generality should be restricted only for very good reasons, and not
arbitrarily or because of tradition. As an example, there is no justification
for the claim that for a satisfactory theory one needs to exclude polyhedra
that contain coplanar faces. (Thus, if we were to interpret the two regular
star-polyhedra found by Kepler as solids – the way they are usually shown –
each would be bounded by 60 congruent triangles. Since quintuplets of trian-
gles are coplanar, these “polyhedra” would be inadmissible.) In particular,
the definition should not be tailored to fit a special class of polyhedra (for
example, the regular ones, or the uniform polyhedra), in such a way that it
is more or less meaningless in less restricted situations (such as the absence
of high symmetry).

(ii) The combinatorial type should remain constant under continuous
changes of the polyhedron. This is in contrast to the situation concerning
the usual approach to convex polyhedra, where the combinatorial type is
easily seen to be discontinuous. The point is illustrated in Figure 1, where
the first three diagrams show pentagonal dodecahedra that are becoming
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Fig. 1. The polyhedron with pairs of coplanar faces (at right in bottom row) is
not a cube (even though the set of its points coincides with that of a cube) but is a
pentagonal dodecahedron. It marks the transition between convex and nonconvex
realizations of the same combinatorial type. Realizations of two polyhedra that
have different combinatorial structure but coincide as sets of points (such as the
cube and the above dodecahedron) are said to be isomeghethic (from Greek µεγεθoσ
– extent, bulk).

more box-like, till pairs of faces turn coplanar for the fourth polyhedron. We
wish to consider this 12-faced polyhedron as distinct from the cube, and as
just a transitional step from convex to nonconvex polyhedra (as shown in the
later parts of Figure 1), – all with the same combinatorial structure .

(iii) To every combinatorial type of polyhedron there should correspond a
dual type. This is a familiar condition which is automatically satisfied by
convex polyhedra, and is frequently stated as valid in all circumstances –
although in fact it fails in some cases. We shall discuss this in Section 3.

Preparatory for the discussion of polyhedra, in Section 2 we consider
polygons. Our working definition of “polyhedron” is presented and illustrated
in Section 3. Sections 4 to 8 are devoted to the analysis of some specific classes
of polyhedra that have been discussed in the literature and for which we
believe the present approach provides a better and more consistent framework
than previously available.

2 Polygons

Since we consider polyhedra as families of points, segments and polygons
(subject to appropriate conditions), it is convenient to discuss polygons first.
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Like “polyhedron”, the word “polygon” has been (and still is) interpreted in
various ways.

A polygon (specifically, an n-gon for some n ≥ 3) is a cyclically ordered
sequence of arbitrarily chosen points V1, V2, . . . , Vn, (the vertices of the
polygon), together with the segments Ei determined by pairs of vertices Vi,
Vi+1 adjacent in the cyclic order (the edges of the polygon). Each vertex
Vi is said to be incident with edges Ei−1 and Ei, and these edges only.
Here and in the sequel subscripts should be understood mod n. Polygons
were first considered in close to this generality by Meister [41] nearly 250
years ago. (The assertion by Günther [30, p. 25] and Steinitz [52, p. 4] that
already Girard [20] had this perception of “polygon” seems unjustified.) As
explicitly stressed by Meister, this definition implies that distinct vertices
of a polygon may be represented by the same point, without losing their
individuality, and without becoming incident with additional edges even if the
point representing a vertex is situated on another edge. Hence the definition
admits various unexpected possibilities: edges of length 0; collinear edges –
adjacent or not; edges overlapping or coinciding in pairs or larger sets; the
concurrence of three or more edges. In order to simplify the language, the
locution “vertices coincide” is to be interpreted as “the points representing
the distinct vertices coincide”; similarly for edges.

Most of the important writings on polygons after Meister (such as Poinsot
[45], Cauchy [7], Möbius [42], Wiener [55], Steinitz [52], Coxeter [9]) formu-
late the definition in the same way or equivalent ones, even though in some
cases certain restrictions are added; for example, Möbius insists that the
polygon not be contained in a line. However, all these writers tacitly assume
that no two vertices fall on coinciding points. It is unfortunate that Günther
[30, pp. 44ff] misunderstands Meister and imputes to him the same restric-
tion. Other authors (for example, Brückner [3, p. 1], Hess [32, p. 611]) insist
explicitly in their definitions that no two vertices of a polygon are at the
same point; but later Brückner [3, p. 2] gives another definition, that coin-
cides with ours, apparently written under the impression that it has the same
meaning as his earlier one. However, disallowing representation of distinct
vertices by one point is a crippling restriction which, I believe, is one of the
causes for the absence of an internally consistent general theory of polyhedra.
(The present definition coincides with what were called unicursal polygons in
[23], where more general objects were admitted as “polygons”.)

It should be mentioned that all these authors define a polygon as being
a single circuit; Möbius explicitly states that it would be contrary to the
customary meaning of the word if one were to call “hexagon” the figure
formed by two triangles. This seems to have had little influence on later
writers. For example, without any formalities or explanations, Brückner [3,
p. 6] introduces such figures as “discontinuous polygons”, in contradiction to
his own earlier definition of “polygon”. Hess [32] has a more vague definition
of polygons, and explicitly allows “discontinuous” ones.
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Since the number of “essentially different” shapes possible for n-gons in-
creases very rapidly with increasing n, it is reasonable and useful to consider
various special classes which can be surveyed more readily. The historically
and practically most important classes are defined by symmetries, that is, by
isometric transformations of the plane of the polygon that map the polygon
onto itself. In case some of the vertices coincide, symmetries should be con-
sidered as consisting of an isometry paired with a permutation of the vertices.
Thus, the quadrangle in Figure 2 does not admit a 120◦ rotational symmetry,
but it admits a reflection in a vertical mirror paired with the permutation
(12)(34). Clearly, all symmetries of any polygon form a group, its symmetry
group.

