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Abstract. Helices and dense packing of spherical objects are two closely related problems. For instance, the
Boerdijk-Coxeter helix, which is obtained as a linear packing of regular tetrahedra, is a very efficient solution
to some close-packing problems. The shapes of biological helices result from various kinds of interaction
forces, including steric repulsion. Thus, the search for a maximum density can lead to structures related
to the Boerdijk-Coxeter helix. Examples are presented for the α-helix structure in proteins and for the
structure of the protein collagen, but there are other examples of helical packings at different scales in
biology. Models based on packing efficiency related to the Boerdijk-Coxeter helix, explain, mainly from
topological arguments, why the number of amino acids per turn is close to 3.6 in α-helices and 2.7 in
collagen.

PACS. 87.10.+e General theory and mathematical aspects – 36.20.-r Macromolecules and polymer
molecules

1 Introduction

Biomolecules have spatial (secondary) structures which
result from various interaction forces. For example, co-
valent interaction: peptide bond for the backbone of pro-
teins, hydrogen bond: whether intrachain (α-helix) or in-
terchain (collagen, β-sheet), and steric repulsion between
side groups in proteins. The steric repulsion plays a very
important role. Therefore it is not surprising that geo-
metrical considerations could contribute towards the un-
derstanding of structures at intermediate scales, such as
secondary and tertiary structures for proteins. They could
also help in the classification of elementary conformations
and in the understanding of chiral relations.

Among elementary conformations, helices occur widely
in the biological world. Here we want to relate some bio-
logical helices to simple geometrical helices, starting from
packing considerations.

This paper discusses structures of biomolecules from a
topological viewpoint whereas most of the biological lit-
erature takes a metric approach. See, however, Chothia
et al. [1] and Adzhubei and Sternberg [2]. The cova-
lent bond along the polypeptide chain is the only met-
ric length. The hydrogen bond only comes later and the
structure has enough flexibility to accommodate it. The
steric interaction is only repulsive and does not impose a
length scale a priori. But the paramount importance of
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steric interactions involving peptide bonds and side group
nearby, is manifest in the Ramachandran plot [3].

It must be emphasized that this apparent topological
looseness will be severely controlled by two geometrical
constraints:

(i) Folded proteins are close-packed conformations,
moulded by the steric repulsion between side groups
(Sect. 2.1).

(ii) The rigid peptid unit is, in fact, a stiff, rectangu-
lar unit which tiles in a specific way the two-dimensional
substrate covered by the secondary structure (α-helix, β-
sheet) of the protein (Sect. 3.1 and Fig. 4).

2 The geometry of helices

2.1 The Boerdijk-Coxeter helix

Helices and dense packing of spherical objects are two
closely related problems. A very interesting geometrical
figure is obtained by stacking regular tetrahedra along
one direction. It is called the Boerdijk [4]-Coxeter [5] he-
lix (B-C helix). Select one face of a tetrahedron, on which
the next tetrahedron is glued, and proceed on gluing new
tetrahedra, with the conditions that no more than three
tetrahedra share an edge, and that edges with only one
tetrahedron are more or less aligned. A chain of tetrahe-
dra is obtained, on which external edges form three helices
(Fig. 1). Surprisingly, this chain is not periodic, owing to
an incommensurability between the distances separating
centres of neighbouring tetrahedra, and the pitch of the
three helices.
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Fig. 1. Boerdijk-Coxeter helix obtained from a necklace of
tetrahedra (a). A dense packing of spheres centered on the
tetrahedron vertices (b). The B-C helix (a) can be obtained
by folding the edges of the triangular lattice of Figure 2, and
gluing together the larger sides of the rectangle. A torus is
obtained (in curved space) by identification of the smaller sides.

There are different kinds of tetrahedral edges corre-
sponding to the number of tetrahedra sharing a giving
edge: Those which appear most parallel to the axis of the
Coxeter helix belong to only one tetrahedron. They will
be called hereafter type-{3}. Edges sharing two tetrahe-
dra are called type-{2} and edges sharing three tetrahe-
dra, type-{1}. The number corresponds to the direction
of the edge in the phyllotactic representation of the he-
lix (see below). We distinguish several families of helices
made of these three types of edges. There are three type-
{3} helices, but only one type-{1} helix and two type-{2}
helices.

It is useful to describe the Coxeter helix (or any helical
structure resulting from close packed units) as a two- di-
mensional graph on a cylinder. All edges of the graph are
geodesic lines on the cylinder. When the cylinder is un-
folded on a flat surface, this surface is tiled with triangles.
concretely, the Coxeter helix can be built by taking an
actual sheet of paper on which a triangular lattice (with
equilateral triangles) has been drawn, cutting a strip three
triangles-wide, folding the type-{2} edges inwards, types-
{3} and -{1} outwards, and gluing.

