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 A uniform column is 
     (i) a locally finite polyhedron in the 3-dimensional Euclid-
ean space, infinite in one direction and finite in two other inde-
pendent directions.  We shall assume the infinite direction to be 
vertical; 
     (ii) uniform, that is, all vertices are equivalent under sym-
metries of the polyhedron, and all faces are regular polygons. 

 For the polyhedra considered here we allow selfintersections, 
as well as collinearity of edges and coplanarity of faces; however, 
we require that the elements (that is, faces, edges and vertices) be 
distinct. 

 The definition implies that all vertices of a uniform column are 
situated on a right circular cylinder. Hence no such polyhedron can 
have a face with five of more edges, and the only squares admissi-
ble must have edges that are horizontal or vertical. This makes fea-
sible a complete enumeration of types of uniform columns. 

 The topic found very scant mention in literature, under the 
name cylindrical polyhedra. The single example of some generality 
is in [5, page viii], where only the six acoptic (that is, selfintersec-
tion-free) types are shown. The type we call helical is described in 
[3, page 117], where also references to earlier literature may be 
found. Nanotubes are often mentioned as cylindrical polyhedra.  
However, they are not uniform columns, since their hexagons are 
not planar. The same applies to the "cylindrical polyhedra" men-
tioned in [1] and [2], where non-planar "polygons" are used to 
form "polyhedra".  The polyhedra described by Tarnai [4] have 
planar faces but two orbits of vertices. 
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 The first collection of types consists of stacked uniform col-
umns. These result by modular stacking of appropriate prisms 
and/or antiprisms. The kinds of modules that can be used are indi-
cated in Figure 1; in all cases we use only the mantles of these 
modules, discarding their bases. The unary stacked columns use a 
single kind of modules, the binary ones use two kinds of modules 
in alternation. Examples of the resulting types of columns are 
shown in Figure 2. The modules have as bases regular polygons; 
specifically, the polygons usually denoted in the literature by 
{n/d}, where 1 ≤ d < n/2 and n ≥ 3. The requirement that the ele-
ments are distinct implies that n and d are relatively prime. Obvi-
ously, for the binary stacked columns the two modules have to 
have the same bases.  If d = 1, the polygon is the convex regular n-
gon, usually denoted {n}. 

 
Figure 1. The modules (prisms and antiprisms) based on regular 
pentagons. The polygons are {5} and {5/2}; as is well known (see, 
for example, [CLM]), if n/3 < d < n/2, there are two distinct anti-
prisms. 
 The three acoptic types of stacked columns are adequately il-
lustrated in Figure 2. However, the non-acoptic types are more var-
ied and more interesting.  The selfintersections arise in two ways. 
The bases {n/d} may be selfintersecting polygons (that is, d > 1), 
and/or the modules of the column may intersect. The first possibil-
ity is illustrated in Figure 3, by the three unary stacked columns. 
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 The second possibility happens with binary stacked columns. 
As is shown in Figure 4, the uniform stacking can happen in two 
distinct ways: The two modules that share a base can either be on 
different sides of the plane of the shared base, or on the same side. 

 
Figure 2. Examples of the three types of stacked uniform acoptic 
columns with n-gonal bases {n/1}, n = 3, 4, 5. The two unary and 
the only binary type are shown. These are the only possible types 
of acoptic uniform columns. 

 
Figure 3. The three selfintersecting modules based on {5/2}, and 
the unary stacked columns they generate. The last module is shown 
in two views (from different sides), as needed in the column. 
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The former alternative leads to columns that are analogous to the 
binary acoptic stacks, and even the unary ones. In contrast, the 
second alternative happens only for binaries, and is possible since 
the altitudes of the different modules are distinct. However, this 
makes it very hard to show intelligible diagrams.  For that reason, 
in Figure 4 we show only the union of the two modules that par-
ticipate in the binary stack.  The columns should be imagined as 
the repetition of the polyhedra shown. 

 
Figure 4. The two ways of constructing a binary stacked column 
from a {5/2} prism and one of the {5/2} antiprisms.  In the second 
variant, each face of the prism is overlapping with faces of eight 
other prisms, thus making a drawing of the extended column es-
sentially unintelligible. 