A polygon is called isogonal [isotoxal, regular ] provided its vertices [edges,
flags] form a single orbit under its symmetry group. (A flag is a pair consisting
of a vertex and one of the edges incident with it.) It is easily proved that a
polygon is regular if and only if it is both isogonal and isotoxal. Moreover,
if n ≥ 3 is odd, every isogonal n-gon is regular, as is every isotoxal one.
The more interesting situation of even n is illustrated for n = 6 in Figure 3.
Similar illustrations of the possibilities for other values of n appear in [23],
[24], [25].

Two consequences of the above definition of polygons deserve to be specif-
ically mentioned; both are evident in Figure 3, and become even more pro-
nounced for larger n. First, all isogonal n-gons fit into a small number of
continua, and so do all isotoxal n-gons. If polygons having some coinciding
vertices were excluded, the continua would be artificially split into several
components, and the continuity would largely disappear. Second, the number
of regular polygons would be considerably decreased. Under our definitions,
for every pair of integers n and d, with 0 ≤ d ≤ n/2, there exists a regular
n-gon, denoted by its Schläfli symbol {n/d}. The construction of polygons
{n/d} inscribed in a unit circle can be described as follows (this was first for-

1 2

3,4

Fig. 2. This polygon looks like an equilateral triangle, but is in fact a quadrangle
with two coinciding vertices. Besides the identity, the only symmetry it admits is a
reflection (in a vertical mirror through the coinciding vertices 3 and 4) paired with
the permutation (12)(34).
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Fig. 3. Illustration of some of the polygons with high symmetry; shown is the case
of hexagons. Isogonal polygons are shown in parts (a), (b), (c). Isotoxal polygons
(in which all edges form one orbit under symmetries) are shown in parts (b), (c),
(d). Representatives of the various shapes that isogonal or isotoxal hexagons can
assume are illustrated. Regular polygons are indicated by their Schläfli symbol
{n/d}.

mulated by Meister [41], and was also stated by Poinsot [45]): From a point
on the circle, taken as the first vertex, advance to the next vertex by turning
through an angle of 2πd/n, and repeat this procedure from each resulting
point till the starting point is reached at the nth step. Naturally, depending
on the values of n and d, some of the intermediate vertices may coincide,
but their identities are determined by the number of steps that led to them.
Thus, for example, {6/0} has six coinciding vertices, {6/2} has three pairs
of coinciding vertices, and {6/3} has two triplets of coinciding vertices; in
contrast, all vertices of {6/1} are distinct. It takes no effort to realize that
all vertices of {n/d} will be distinct if and only if n and d > 0 are relatively
prime. This connection between geometry and number theory was stressed
by Poinsot and all writers following his example, and seems to have been
one of the reasons why they banished from consideration all polygons with
coinciding vertices. This was done despite the fact that the various results
concerning angles, areas and other properties of regular polygons remain valid
regardless of the relative primeness of n and d. Moreover, allowing polygons
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with coinciding vertices is essential if one wishes to have continuity in the
combinatorial types of polyhedra.

One other consideration requires admitting polygons – and in particu-
lar, regular polygons – with coinciding vertices. In the present paper we are
concerned with unoriented polygons; however, in some situations it is conve-
nient or necessary to assign to each polygon an orientation. This yields two
oriented polygons for each unoriented {n/d} (except if d = 0 or d = n/2).
Among regular polygons it is convenient to understand that the rotations
through 2πd/n yielding {n/d} are taken in the positive orientation; then the
polygon oppositely oriented to {n/d} is {n/e}, where e = n − d. Thus, ori-
ented regular polygons {n/d} exist for all n > d ≥ 0, and these n polygons are
all distinct. The appropriateness of such a convention is made evident by its
applicability in many results concerning arbitrary polygons. It would lead us
too far to describe these results, which can be interpreted as consequences of
the possibility of expressing every n-gon as a weighted sum (in an appropriate
sense) of regular polygons. The results range from Napoleon-type theorems
to the elucidations of limits of iterations of various averaging operations on
polygons. Detailed information about such applications, which would not be
possible under the Poinsot restriction, may be found in [2], [13], [14], [19],
[39], [43], [46], [47], [48], and in their references.

3 Definition of Polyhedron

In my opinion, the most satisfying way to approach the definition of polyhedra
is to distinguish between the combinatorial structure of a polyhedron,
and the geometric realizations of this combinatorial structure. We start
by listing the conditions under which a collection of objects called vertices,
edges, and faces will be called an abstract polyhedron. The conditions involve
a (primitive) relation of incidence, and a (derived) relation of adjacence. In
an abstract way of thinking, an edge is a pair of vertices, and a face is a circuit
of edges. More specifically, in an abstract polyhedron we have to have:

(P1) Each edge is incident with precisely two distinct vertices and two
distinct faces.

Each of the two vertices is said to be incident (via the edge in question)
with each of the two faces. Two vertices incident with an edge are said to be
adjacent ; also, two faces incident with an edge are said to be adjacent .

(P2) For each edge, given a vertex and a face incident with it, there is
precisely one other edge incident to the same vertex and face.

This edge is said to be adjacent to the starting edge.
(P3f) For each face there is an integer k, such that the edges incident

with the face, and the vertices incident with it via the edges, form a circuit in
the sense that they can be labeled as V1E1V2E2V3E3 . . .Vk−1Ek−1VkEkV1,
where each edge Ei is incident with vertices Vi and Vi+1, and adjacent to
edges Ei−1 and Ei+1. All edges and all vertices of the circuit are distinct, all
subscripts are taken mod k, and k ≥ 3.
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(P3v) For each vertex there is an integer j, such that the edges incident
with the vertex, and the faces incident with it via the edges, form a circuit in
the sense that they can be labeled as F1E1F2E2F3E3 . . .Fj1Ej1FjEjF1, where
each edge Ei is incident with faces Fi and Fi+1, and adjacent to edges Ei−1

and Ei+1. All edges and all faces of the circuit are distinct, all subscripts are
taken mod j, and j ≥ 3.