2.1.1 The Coxeter helix represented on a plane

The B-C helix is related to the problem of packing spheres
or tiling by regular tetrahedra, resolved by the {3, 3, 5}
polytope in curved space. Because it is impossible to tile
Euclidean space with regular tetrahedra, space has to ac-
quire a positive curvature. Details can be found in a recent
book [6]. In curved space, the helix winds on a torus in-
stead of a cylinder, and it forms a closed curve. The torus
can be cut and flattened into a rectangle (or a parallelo-
gram), with identification of opposite sides. Now, folding a
rectangle (or a parallelogram) into a torus in curved spher-
ical space S3, can be done without any metric distortions.
Thus, for the B-C helix, the flattened torus is tiled by tri-

Fig. 2. A flat strip leading to the Boerdijk-Coxeter helix by
identification of the two long sides of the rectangle.

angles which are nearly equilateral (some care is needed
because only type-3 edges are geodesics of the torus and of
S3. the other edges are slightly distorted in the flattened
torus). the flattened torus is a multiple cell of the triangu-
lar lattice with basic vectors 3a1 and 10a2, where a1 and
a2 are the unit vectors of the primitive cell (see Fig. 2).
The simplest flat representation of a cylinder is a rectan-
gle, obtained by cutting the cylinder along a generating
line. Similarly, a rectangular representation of a torus (in
S3) can be obtained by cutting the torus along its two or-
thogonal generating circles. Since the torus is tiled by equi-
lateral triangles, we look for a multiple cell (b1,b2) of the
triangular lattice, with the same area as the original cell’s
(3a1, 10a2), and hypothenuse b1 + b2 = ma2 along the
direction a2. We further require that b1 = 3a1 + la2, with
integers l,m to be determined (b1 is the base of a cylinder
around which the helix is wound), and that ||b2|| > ||b1||.
Finally, the multiple cell should be as nearly rectangular
as possible, i.e. b1· b2

∼= 0, so that the cut lines b1 and
b2 approximate generating circles of the torus. The best
solution, with b1 and b2 most nearly orthogonal, is given
by b1 = 3a1 + 2a2, b2 = −3a1 + 8a2 and b1 · b2 = −2.
Figure 2 shows the multiple cell (b1,b2) and the primitive
basis (a1,a2).

2.1.2 Images of helices on the flat projection

The three different types of helices can be easily identified
on the flat strip (b1,b2). There are three type-{3} winding
along a2. With opposite sides of the strip identified, they
form closed loops making one turn around the two axes
of the torus, with 10 edges and vertices each. In spherical
space, they are geodesics, great circles of S3, also called
fibers of the Hopf fibration of S3 [7,6]). Two type-{2}
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helices wind along −a1; they also form close loops, making
4 turns around one axis and one turn around the other,
with 15 vertices. Finally, one type-{1} helix, the Coxeter
helix, winds along a1+ a2. It has 30 edges and vertices,
and makes 11 turns around one axis and one around the
other. The Coxeter helix has therefore 30/11 = 2.727272...
edges per turn. The helices have opposite chiralities: If
type-{1} and -{3} are right-handed helices, say, type-{2}
helices are left-handed.

The B-C helix, like the Coxeter helix and the Coxeter
chain to be introduced later, is labelled (3, 2, 1) in phyl-
lotactic notation. This is a notation describing triangular
lattices on cylinders [8,9]. It describes economically all the
possible structures of composite flowers (phyllotaxis) or of
ordered foams inside thin cylindrical tubes. The vertices
of the triangular lattice are decorated by close-packed flo-
rets or bubbles, which are generated one after the other as
the flower grows or as the bubbles rise in the tube. Each
vertex is labelled by a natural integer n, in order of in-
creasing altitude on the vertical cylinder, or of increasing
age in a flower. The phyllotactic notation (k, l,m), with
k > l > m, implies that the vertices labelled n± k, n± l,
n±m are neighbours to vertex n. Consequently, in a trian-
gular lattice, k = l+m, since n+ k and (n+ l) +m label
the same neighbour to vertex n. The three types of he-
lix on the cylinder are labelled accordingly: The k helices
of type-{k} include vertices ... n − k, n, n + k, n + 2k, ...,
and are the steepest ones. The m helices of type-{m} are
the flattest ones. If there is one single helix going through
all the vertices, it is of type-{1}, and m = 1. It is labelled
(k, k−1, 1). The simplest example is the B-C helix (3, 2, 1).
Other helices of biological interest are the α-helix (4, 3, 1),
the π-helix (5, 4, 1) and Pauling’s γ-helix (or 5.1 helix)
(6, 5, 1) (see Sect. 3.2.2). We will see (Fig. 6) that collagen
is a type-{2} helix, including only half the vertices of the
triangular lattice.

2.1.3 The Boerdijk-Coxeter helix on an Euclidean cylinder

We can build helices in Euclidean space starting from the
flat map of the helix on a torus. We make a long strip by
assembling several patching units (b1,b2) joined by their
smaller sides, and fold it into a cylinder.

It is easy in curved space (or on a torus) to count how
many turns an helix makes around its axis, as it is a pure
topological number. This is not so simple on a cylinder, as
we do not know the exact angle between b1 and b2 after
folding.