 The next collection of types are ribboned columns. These con-
sist of infinite ribbons (strips) of either squares or equilateral trian-
gles. The only unary columns we need consider are formed by rib-
bons of triangles, since the ones with squares coincide with those 
already listed as stacked columns. The triangular ribbons are ar-
ranged along cross-sections that are polygons {n/d}, where 1 ≤ d < 
n/2, n is even and n ≥ 3, and either d and n are coprime or else d = 
2 and n = 2(2k+1), for an integer k ≥ 1.  The restrictions on n arise 
from the fact that in a circuit of an odd number of ribbons of trian-
gles the vertical edges are not aligned. Figure 5 shows examples of 
all unary acoptic ribboned columns with at most ten ribbons.  The 
only unary non-acoptic ribboned columns with at most ten ribbons 
are shown in Figure 6.  In these columns pairs of ribbons coincide, 
but are displaced by one half the translational repeat of the column; 
hence the faces are distinct.  However, this makes it exceedingly 
hard to depict these columns in a visually intelligible way. 
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Figure 5. Unary acoptic columns of 4, 6, 8 and 10 ribbons of trian-
gles. 

                    
Figure 6. Unary non-acoptic columns with 6 or 10 overlapping rib-
bons of triangles.  In each column one triangle is emphasized, as is 
a zigzag formed by the upper edges of a band of triangles at the 
same height.  The zigzag is a non-planar regular polygon, called 
prismatic polygon in [G1]; it encloses the axis of the column twice. 
This serves to illustrate the difficulty of presenting such columns 
graphically, although their construction is very straightforward. 
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 The binary ribboned columns have alternating columns of tri-
angles and of squares.  All can be constructed by folding an appro-
priate infinite strip of the Archimedean tiling (3.3.3.4.4). Since 
each column with triangles causes the two columns adjacent to it to 
be displaced (with respect to each other) in the vertical direction by 
one half of the length of an edge, the number of columns with tri-
angles must be even.  Hence there are, for each even n = 2k and 
each d coprime with n, binary ribboned columns with n ribbons of 
triangles and the same number of ribbons with squares that have as 
cross-section an isogonal 2n-sided polygon, with the lengths of ad-
jacent sides in ratio 

! 

3 /2. As can be seen in Figure 7, the acoptic 
columns of this type can easily be presented by diagrams; how-
ever, the non-acoptic one are exceedingly difficult to show.  
Moreover, if n is odd, n = 2k+1, there is an additional family of bi-
nary ribboned columns. It consists of 2n ribbons of triangles and 
2n ribbons of squares, with a cross-section that is an isogonal 2n-
gon; it accommodates the 4n ribbons since they come in overlap-
ping pairs, displaced with respect to each other by half the edge-
length. These I did not even try to show in a diagram; instead, Fig-
ure 8 shows the cross-sections. 

                               
Figure 7.  Binary columns with 4 or 8 ribbons, alternating between 
ribbons of triangles and ribbons of squares.  The two on the left are 
acoptic, the other two have selfintersections.  Note that in all cases 
the two ribbons with squares, that are neighboring a ribbon of tri-
angles, are vertically displaced relative to each other by half the 
side of the square.  
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 The last family consists of helical columns.  Here the triangles 
form one or more ribbons that are would around a cylinder in a he-
lix. They can be obtained by folding an appropriate oblique infinite 
strip of the regular tiling (3.3.3.3.3.3).  In Figure 9 are shown ex-
amples of the simplest acoptic helical columns. A more detailed 
presentation of these and other (acoptic and non-acoptic) helical 
columns will appear at a later date.  This will include additional 
bibliographic data. 
 

 
Figure 8.  A cross-section of some binary non-acoptic ribboned 
columns. The top row corresponds to the 4- and 8-ribbon columns 
shown in Figure 7, while the bottom row corresponds to the 12- 
and 20-ribbon columns that are not shown. Throughout, the long 
edges represent ribbons of squares, the short ones ribbons of trian-
gles; all edges in the bottom row are doubled-up, with displace-
ments of the corresponding ribbons by half an edge. 
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Figure 9. Example of helical acoptic columns of triangles. 
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