Thus, each face corresponds to a simple circuit of length at least 3, and
similarly for the circuits that correspond to the vertices; the latter circuits
are known as vertex stars .

(P4) If two edges are incident with the same two vertices [faces], then the
four faces [vertices] incident with the two edges are all distinct.

(P5f) Each pair F, F* of faces is connected, for some j, through a finite
chain F1E1F2E2F3E3 . . . Fj1Ej1Fj of incident edges and faces, with F1 = F
and Fj = F*.

(P5v) Each pair V, V* of vertices is connected, for some j, through a finite
chain V1E1V2E2V3E3 . . .Vj1Ej−1Vj of incident edges and vertices, with V1

= V and Vj = V*.
It should be noted that with this definition, the duality requirement is

satisfied in an essentially trivial way: Given an abstract polyhedron, a dual
abstract polyhedron is obtained by interchanging “vertices” and “faces”. The
formulation of the conditions (P1) to (P5) shows that they will be satisfied
after such an exchange.

A symmetry of an abstract polyhedron is an automorphism induced by
incidence-preserving permutations of the vertices, the edges, and the faces. In
most cases we shall encounter, such an automorphism is already determined
by a permutation of the vertices.

It is clear that the above definition could have been formulated as per-
taining to a special class of cell-complexes representing 2-dimensional closed
manifolds. In fact, each face may be understood as the boundary of a 2-
dimensional topological disk, and the identifications determined by incidences
and adjacencies determine the cell-decomposition of a manifold, which we
shall call the associated manifold of the polyhedron. For a given abstract
polyhedron we shall often refer to its associated manifold and we shall as-
sign to the abstract polyhedron as its genus, or its Euler characteristic, the
values of these functions for the associated manifold. On the other hand, cell-
decompositions in general admit features that cannot occur in polyhedra; for
example, our definition does not admit monogons or digons.

Equally obvious is the fact that the conditions listed above (hence the
definition of an abstract polyhedron) could have been formulated in terms of
lattices. Such an approach is taken by McMullen and Schulte [40], to define
not only objects more general than our polyhedra, but also the analogous
higher-dimensional abstract polytopes.

A geometric polyhedron or polyhedron for short is an image of an abstract
polyhedron under a mapping in which vertices go to points, edges to segments
(possibly of length 0) and faces to polygons (which are understood as circuits
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of incident vertices and edges). Incidence means that the point representing
a vertex is an endpoint of a segment representing an edge, and that a segment
(which represents an edge) is a member of the cycle which defines a polygon
(representing a face). We say that the polyhedron is a realization of the
underlying abstract polyhedron.

If all faces of a geometric polyhedron are simple polygons, we may inter-
pret each face as a topological disk. Their totality forms a surface which may
have selfintersections or overlaps. Best known examples of this kind are the
two regular polyhedra first discovered by Poinsot [45] – the great icosahedron
{3, 5/2} and the great dodecahedron {5, 5/2}.

Polyhedra with the same underlying abstract polyhedron are said to be
combinatorially equivalent, or to have the same combinatorial type. Realiza-
tions of two polyhedra that have different combinatorial types but coincide
as sets of points are said to be isomeghethic (from Greek µεγεθoσ – extent,
bulk). This term may be used in cases where we interpret the polyhedra as
surfaces (such as the cube and the fourth dodecahedron in Figure 1), as well
as in cases in which selfintersecting polygons necessitate interpreting faces
as circuits of vertices and edges. In this sense the regular dodecahedron is
isomeghetic with the uniform polyhedron in Figure 15(c).

A symmetry of a (geometric) polyhedron is a pairing of an isometric map-
ping of the polyhedron onto itself with an automorphism of the underlying
abstract polyhedron. The polyhedron is isogonal [isohedral , regular ] if its
vertices [faces, flags] form one orbit under its symmetries. (A flag of a poly-
hedron is a triplet consisting of a vertex, an edge, and a face, all mutually
incident.) A polyhedron is noble if it is both isogonal and isohedral.

Every abstract polyhedron has realizations: Nothing in the definition
prevents all vertices to be represented by the same point. Clearly, such
trivial realizations are usually of little interest, but in some contexts they need
to be considered. Also, abstract polyhedra may have other subdimensional
realizations – that is, the affine hull of a realization may well be 1- or 2-
dimensional. An example of a noble polyhedron that realizes the Klein bottle
in the plane is shown in Figure 4. In the remaining part of the paper we
shall concentrate on full-dimensional polyhedra, that is, polyhedra with 3-
dimensional affine hull.

For a given geometric polyhedron the construction of a dual polyhedron
is most often carried out by applying to its faces and vertices a polarity
(that is, a reciprocation in a sphere). From properties of this operation
it follows at once that the polar of a given polyhedron is a realization of
the abstract polyhedron dual to the given one. However, the possibility of
carrying out the polarity depends on choosing a sphere for the inversion in
such a way that its center is not contained in the plane of any face. While
this is easy to accomplish in any case, the resulting shape depends strongly
on the position of that center. The main problem arises in connection with
polyhedra with high symmetry (for example, isogonal or uniform polyhedra)
if it is desired to find a dual with the same degree of symmetry: If the
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Fig. 4. A subdimensional noble polyhedron is shown in (a). The associated cell
complex representing the underlying abstract polyhedron is shown in (b); the man-
ifold is the Klein bottle. Each of the four faces of the geometric realization in (a) is
shown separately in (c). Note that any two faces are both incident with two edges,
but these have distinct vertices as required by condition (P4). The cell complex
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(d); as is easily verified, although the abstract polyhedron is noble, it admits no
nontrivial realization as a noble geometric polyhedron.
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only position for the center is at the centroid of the polyhedron, and the
polyhedron has some faces that contain the centroid – then it is not possible to
find a polar polyhedron with the same symmetry. Moreover, if a polyhedron
has coplanar faces [coinciding vertices] then any polar polyhedron will have
coinciding vertices [coplanar faces]. All these possibilities actually occur for
various interesting polyhedra. Clearly, duality-via-polarity is uninteresting
for subdimensional polyhedra – it yields only trivial ones.