So, we must use coordinates in Euclidean space
(H.S.M., Coxeter, private communication). The coordi-
nates of the nth vertex An of an helix are given by:

xn = cosnθ yn = sinnθ zn = nc. (1)

The distances between vertex n and vertices n+ 1, n+ 2
and n+ 3 are first neighbours distances. Then

AnA
2

m+n = A0Am
2

= 2− 2 cosmθ +m2c2. (2)

Since the edges A0Am all have the same length, for m =
1, 2, 3, we find, eliminating c, an equation for x = cos θ:
3x3−4x2−x+2 = 0, which factorizes as (x−1)2(3x+2) =
0. Discarding the trivial root x = 1, we deduce that the
angle θ is given by

cos θ = −2/3, θ = 131.810◦. (3)

We can also obtain the translation part of the helical mo-
tion, or pitch, c =

√
10/27, or c/A0A1 = 1/

√
10 = 0.3162

in unit of edge length.
The number of edges per turn is given by ξ = 2π/θ. It

is ξ = 2.7312, close to the number 30/11 on the torus.

2.1.4 The Coxeter chain as a quasicrystal

The Coxeter chain is the B-C helix in Euclidean space,
decorated by spheres on its vertices. It is not a periodic
structure, because ξ is not a rational number. The ques-
tion arises: is it a quasicrystal, with the usual property
of quasicrystals of having an inflation-deflation symme-
try, and thus well approximated by crystals with larger
and larger unit cells? The sequence of integers in the con-
tinuous fraction expansion of ξ is not periodic, so that ξ is
not a quadratic irrational (a theorem of Lagrange), nec-
essary condition for context-free inflation-deflation sym-
metry [10,11], and the infinite Coxeter chain constructed
above has no inflation-deflation symmetry. It is interesting
to search for a chain close to the Coxeter helix which has
approximant structures.

This modified quasicrystalline Coxeter helix is de-
scribed in the appendix. It has a number of edges per turn
$ = 1+

√
3 = 2.73205, a quadratic irrational, very close to

ξ = 2.7312, for the Coxeter chain, and to 30/11 = 2.7272...
for the B-C helix in curved space.

2.2 The α-helix: a disclinated Boerdijk-Coxeter helix

The α-helix is one of the important secondary structures
found in proteins. The number of elementary steps of the
backbone is given to be close to 3.6 units per turns. This
is about one larger than ξ = 2.7312 for the B-C helix, so
that we must increase its diameter.

Disclinations are the natural defects associated with
rotational or helicoidal symmetry. In the case of helices,
disclinations are characterized by an axis, which is the axis
of the cylinder on which is drawn the helix, an angle δθ
of rotation, and a vector of translation δs parallel to the
axis. Such a wedge disclination combined with a transla-
tion is sometimes called a dispiration [12]. The effect of
a disclination on a cylinder is explained in Figure 3: the
perimeter of the cylinder of radius r is changed from 2πr
to (2π + δθ)r, and one of the lips of the cut cylinder is
translated by δs before regluing. If there is a discrete geo-
metrical structure supported by the cylinder surface, as a
discrete helix, the displacement which is the combination
of the rotation δθ and the translation δs must be an ele-
ment of the symmetry group of the structure. If the helix
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Fig. 3. The strip for an α-helix, by identification of the longer
sides. The resulting cylinder is obtained by disclinating the
cylinder supporting the B-C helix. It has one additional row of
triangles (shaded).

is represented on a strip, the strip is sheared and its width
is increased (for positive δθ). This is the case whether the
helix is drawn on a cylinder or, in curved space S3, on a
torus, changing the parallelogram patch of the triangular
lattice: its width is increased by one triangular unit and
it is sheared in order to ensure identification of the longer
sides. The new parallelogram is defined by vectors bα1 and
bα2 : bα1 = 4 a1 +3 a2 and bα2 = −3 a1 +8 a2 (unchanged).
The type-1 helix running along edges parallel to a1 + a2

consists of 41 edges; it turns 11 times around one axis of
the torus and once around the other, leading to a num-
ber of edges per turns ξ = 41/11. This helix is (4, 3, 1) in
phyllotactic notation.

In order to obtain the number of edges per turn ξ in
Euclidean space, we use the coordinates defined in equa-
tion (1) for the B-C helix and set equal the distances be-
tween neighbours A0A1 = A0A3 = A0A4. Note that the
helix is no longer a chain of face-on-face tetrahedra, and
that all other distances between vertices, notably A0A2,
are larger than A0A1. Eliminating c, we obtain a quadratic
equation for x = cos θ, (x − 1)2(16x2 + 17x + 2) = 0.
The trivial roots x = 1 can be discarded. The root
x = (−17 −

√
161)/32 gives a distance between non-

neighbouring vertices A0A2 smaller than A0A1 and is in-
compatible with steric repulsions. The only geometrically
relevant root is thus,

cos θ = (−17 +
√

161)/32, θ = 97.74◦. (4)

The number of edges per turn, given by ξ = 2π/θ, is
ξ = 3.6831, close to 41/11 = 3.727272... = [3, 1, 2, 1, 2],
obtained on the torus. The corresponding quasicrystalline
helix, infinitely extensible by inflation, has $ = 2 +

√
3 =

3.73205 = [3, 1, 2, 1, 2, 1, 2, ...]; it is indeed a quadratic irra-
tional. These numbers are close to the value 3.6 observed
in the α-helix of real proteins. In biological α-helices, there
is no reason a priori for the distances between two succes-

sive central carbons along the chain (determined by the
peptide bond) to be the same as those between neigh-
bours in directions 3 and 4 (determined by hydrogen bond
and steric repulsion, respectively). A posteriori, however,
if steric interactions play an important role, it is natu-
ral that closed-packed conformations are adopted, with
all distances adjusted on the only length scale, that of
the covalent peptide bond. Indeed, the number of amino
acids per turn in biological α-helices is 3.6, which is a two
dimensional structure stabilized by hydrogen bonds, a cel-
ebrated result of L. Pauling in 1951, who “let the mod-
els fold naturally into any screw they were comfortable
with” [13].