Our definitions are applicable to finite as well as infinite polyhedra; this
enables one to include tilings and honeycombs among the objects studied.
However, for the present discussion we shall restrict attention to finite poly-
hedra, that is, we shall assume the cardinalities of the sets of vertices, edges,
and faces to be finite.

Despite the adaptability of the “skeletal” approach to such topics as poly-
hedra with skew polygons as faces, in the present work we shall consider only
polyhedra with planar faces.

4 Regular Polyhedra

We shall now present constructions that lead to some “new” regular poly-
hedra. One construction which may be applied to polyhedra in general, is
by the following vertex-doubling . Start with any abstract or geometric poly-
hedron. Replace each vertex by a pair of vertices, for example a green one
and a red one. For each face, as you go around it, alternate between red
and green vertices. If the face is an n-gon for some odd n, then there will
now be a (2n)-gon in its place; if n is even, the vertices along the n-gon will
have alternating colors – but there will be another n-gon, with vertices of
the opposite colors. The collection of these new faces will be an (abstract or
geometric) polyhedron if and only if there is at least one odd-sided face in
the original polyhedron. If there is no such face, the resulting family of poly-
gons does not satisfy condition (P.5f) of the definition is Section 3; instead
of a polyhedron, a compound of two polyhedra is obtained. Dually, one can
start with any polyhedron, replace each face by a pair of faces of different
“colors”, and take as adjacent those faces which arise from adjacent faces of
the original and have different colors. This face-doubling gives rise to a new
polyhedron if and only is there is at least one vertex of odd valence in the
original polyhedron.

It should be stressed that the above comments do not mean that if all
faces are even-sided, then there is no polyhedron in which the vertices are
doubled up and all new faces have double the number of sides of the original
ones. It means only that the above method of replacing one vertex by two
vertices represented by the same point does not lead to such new polyhedra.
At the end this section we shall encounter an example that illustrates this
comment.

A general property of the vertex-doubling construction considered here
is that it transforms regular polyhedra into regular ones, and isogonal or
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isohedral polyhedra into isogonal or isohedral ones, respectively. Analo-
gously for the face-doubling construction. Probably the most interesting
instances to which the vertex-doubling procedure can be applied are eight of
the nine regular polyhedra (five convex and four Kepler-Poinsot) – all except
the cube. The resulting “new” polyhedra are regular and can be denoted
by their Schläfli symbols {6/2, 3}, {6/2, 4}, {6/2, 5}, {10/2, 3}, {6/2, 5/2},
{10/2, 5/2}, {10/4, 3}, {10/4, 5}. The face-doubling construction can be ap-
plied to all regular polyhedra except the octahedron, and yields “new” regu-
lar polyhedra {3, 6/2}, {4, 6/2}, {5, 6/2}, {3, 10/2}, {5/2, 6/2}, {5/2, 10/2},
{3, 10/4} and {5, 10/4}. Clearly, these sixteen polyhedra form eight pairs of
dual polyhedra. Moreover, the duality can be effected by a polarity (that
is, by reciprocation in a suitable sphere). It should be noted that the num-
ber of combinatorial types of these regular polyhedra is smaller. Just as
the combinatorial types of the icosahedron {3, 5} and the great icosahedron
{3, 5/2} coincide, so do pairs of polyhedra {6/2, 5} and {6/2, 5/2}, {10/2, 3}
and {10/4, 3}, {10/2, 5/2} and {10/4, 5}, {5, 6/2} and {5/2, 6/2}, {3, 10/2}
and {3, 10/4}, {5/2, 10/2} and {5, 10/4}; each pair represents a single com-
binatorial type.

The polyhedra {3, 6/2} and {6/2, 3} are shown in Figure 5, where lower
and upper case characters are used instead of different colors. All the other
regular polyhedra listed above would appear, analogously, like their coun-
terparts among the convex or Kepler-Poinsot polyhedra to which they are
isomeghethic; however, their combinatorial structure – determined by the
underlying abstract polyhedron – is different from that of the traditional
ones.

A natural question that arises from these constructions is whether it is
possible to perform vertex k-tupling, that is replace each face of a polyhe-
dron by a polygon having k times as many sides or by a family of k polygons
with the same number of sides, where k ≥ 3. While we have seen that cases
in which the doubling operation yields a polyhedron are rather easily char-
acterized, no corresponding general result is known for ktupling. However,
in case the operation is performed on a tetrahedron, there is an affirmative
answer, as follows.

For a given k ≥ 2 we may replace each vertex of the tetrahedron by k
vertices; if these are denoted a1, . . . , ak, b1, . . . , bk, c1, . . . , ck, d1, . . . , dk,
then the four faces are given by [d1c1b1 d2c2b2 d3c3b3 . . . dkckbk d1], [c1d1a1

ckdkak ck−1dk−1ak−1 . . . c2d2a2 c1], [b1a1d1 bkakdk bk−1ak−1dk−1 . . . b2a2d2

b1], [a1b1c1 a2b2c2 a3b3c3 . . . akbkck a1]; each face is of type {3k/k}. (Here,
and throughout the paper, the first vertex of each face is repeated at the end
to make the checking of incidences simpler; each face is described by listing
its vertices in a cyclic order, and spaces are inserted to facilitate understand-
ing the structure.) This determines an orientable polyhedron P(k) with 4k
vertices, 6k edges, and 4 faces; hence the associated map has genus g = k−1.
For k = 2 the polyhedron has as its map the regular one in Figure 5(b); no
P(k) with k ≥ 3 is regular, as can be checked easily. The map corresponding
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Fig. 5. The regular polyhedron in (a) was obtained by face-doubling from the
regular tetrahedron, the regular polyhedron in (b), dual to it, resulted from vertex-
doubling of the regular tetrahedron. The underlying abstract polyhedra are indi-
cated by the cell complexes representing them in (c) and (d), respectively.

to P(3) is the only possible map of type {9/3, 3}, hence these parameters
do not admit any regular map or polyhedron. On the other hand, at least
for k = 4 there is one other polyhedron P# with four faces of type {3k/k},
and it is regular (map W#24.22 in Wilson’s catalog [56]). To distinguish
between the two polyhedra we note that the faces of P(4) are [d1c1b1 d2c2b2

d3c3b3 d4c4b4 d1], [c1d1a1 c4d4a4 c3d3a3 c2d2a2 c1], [b1a1d1 b4a4d4 b3a3d3

b2a2d2 b1] and [a1b1c1 a2b2c2 a3b3c3 a4b4c4 a1], while the faces of the P# are
[d1c1b1 d2c2b2 d3c3b3 d4c4b4 d1], [c1d1a3 c2d2a4 c3d3a1 c4d4a2 c1], [b1a1d3

b2a2d4 b3a3d1 b4a4d2 b1] and [a1b1c1 a2b2c2 a3b3c3 a4b4c4 a1]. The fact
that these polyhedra are not combinatorially equivalent can most easily be
established from their maps, see Figure 6.

For k ≥ 5 there probably exist polyhedra different from P(k), having faces
of type {3k/k} and 4k trivalent vertices. It may be conjectured that none
of these polyhedra is regular. For k ≤ 16 the validity of this can be inferred
from the fact that there are no regular maps satisfying these conditions in
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Fig. 6. The maps underlying two polyhedra, each with four faces of type {12/4}
and sixteen 3-valent vertices. The map in (b), and the corresponding polyhedron
P#, are regular. The map of P(4) shown in (a) is not combinatorially equivalent
to the map in (b). One way to see this is to observe that since (b) is regular, all its
flags are equivalent. The labels of the two maps coincide for all vertices on the flags
associated with vertex a1, the edge [a1,b1], and the face to the right of it. Hence,
if the map in (a) were regular, the only possible isomorphism would preserve all
labels – but this is clearly not the case with the faces on top or on the left.

Wilson’s catalog [56], where all regular maps with at most 100 edges are
listed.

Although the general vertex-doubling construction described above does
not apply to the cube, there is a polyhedron obtained by doubling the vertices
on the cube. This polyhedron Q and its map are shown in Figure 7. Both
are regular; the polyhedron has the Schläfli symbol {8/2, 3}, and the map is
W#24.21 in [56].

A construction of two infinite families of regular polyhedra should be
mentioned here. The first arises from a certain vertex k-tupling of the octa-
hedron. It is most simply described by saying that one of the triangular faces
is replaced by a polygon {3k/k}, and the other triangular faces are replaced
by suitable reflections of this face. The resulting polyhedron {3k/k, 4} is
easily seen to be regular; it is orientable, with 6k vertices, 12k edges and 8
faces, hence has genus g = 3k−3. The second family is polar to this; it arises
by face k-tupling of the cube. Its Schläfli symbol is, accordingly, {4, 3k/k}.
The case k = 2 of both families is illustrated in [27], where they are obtained
by a different construction.

It may be conjectured that there is only a finite number of infinite families
of full-dimensional regular polyhedra.
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Fig. 7. Doubling-up vertices of the cube, in the way indicated in the map, yields a
regular polyhedron {8/2, 3} with 16 vertices, 24 edges and six faces. It is orientable,
of genus 2. Its map is W#24.21 in the catalog [56].

5 Noble Polyhedra

Polyhedra that are noble (that is, isogonal as well as isohedral) have been
studied considerably less than the slightly more symmetric regular ones. Nev-
ertheless, they seem quite interesting. In particular, it seems that beyond
finitely many infinite families of full-dimensional noble polyhedra, there ex-
ists only a finite number of individual polyhedra of this kind. This conjecture
is one of the intriguing open questions concerning symmetric polyhedra.

The study of noble polyhedra was begun by Hess in the 1870’s (see [33],
[34], [35], [36]), and continued by Brückner [3], [4], [5], [6]. In the early papers
(for example, in [33]), Hess considered noble polyhedra as generalization of
regular ones. However, there seems to be no mention of these polyhedra in
the literature after the works of Hess and Brückner, until [23], close to a
century later. This may in part be due to a general neglect of nonconvex
polyhedra during most of the 20th century, and in part to the inconsistent
and clumsy exposition by Hess and Brückner of their own results.

It is obvious that all regular polyhedra are noble. It is well known that
among convex polyhedra the only nonregular ones are sphenoids , that is,
tetrahedra with congruent faces, different from equilateral triangles. From
now on we shall discuss nonconvex noble polyhedra only.

We have encountered one subdimensional noble polyhedron in Figure 4,
and many other examples of this kind are possible. However, the possibili-
ties are much more restricted if we are interested in full-dimensional noble
polyhedra.
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Several infinite families of such polyhedra have symmetries of prisms or
of anti-prisms. One family consists of the remarkable prismatic and antipris-
matic crown polyhedra, discovered by Hess [35]; he called them stephanoids
(from the Greek for “crown”). Their faces are selfintersecting quadrangles.
Detailed descriptions and illustrations can be found in [23], where also the
prismatic and antiprismatic wreath polyhedra (with triangular faces) and
V-faced polyhedra are introduced and illustrated. The faces of V-faced poly-
hedra are full-dimensional quadrangles with vertices V1,V2,V3,V4, in which
V2 and V4 are represented by the same point. (It should be noted that,
contrary to the impression given by the illustrations in [23], the quadran-
gles in V-faced noble polyhedra need not be equilateral.) Hess and Brückner
showed considerable ingenuity in discovering noble polyhedra, and one may
wonder why they did not find the (rather simple) wreath polyhedra and V-
faced polyhedra. One possible reason is that they were ignoring polyhedra
with coplanar faces or coinciding vertices. However, rather inconsistently, in
other instances (as mentioned below) they did allow such polyhedra, even in
the same publications in which they state that vertices have to be distinct.