The translation parallel to the helix axis, per step, is
c = 0.3637 or c/A0A1 = 0.2347 in units of edge length.

3 Proteins on the triangular lattice

A protein is a stiff chain of amino acids. The sequence
of amino acids is called its primary structure. The pro-
tein folds tightly into a complex and specific arrangement
(tertiary structure) of regular structural elements. These
regular units, which constitute the secondary structure of
the protein, are the α-helix, and the parallel or antiparal-
lel β-strand. They can all be drawn on a triangular lattice
in order to emphasize their regularity. Here, we focus on
those which are related to the α-helix.

3.1 The peptide unit

The covalent peptide bond between a C’ atom and a N
atom lead to a stiff, planar unit of six atoms, which can
be schematically represented by a rectangle with the two
Cα atoms on opposite corners, the C’-N pair inside the
rectangle parallel to its larger side. Next to the remaining
corners are an H atom bonded to the N atom, and an O
atom bonded to the C’ atom (see [3]). The polypeptide
chain is constituted by a necklace of rectangles connected
by their Cα atoms. It is a chain of rectangles linked by
covalent bonds across one of their diagonals. The hydrogen
bond takes place between an H atom of one unit and the
nearest O atom belonging to a different rectangular unit.
It couples rectangular units across their second diagonal
(Fig. 4). In this way, covalent and hydrogen bonds impose
a two dimensional structure.

We can decorate a triangular lattice by rectangular
units: The longer sides of the rectangles are heights of the
triangles, the smaller sides, one half of their edges. This
constitutes a kind of rectangular chess-board tiling, repre-
sented in Figure 4. The grey rectangles are peptides units.
In helices, the Cα-Cα diagonals are all parallel; they are
the edges of the triangles in direction {1}. Incidentally,
the side groups on the Cα all point outwards on the helix.
The Cα atoms are on the vertices of the triangular lattice.
Another family of triangle edges, in direction {k−1} sup-
port the smaller sides of the rectangles, connected by the
hydrogen bond H-O. The third family of triangle edges,
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Fig. 4. Peptide units on the triangular lattice. There are three
types of edges corresponding to covalent bonds (thick, black
diagonals of grey rectangles in direction {1}), hydrogen bonds
(thin, black lines in direction {k − 1}) and steric interactions
(thick, grey lines in direction {k}). This patch folds into a
cylinder as in Figure 3.

in direction {k}, are the diagonals of the white rectan-
gles which are not peptide units. Thus, each of the three
edge directions corresponds to a different type of inter-
action: covalent interactions along {1}, hydrogen bonds
along {k − 1} and steric interactions between side groups
along direction {k}, for the helix (k, k − 1, 1).

3.2 Helices in proteins

3.2.1 The α-helix

Consider the helix (4, 3, 1) described previously as a rolled
triangular lattice. If we decorate the triangular lattice by
peptide units as a chess-board tiling, we obtain a very
interesting model of protein folded into the α-helix sec-
ondary structure. Notice that the three types of interac-
tions along the three directions of edges in the triangular
lattice are related to the three indices (w, v, u) in phyl-
lotactic notation: u = 1 corresponds to the covalent bond-
ing of the polypeptide chain, v = 3 to the hydrogen bonds
and w = 4, to the steric repulsions.

To avoid any confusion, let us emphasize that the hy-
drogen bond HO does not link the Cα atoms directly, but
the N atom on the backbone N-Cα-C of the ith amino
acid, with the C atom of amino acid (i+3). The hydrogen
bond completes a full turn of the helix. There are thus,
3 complete amino acids, plus one distance N-Cα-C (ap-
proximatively 2/3 of an amino acid), namely 3.6 amino
acids per turn. In biological papers, it is often stated that
the hydrogen bond takes place between amino acids i and

(i+ 4), thereby labelling the peptide rectangular units in-
stead of the central carbon atoms Cα.

Can such a structure remain flat, instead of folding
into a cylinder? The answer is no, for two reasons: With
this arrangement of the peptide units and the standard
L-chirality of the central Cα atoms, the side groups are
all on the same side of the triangulated surface and have
strong steric repulsion. The surface buckles into a cylinder.
Moreover, a flat structure would distort too much the sp3

tetrahedral symmetry of the Cα atoms. This buckling is
manifest in the Ramachandran plot [3].