Probably more interesting are some of the noble polyhedra with octa-
hedral or icosahedral symmetries. One polyhedron, a version of which was
described by Hugel [37] but recognized as noble by Hess [35] and Brückner [3,
p. 215], is shown in Figure 8. Its 20 vertices are the same as those of a regular
dodecahedron, and its 20 faces are selfintersecting hexagons; one is indicated
in Figure 8 by heavy lines. The polyhedron is autopolar , in the sense that its
polar with respect to a suitable sphere coincides with the polyhedron itself.
It is remarkable that the underlying abstract polyhedron is regular; its map
is the one listed as W#60.57 in [56].

The situation is more complex concerning a noble polyhedron described
by Hess [34] and Brückner [3, p. 215]. It is supposed to look like the object
in Figure 9, that is, to be isomeghethic with the regular polyhedron {5, 5/2}.
However, each of the twelve faces is formed by all segments determined by
its five vertices, that is, each face is supposed to look like the union of a
pentagon with a pentagram, shown by heavy lines in Figure 9. This is quite
appropriate provided one allows a polygon to revisit vertices (as was the setup
in [23]). In fact, in this case there are two distinct possibilities of turning
the figure into an isogonal polygon (see [23]). Hess and Brückner seem to
have noticed only one of these – but even this is contrary to their usual (and
explicitly stated) requirement that a polygon cannot revisit any vertex. In
any case, under the definitions we adopted in the present paper these are not
polyhedra. However, doubling-up the vertices leads to polyhedra that are
noble (as noted in [23]). One face of the first is the polygon [d F b D e B c E
f C d] in the notation of Figure 9; the other 23 faces result by the application
of symmetries of the icosahedron, and the interchange of lower and upper
case vertices. In contrast, one face of the other polyhedron is [b C f B e F d
E c D b], and the other faces are obtained analogously.
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Fig. 8. An orientable selfpolar polyhedron recognized as noble by Brückner [2]. It
has 20 vertices and 20 faces, one of which is emphasized; its map is not only noble,
but regular, of genus 9, as observed by Prof. J. Wills. The dodecahedron serves
only to guide the construction and recognition of the faces of this polyhedron.

Another remarkable invention of Brückner [3] is shown in Figure 10, which
is meant to illustrate the construction of two noble polyhedra. The idea is
to start with a uniform rhombicuboctahedron (shown in gray lines); the five
points a, e, u, w, h are coplanar, and according to Brückner they determine
two distinct polygons: [a e w a u h a] and [a e w a h u a]. The other
faces are obtained by applying to each of these two the symmetries of the
rhombicuboctahedron. However, each of these polygons revisits a vertex (as
was allowed in [23] but not here); therefore these objects are not polyhedra
in the present sense, or in the sense generally accepted by Brückner. On the
other hand, as described in [23], vertex-doubling produces in each of the two
cases an acceptable noble polyhedron with 48 vertices and 48 faces.

In Figure 11 are shown two additional noble polyhedra, which seem to
have escaped Brückner’s attention. They are generated in the same way
from the uniform quasirhombi-cuboctahedron (−3.4.4.4) (see [W, p. 132]) as
the ones described above from the rhombicuboctahedron. Although the noble
polyhedra arising from Figure 11 are combinatorially equivalent to the ones in
Figure 10, their metric difference can most simply be established by observing
that the ratio of lengths of the longest diagonal of each face to the shortest
is 2 +

√
2 = 3.14142 . . . in Figure 11, but 1 + 1/

√
2 = 1.7071 . . . in Figure 10.
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f,F

b,B

d,D

e,E

g,G

h,H

j,J

k,K
l,L

c,C

a,A

i,I

Fig. 9. The construction of noble polyhedra isomeghethic with the regular poly-
hedron {5, 5/2}. The emphasized decagon can be interpreted in two isogonal ways
– either as [d F b D e B c E f C d] or as [b C f B e F d E c D b]; the other 23 faces
result by the application of symmetries of the icosahedron, and the interchange of
lower and upper case vertices. Two distinct noble polyhedra are obtained. How-
ever, if the pairs of coinciding vertices are simply identified (as done by Hess [34]
and Brückner [2]), the resulting object is not a polyhedron in our sense, or in the
sense ostensibly accepted by Hess and Brückner.

In view of the ingenuity with which Hess and Brückner pursued noble
polyhedra, and their willingness to stretch their own rules in order to admit
the ones they found, it is strange that they never mention two rather simple
polyhedra (and their polars), which are shown and explained in Figure 12.
The probable reason for this omission is, again, the shying away from coplanar
faces or coinciding vertices.

Another way of constructing certain noble polyhedra will be mentioned
in the next section.

6 Uniform Polyhedra

Uniform polyhedra are defined as isogonal polyhedra with all faces regular.
They are closely related to the Archimedean polyhedra, studied since antiq-
uity; the older concept requires congruence of the vertex stars instead of the
more restrictive isogonality. The convex uniform polyhedra are all well known
since the work of Kepler [38], but the determination of nonconvex ones was
done piecemeal by many people, over close to a century, – and that only in
the traditional understanding of what is a polyhedron. An illustrated list of
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Fig. 10. The construction of two noble polyhedra, according to Brückner [2]: one
of these has the face [a e w a u h a] and the other faces obtaineble by symmetries,
while the other has the face [a e w a h u a] and those in its orbit. Since this
involves revisiting a vertex, these are not polyhedra in our sense. However, by
doubling-up vertices each leads to a noble polyhedron. The rhombicuboctahedron
(3.4.4.4) serves only to guide the construction and recognition of the faces of this
polyhedron.

such uniform polyhedra appears in Coxeter et al. [12], and the fact that this
list is complete was established by Sopov [51] and Skilling [50]. Additional
illustrations of all these polyhedra can be found in Wenninger [53] and Har’El
[31].