3.2.2 Other helices in proteins

Other helices that the classical α-helix are sometimes ob-
served in proteins. Collagen will be discussed in Section 4.
All helices which cover a rolled triangular lattice are la-
belled (k, k − 1, 1) in phyllotactic notation.
• The B-C helix, (3, 2, 1) in phyllotactic notation, has hy-
drogen bonds represented by edges between sites i and
i + 2 sites. Topologically, it is identical to the so-called
310-helix [14,16]. This helix is not commonly observed in
proteins as a secondary structural element. But α-helices
sometimes begin or end with one single turn of a 310-
helix (one hydrogen bond). There are also indications that
long (3, 2, 1) helices are observed in biopolymers produced
in mushrooms. Hydrogen bonds in a 310-helix link the N
atom of the backbone of amino acid i to the C atom of
amino acid (i+ 2).
• The next possibility is the α-helix (4, 3, 1). There are hy-
drogen bonds represented by triangle edges between sites
i and i+ 3, thus connecting peptide units i and i+ 4.
• The (5, 4, 1) helix, obtained by folding a strip with one
additional row of triangles compared to the α-helix is
called the π-helix.
• The (6, 5, 1) helix corresponds to the Pauling 5.1-helix
(or γ-helix).

Increasing k further would yield helices on flatter cylin-
ders; the steric repulsion between side groups becomes too
important and there are no proteins with k > 6.

Several polypeptide synthetic helices have phyllotatic
structures, as was noticed by Frey-Wyssling [15]

3.3 Structural transition from the (4, 3, 1) helix
to the (3, 2, 1) helix

We have seen in Section 3.2.2 that an α-helix (4, 3, 1) can
terminate with one single turn of a 310-helix (3, 2, 1). The
structural transition is achieved very simply on the strip
of triangular lattice by one single dislocation [8], as shown
in Figure 5. The width of the strip is smoothly changed
by one triangle.

With the same construction, one can connect an α-
helix to a π-helix, or with two dislocations, to a γ-helix.

Such connection are present in real proteins, as sug-
gested originally by Harris et al. [18]. Motion of the dis-
location (glide or climb) can play a part during refolding
of a protein, this involves conformational changes from
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Fig. 5. Strip of triangular lattice containing a dislocation. At
the dislocation, the type-{1} helix, in bold lines, changes from
an α-helix (4, 3, 1) to a B-C helix (3, 2, 1); one type-{4} helix
and one type-{3} helix are interrupted.

Fig. 6. Ribbon representation of a triple-helix collagen
molecule.

one helix to another, with a smaller or a larger diameter.
The energy barrier between initial and final helical con-
formations is very high if all H-bonds have to be cut. The
climb of a dislocation, involving only one H-bond at any
one time, has a much lower energy barrier. This is indeed
the standard mechanism for plastic deformation of solids,
and for the growth of epithelial tissues [17]. It has been
observed in foams in a cylindrical tube [8].

4 The collagen

4.1 An important protein

Collagen is another helicoidal structure very common in
biology. It is helicoidal at different scales, submolecular,
molecular, through to the entire organism in the subma-
rine worm studied by Gaill and Bouligand [19]. A collagen

molecule consists of three polypeptide chains intertwined
in a triple helix. Each individual polypeptide chain is itself
a helix, but it takes the helical conformation when associ-
ated with the other two chains (Fig. 6). Hydrogen bonds
connect different helices and stabilize the triple helix colla-
gen molecule. For this reason, the individual helical chain
is completely different from the α-helix, even though it is
sometimes called α-chain [20,21].

Diffraction patterns of collagen show ambiguities in the
periodicities of the structure, both along the molecule [22,
23] and in the perpendicular plane for collagen fibrils [24].
This strongly suggests a quasiperiodic structure in both
directions, as discussed, along the molecule, in the ap-
pendix.

The helical conformations are due to the facts that
every third amino acid of each chain is a glycine (Gly),
and that the sequence is rich in proline (Pro). Gly is the
amino acid with the smallest side group (H). A larger
side group than Gly would prevent close contact between
the three chains. About half of the Pro side groups are
hydroxylated; the resulting hydroxyproline is referred to
as “Hyp”. Each chain is a periodic sequence of repeating
units Gly-X-Y, where either X or Y is, almost always, Pro
or Hyp. The molecule is stabilized by hydrogen bonds be-
tween the backbone amide (N atom) of a Gly amino acid
and the backbone carbonyl (C atom) of amino acid X, as
indicated in Figure 9b.

4.2 Hopf fibration and the collagen

4.2.1 The PPII helix

The structure of a single chain of collagen, procollagen, is
called polyproline II (PPII). PPII is an artificial biopoly-
mer, but the PPII helix occurs in a number of proteins [2].
The PPII helix has a preference to proline, but almost any
natural amino acid unit can sometimes be found in this
conformation. PPII helices are left-handed helices with a
rise per peptide unit, almost twice as large as in α-helices.
In comparison with α-helices, they are therefore longer,
for the same number of peptide units, less tightly packed
and their main chain is more accessible.

In a collagen molecule three left-handed PPII helices
are intertwined and wrap around each other in a right-
handed helix. We must take these two opposite chiralities
into account in modelling the structure of collagen.

4.2.2 The Boerdijk-Coxeter helix and the PPII helix

The B-C helix (3, 2, 1) can be described on a triangular
lattice. The edges of the triangles support three different
types of helices, type-{1}, -{2} and -{3}. If we choose a
right-handed Coxeter helix (the type-{1} helix of the B-
C helix), then the type-{3} helices are also right-handed,
whereas the type-{2} helices are left-handed. Intrinsically,
the tetrahedron chain has the two chiralities.

Let us suppose that the left-handed PPII helix is of the
type-{2}, winding on the strip which folds into the B-C
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Fig. 7. A Boerdijk-Coxeter helix with the collagen sequence
Gly-X-Y along one of the type-{2} helices (a). This repre-
sents a single proto-collagene helix, with the PPII structure.
The pitch (per amino acid) for PPII helix is twice that of B-C
helix (b).

helix. There are two type-{2} helices. Thus, only one half
of the sites (vertices) must be visited by the PPII helix
(Fig. 7a). This choice is supported by the fact that the
rise per peptide unit in a PPII helix is twice that of an
α-helix or of the Coxeter helix (Fig. 7b).

The collagen amino acid sequence is (Gly-X-Y)n, so
all the Gly amino acids are gathered on a right-handed
type-{3} helix occupying half of its sites.

4.2.3 The collagen triple-helix molecule and the Hopf
fibration of polytope {3, 3, 5}

The Coxeter chain of tetrahedra can be extracted from
polytope {3, 3, 5}, which is a regular scaffolding of S3 (the
hypersphere) made of 600 tetrahedra, or the closest pack-
ing of 120 spheres in curved space. The 120 vertices of
this polytope can be distributed, 10 each, on 12 non-
intersecting great circles of S3. These great circles consti-
tute the fibers of the Hopf fibration of S3 [6]. They have
surprising properties associated with the curved space in
which they are living. They are parallel in the Clifford
sense (being at constant distance of each other) but they
are also entangled, winding once around each other. A
useful way to picture the Hopf fibration is to take a torus,
obtained by folding a rectangle, on which a diagonal and
one line parallel to the diagonal have been drawn: these
two lines fold into two intertwined circles like those in S3

Fig. 8. Stereographic projection of a Hopf fibration of a hy-
persphere by great circles.

(Fig. 8 shows a stereographic projection of the Hopf fibra-
tion).

In our case, we have a discrete Hopf fibration (by 12
great circles) of the discrete scaffolding of S3, polytope
{3, 3, 5}. A fibration is specified by a fiber (a great circle
with 10 vertices) and a base space, or base. A point on the
base is representative of a whole fiber. The base space of
the Hopf fibration of S3 is a sphere S2. Here, the 12 fibers
are represented by the 12 vertices of an icosahedron on
S2 (Fig. 9a). Without going into details, the configuration
on the base reflects the local configuration in total space
S3 or {3, 3, 5}. For instance, a fiber is surrounded by 5
parallel fibers; but the parallelism is in the Clifford sense
and the 5 fibers wind around the “central” one. The full
B-C chain is represented by an equilateral triangle on the
base. If we let the B-C chain close on itself, with its helices
winding on a torus instead of a cylinder, the triangle on
the base is representative of the three type-{3} helices
In curved space these three helices are three intertwined
great circles of the Hopf fibration of S3.

Consider now three triangles of the base icosahedron,
representative of three B-C helices, in a configuration de-
scribed (in grey) in Figure 9b. The B-C helices are inter-
twined in a right-hand screw, like the strands of a rope.
Three vertices on the base (open circles in Fig. 9b), one
from each triangle, define the core of the 3-helices screw.

On each B-C helix, represented by a grey triangle in
Figure 9b, we construct one, left-handed PPII helix. On
this helix with the collagen sequence (Gly-X-Y)n, all Gly
amino acids are on the same type-{3} helix (Fig. 7a),
which is a fiber of the Hopf fibration. On each fiber of
{3, 3, 5}with 10 sites, there are 5 Gly. The hydrogen bonds
occur between (atom N of) the Gly amino acid of one he-
lix and (atom C of) the X amino acid of another, at the
same “altitude”. The individual collagen helices are left-
handed, but the Gly core is right-handed, as is the whole
molecule. In fact, the 15 Gly of the core are on the 30 sites
of a right-handed B-C helix, which constitutes the core of
the triple-helix collagen molecule. More precisely, because
Gly is the only non-chiral amino acid (its side group is a
H atom), the core of the collagen molecule is constituted
by 30 H atoms on a B-C helix. There are 2 H atoms per
Gly: one is its distinctive side group. the other is the H
atom which binds to the central Cα of all amino acids.
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Fig. 9. (a) The base of the Hopf fibration of the {3, 3, 5}-
polytope is an icosahedron. Each vertex of the icosahedron is
only a representation (a projection) of one fiber (type-3 helix
in our notation). Three fibers, represented by a triangular face
of the icosahedron, constitute a Coxeter helix. (b) A collagen
molecule is represented by three grey triangles each decorated
by one PPII helix (see Fig. 7). With some care, (b) can be seen
as a local representation of a flat cross section of the triple helix
molecule. Hydrogen bonds (double lines) are bridges between
the Gly of one helix and the X of another, approximatively
horizontal. By contrast, in an α-helix, the hydrogen bonds are
intra-helical and almost vertical. Notice the right handed chi-
rality of the Gly core and of the triple collagen molecule oppo-
site to the left handed chirality of the PPII helices.