It should not come as a surprise that with our definition of polyhedra
there are many new possibilities for the formation of uniform ones. As with
“new” regular polyhedra, the visual appearance of many “new” uniform poly-
hedra is somewhat disappointing – they look exactly like appropriate “old”
uniform polyhedra since they are isomeghethic with them. However, their
inner structure (the underlying abstract polyhedron) is different. In many
cases, the abstract polyhedron admits a continuum of non-uniform isogonal
realizations which do seem interesting, and in the limit become uniform; in
some instances, this approach to visualization of the structure of polyhedra
works for regular ones as well. Examples of both possibilities appear in [27];
one of the uniform ones is (3 . 6/2 . 3 . 6/2), another is (3 . 6/2 . 6/2), and a
regular one is a 24-faced {4, 6/2}. More interesting are cases in which some-
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Fig. 11. Another pair of noble polyhedra, combinatorially equivalent to the ones
in Figure 10, can be obtained using the vertices of the uniform quasirhombicuboc-
tahedron (−3.4.4.4). This uniform polyhedron is combinatorially equivalent to the
rhombicubocta-hedron, under the correspondence between their vertices indicated
by the labels. Although the resulting noble polyhedra obtainable by doubling-up
vertices are combinatorially equivalent to the the ones described in the caption of
Figure 10, they are metrically distinct from them.

thing genuinely new occurs. One example is (3 . 6 . 4 . 6/2 . 4 . 6), which
is presented in figure 13 and its caption. Two other uniform polyhedra, with
symbol (8 . 8 . 8 . 8), are shown in Figure 14. They are representative of
several others that can be obtained analogously from uniform polyhedra by
deleting one transitivity class of faces, and doubling-up the remaining faces.
Some – though not all – of such polyhedra are noble.

Another example concerns two polyhedra the existence of which under
the traditional concept of polyhedron was rejected in [12]. Discussing the
possibility of existence of polyhedra with symbols t{5/2, 5} and t{5/2, 3} in
the notation of [12], the authors say (on page 411) that “. . . t{5/2, 5} consists
of three coincident dodecahedra, while t{5/2, 3} consists of two coincident
great dodecahedra along with the icosahedron that has the same vertices and
edges . . .”. (The construction in question consists of truncating the regular
polyhedra to the extent of completely cutting off their “points”.) While
the non-acceptance of the resulting object among the uniform polyhedra in
the traditional meaning is fully justified (even if not for the reason stated),
the uniform polyhedra t{5/2, 5} and t{5/2, 3} exist in our interpretation of
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Fig. 12. Four noble polyhedra. The hexecontahedron in (a) consists of the sixty
quadrangles congruent to the one emphasized, that can be inscribed in the regular
dodecahedron. Its polar is an icosahedron, with twenty 12-gonal faces. The diagram
in (b) shows the face which is the polar of the vertex a. Each of the 20 vertices of
the icosahedron in (b) represents three coinciding vertices, while each face meets
six pairs of coinciding vertices. Clearly, the coincidences here are no more against
the traditional grain than the ones in the polyhedron in Figure 9. The other
hexecontahedron is obtained similarly from the quadrangle in (c), while (d) shows
the face of a noble icosahedron polar to the polyhedron in (c). The diagram in (d)
shows the face which is the polar of the vertex a. Each of the 20 vertices of the
icosahedron in (d) represents three coinciding vertices, while each face meets six
pairs of coinciding vertices, each pair determining an edge of zero length. In all
diagrams the dodecahedra serve only to guide the construction and recognition of
the faces of the polyhedra described.
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ε,Ε

η,Η λ,Λ

α,Α

β,Β

χ,Χ

δ,∆φ,Φ

γ,Γ

ϕ,ϑ κ,Κ

µ,Μ

Fig. 13. A nontrivial uniform polyhedron (3 . 6 . 4 . 6/2 . 4 . 6) with 24 vertices,
coinciding in pairs with the vertices of a cuboctahedron. Its faces are eight triangles:
(a b c a), (A B C A), (d e f d), (D E F D), (g h j g), (G H J G), (k l m k), (K L
M K); twelve squares: (a g J B a), (A G j b A), (b k M C b), (B K m c B), (c d
F A c), (C D f a C), (D M l e D), (d m L E d), (E H g f E), (e h G F e), (H L k
j H), (h l K J h); eight hexagons {6}: (a f e l k b a), (A F E L K B A), (b j h e d
c b), (B J H E D C B), (a c m l h g a), (A C M L H G A), (d f g j k m d), (D F
G J K M D); and four hexagons {6/2}: (a B c A b C a), (d E f D e F d), (g H j G
h J g), (k L m K l M k). The polyhedron is orientable and of genus 9; since some
of the faces pass through the center, no density at the center can be defined, and
there is no polar polyhedron with the same degree of symmetry.

“polyhedron”. Indeed, as is best seen from the illustration in Figure 15, the
truncation of t{5/2, 5} leads to a uniform polyhedron (5 . 10/2 . 10/2) with
sixty vertices. In a similar way, the truncation of t{5/2, 3} yields a uniform
polyhedron (3 . 10/2 . 10/2) with sixty vertices.