Because we have chosen a right-handed Hopf fibration,
all the type-{3} and type-{1} helices are right-handed like
the triple-helix, but the PPII helices are left-handed.

Is such a model molecule realistic? Because it is based
on the geometrical properties of spherical curved space we
may have some doubt. Let us reverse the construction. We
begin by packing tightly an even number of H atoms on
a B-C helix. This is a highly efficient means of packing
spherical atoms [6]. Then, the symmetry of this helix ex-
tends, through the Cα of the Gly, to the three procollagen
chains. In curved space, these three chains would have the
same length as that of the core, made of Gly only. But,
in Euclidean space, the three external chains are greatly
extended. This can be seen easily in a stereographic pro-
jection of the base. Moreover, the whole molecule can be
extended ad infinitum, through inflation, as was done for
a single B-C helix in Euclidean space, in Section 2.1.4.

Thus, if the curved space model is an abstract, but
ideal template, its projection in real space is a realistic
model which takes into account the difference in size be-
tween the side group of Gly and that of other amino acids

(mainly Pro), has the proper length of H bonds, and ex-
plains the diverse chiralities in the triple-helix collagen
molecule.

It thus seems that the PPII helix of one individual col-
lagen chain is caused by the abundance of proline in the
sequence of amino acids. But the intertwined, triple he-
lix structure of the collagen molecule is due to the fact
that every third amino acid is a glycine. The H atoms,
half of which are the side groups of Gly, pack tightly (as
a B-C helix) in the core of the triple helix. and interheli-
cal H bonds stabilize the molecule. Whether the collagen
molecule is a tertiary or a secondary structure is a matter
of semantics. But it exhibits helical structures, of opposite
chirality, at two different scales.

5 Conclusions

Biopolymers are, at a first level of organization, one-
dimensional sequences like any polymer chains; but, at a
second level, various interactions impose organized struc-
tures in space. The different types of structures in pro-
teins: primary, secondary or tertiary are related to close-
packed structures in one, two or three dimensions. The
α-helix, considered here as a 2D close-packing, a triangular
lattice rolled on a cylinder, is an essential step in protein
folding. This is, incidentally, one of the reasons for the suc-
cess of the hydrophobic cluster analysis (H.C.A.), which
predicts the folding pattern of several proteins [25]. View-
ing the α-helix as a 2D structure makes clear the geometri-
cal and topological constraints required. For instance, the
number of residues observed per turn is imposed by the
geometry of the triangular packing on a cylinder. Chiral-
ities are also well described from this point of view.

In 3 dimensions, tetrahedral packing is the tiling cor-
responding to triangular packing on a surface. It is only
undistorted and defect-free in curved space: This is the
{3, 3, 5} polytope, and its fiber, the B-C helix. The B-C
helix can be put into Euclidean space, and extended (in-
flated), if necessary. With small distortions of the tetra-
hedra, it can also coexist, tightly packed, with other B-C
helices. This finely tuned local geometry with minimal dis-
tortion is extendable to longer helices without increasing
the distortion.

While the exact geometry of biological helices may ap-
pear complicated, their topology is determined simply and
directly by steric considerations. We have shown mathe-
matical helices which have exactly the topology of the α-
helix, or of the collagen helix and its triple helix molecule.

In fact, nearly fifty years after Pauling’s paper on the
α-helix [13], we still do not know why the α-helix is near-
universal as the helical structure in proteins (topological
universality, i.e. about 3.6 aa per turn, and not about 2.6
or 4.6), why collagen is different, why collagen should be
a periodic sequence ...-Gly-X-Y-..., why Gly, why period
three. These are general questions, of fundamental inter-
est, at least to a physicist. This very fundamental differ-
ence between α-helices and collagen (in their occurrence,
and in the scale of the structure) may well tell us that
the biological function of collagen lies in its (particular)
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structure, whereas, in other proteins, the α-helix, as an
universal secondary structure, is only a supramolecular
element, with the (specific) function of the protein in the
ternary structure. These are the kind of questions, which
we have attempted to answer in this paper, or at least to
justify.

We have mainly discussed the α-helix and the colla-
gen, but there are other biopolymers related to the B-C
chain: DNA triple helices can be viewed as a packing of
base pairs along a B-C helix, the three strands being the
three type-{3} helices. Then, the classic double helix is
simply the triple helix which has lost a strand, leaving the
major groove in the gap. Actually, the biological world
is very rich in helices moulded chiefly by close-packing.
These close-packed helices occur at all sizes, not only at
the molecular level, but also at intermediate, through to
macroscopic dimensions. Microtubules in cells and phyl-
lotactic helices in plants are two good examples.

Appendix: The quasicrystalline Coxeter helix

The Coxeter chain is the B-C helix in Euclidean space,
decorated by spheres on its vertices. It is not a periodic
structure, because ξ is not a rational number. We con-
struct a modified quasicrystalline Coxeter helix, very close
to the Coxeter chain. This chain would have a must have a
number of edges per turn $ close to ξ which is a quadratic
irrational. This quasicrystalline Coxeter helix will have a
sequence of approximant structures, related by inflation.