As a final example in this section, we recall that in the process of veri-
fication of the completeness of the enumeration of the uniform polyhedra in
[12], Skilling [50] found one extraordinary object, the great disnub dirhom-
bidodecahedron, which would have qualified as a uniform polyhedron in every
respect except that it has four faces incident with some edges. However, as
Skilling points out on p. 123, this object is a polyhedron if the exceptional
edges are interpreted as two distinct edges which happen to be represented
by the same segment although they are determined by different pairs of faces;
in other words, it is a polyhedron in the sense adopted here. This and other
“new” uniform polyhedra are discussed in greater detail in [29].
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Fig. 14. Deleting all triangles from the uniform truncated cube (3 . 8 . 8), and
then face-doubling the octagons, leads to two “new” polyhedra (8 . 8 . 8 . 8),
which are not only uniform, but noble; moreover, they are isomeghetic. In both,
each octagon has been replaced by one “red” and one “green” octagon. The two
are adjacent along the four edges previously adjacent to triangles. In the first
polyhedron the remaining edges are adjacent to octagons of the same color, in the
second to differently colored ones. The difference between the two is that in the
first, each triangular hole is surrounded by two circuits of three octagons each, while
in the second one it is surrounded by one circuit of six octagons.

7 Isohedral Polyhedra with Regular Vertices

The polars of uniform polyhedra (with respect to a sphere whose center co-
incides with the centroid of the polyhedron) are isohedral polyhedra with
regular vertex-stars. In the case of convex uniform polyhedra these isohedral
polyhedra are often called Catalan polyhedra, although the historical justi-
fication for this seems to be ambiguous. There has been no name proposed
for the general case, and, in fact, there appears to have been avoidance in
considering such polyhedra. There are several reasons for this situation.

To begin with, in a number of uniform polyhedra some of the faces pass
through the centroid of the polyhedron; therefore there is no polar polyhedron
in either the traditional sense or in the meaning of “polyhedron” accepted
here. Brückner [3, p. 191] ignores the question of polars of such polyhedra,
although he claims to be systematically discussing the isogonal polyhedra and
their polar isohedral ones. Wenninger [54] and Har’El [31] solve the problem
of polars of some of the uniform polyhedra by admitting unbounded faces.
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(α) (β) (χ)
Fig. 15. The truncation of the regular polyhedron {5/2, 5}. (a) shows an early stage
of the truncation; one of the pentagonal faces, and one of the decagonal faces are
emphasized. (b) shows an almost complete truncation, illustrating the proximity of
the emphasized pentagon and decagon. (c) is the complete truncation, in which each
face of the “dodecahedron” represents one pentagon {5} and one decagon {10/2}.
Each dodeca-hedral vertex represents three vertices of the uniform polyhedron (5
. 10/2 . 10/2), the truncation of {5/2, 5}. Continuation of this sequence leads to
several interesting polyhedra; they will be described in detail elsewhere.

While such an approach is interesting, it certainly does not fall within the
usual scope of the meaning of “isohedral polyhedron”.

Another difficulty for the traditional approach is that some of the uniform
polyhedra have pairs of coplanar faces; hence the polar polyhedra must have
pairs of coinciding vertices – which would make them unacceptable under the
traditional definition of polyhedra. However, neither in [54] nor in [31] is any
mention made of this fact. The vertices which are incident with two cycles
of faces are neither noticed nor explained, nor is any mention made of the
fact that, for example, the uniform polyhedron (3.3.3.3.3.5/2) has 112 faces,
but the purported polar shown in [54] and [31] has only 92 vertices. On the
other hand, in our interpretations of polyhedra there is no problem in such
cases: the two vertices of each pair are distinct, and only in the realization
they happen to be represented by a single point.

8 Other Polyhedra

There are several other classes of polyhedra for which the definition of poly-
hedra as presented here is useful – either in clarifying and eliminating what
seemed to be unexpected exceptional cases, or in enabling a complete and
unambiguous determination of all members of the class.

One example of the former kind concerns the recent study by Shephard
[49] of isohedral deltahedra (polyhedra all faces of which are equilateral tri-
angles). After explaining one of the constructions of such polyhedra – the
replacement of each face of a regular polyhedron by the mantle of a pyramid
(with equilateral triangles) erected over the face as basis – the claim is made
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that this construction works on eight of the regular polyhedra but not on
{5, 5/2}. In fact, the construction works in this case as well, and results in
an isohedral hexecontahedron of type [5 . 10/2 . 10/2] that looks like the
regular icosahedron to which it is isomeghethic, but has three (combinatori-
ally distinguishable) faces over each icosahedral face. A similar construction
consisting of “excavating” the pyramids is said in [49] to fail when applied
to the tetrahedron “. . . since the construction leads to a set of twelve equi-
lateral triangles which coincide in four sets of three.” In our interpretation,
the resulting polyhedron is combinatorially equivalent to the one obtained by
erecting the pyramids, except that in this realization each triplet of (distin-
guishable) faces is represented by one triangle.

Settling on a particular definition of polyhedra makes possible the com-
pletion of enumeration of several classes of polyhedra. The determination of
all face-transitive polyhedra with rectangular faces, started in [10] and [11] is
being carried out in work in preparation. Also in preparation are enumera-
tions of rhombic or parallelogram-faced isohedra (extending work in [26] and
[28]) and on simplicial isohedra.

While definitions of the polyhedral concept different from the one adopted
here are certainly possible, and possibly useful, at the moment there seems
to be no better alternative available that is both general and internally con-
sistent, and also satisfies the criteria set out in Section 1.
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tech. 9(1813), 68 – 98. German translation by R. Haußner, with comments, as
“Abhandlung über die Vielecke und Vielflache”. Pages 49 – 72 and 121 – 123



486 B. Grünbaum
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Sitzungsberichte der Gesellschaft zur Beförderung der gesammten Natur-
wissenschaften zu Marburg 1875, pp. 1 – 20.

[34] E. Hess, Ueber die zugleich gleicheckigen und gleichflächigen Polyeder.
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