We follow a procedure similar to the “cut and pro-
jection” method used to construct one-dimensional qua-
sicrystals. Consider the triangular lattice and the vector
b1, base of the cylinder. Recall the construction of the vec-
tor b2, approximatively perpendicular to b1, in Figure 2.
We would like to construct a sequence of vectors qi, of
increasing length, becoming more and more orthogonal to
b1 as i increases.

The “cut and projection” method requires the con-
struction of a band, or acceptance domain. The band is
a region inside the cylindrical strip defined in Figure 2,
bounded by two lines parallel to the axis of the cylinder.
All vertices of the triangular lattice lying within the band,
are end points of lattice vectors which are more or less per-
pendicular to b1. The band is constructed by translating
the unit cell (−a1,a2), keeping its origin on a straight line.
The direction δ of the straight line is determined by suc-
cessive rational approximants, according to the procedure
detailed below, that is by inflation. δ is not exactly or-
thogonal to b1. The basis vectors (−a1,a2) are chosen so
that the band straddles the straight line of direction δ.

The basis vectors −a1 = (1, 0) = q−1 and a2 =
(0, 1) = q0 are the smallest vectors in the band. The
next couple of vectors approximating direction δ, nearly
orthogonal to b1 are q1 = −a1 + 2a2 = (1, 2) and
q2 = −a1 + 3a2 = (1, 3), so that b2 = q1 + 2q2. Since
q1 ∧ q2 = q−1 ∧ q0, these two vectors constitute also a
primitive unit cell of the triangular lattice. The transfor-

mation is defined by the matrix

S =
(

1 2
1 3

)
.

Repeated applications of the transformation yield succes-
sive primitive cells (q−1+2n,q2n) by(

q−1+2n

q2n

)
= S

(
q−1+2(n−1)

q2(n−1)

)
= Sn

(
q−1

q0

)
. (A.1)

The original unit cell (−a1,a2) = (q−1,q0) becomes
more and more elongated, with its basis vectors stretched
along the direction δ. Notably, q3 = b2 = q1 + 2q2 =
−3a1 + 8a2 (fig. 2), and q4 = q1 + 3q2 = −4a1 + 11a2.

Accordingly, successive strips are constructed as par-
allelograms of edges b1 and qi. The strip is folded into a
cylinder by identification of the two sides parallel to qi.
The B-C helix is a helix of type-{1}, winding around the
cylinder, as illustrated in Figure 2 for i = 3.

Alternatively, the strip (b1,q2n+1) on the triangu-
lar lattice can be constructed as a succession of three
strips, two (b1,q2n), followed by one (b1,q2n−1), because
q2n+1 = 2q2n + q2n−1. For example, the strip in Fig-
ure 2, (b1,q3), is composed of two (b1,q2) followed by
one (b1,q1). This stacking of three parallelograms can be
folded into a cylinder by identifying opposite sides. On the
triangular lattice, this stacking is the same as the cylinder
(b1,q3). Similarly, the strip (b1,q2n) is a succession of
two strips, one (b1,q2n−1), followed by one (b1,q2n−2),
because q2n = q2n−1 + q2n−2. This construction is the
inflation transformation in quasicrystals. Here, inflation
is applied on a triangular lattice, on the cylinder around
which the B-C helix is wound.

Here is the recipe for obtaining the number of edges per
turn for the helix of type-{1}. Simply count the number of
edges and turns for each successive parallelogram, and add
up. Successive strips (b1,qi) yield, as i increases, rational
approximants of the winding number (number of edges per
turn) of the infinite, quasicrystalline Coxeter helix. The
first approximant is the parallelogram (b1,q−1), with 2
edges for one turn. Following approximants are (b1,q0),
with 3 edges for one turn, and (b1,q1) = (b1, 2q0 + q−1)
has 3 + 3 + 2 edges for 1 + 1 + 1 turns. Because q2 =
2q0 + q−1 + q0, (b1,q2) has 3 + 3 + 2 + 3 = 11 edges
for 4 turns. This procedure can be iterated by inflation,
replacing at each (double) step, 2 by 3 + 3 + 2, and 3 by
3 + 3 + 2 + 3. The numbers of 2’s and 3’s, at level n of the
iteration, are denoted by nn2 and nn3 , respectively. Thus,
n−1

2 = 1, n−1
3 = 0; n0

2 = 0, n0
3 = 1; n1

2 = 1, n1
3 = 2; n2

2 = 1,
n2

3 = 3. Then, since(
nn+1

2

nn+1
3

)
=
(

1 1
2 3

)(
nn2
nn3

)
(A.2)

there are 3nn3 +2nn2 edges for nn3 +nn2 turns at level (n+1).

Thus, the number of edges per turn $ = 3nn3 +2nn2
nn3 +nn2

= nn+1
3

nn+1
2

,

which is $ = 1 +
√

3, in the limit of large n. This num-
ber is close to 30/11, but it is now a quadratic irrational,
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which confirms the quasicrystalline, inflatable nature of
this modified Coxeter helix. The largest eigenvalue of this
matrix (the Perron root ) λ = 2 +

√
3, gives the inflation

multiplier nn+1
3 /nn3 = nn+1

2 /nn2 in the large n limit.
In fact, the two numbers ξ and $ are extremely close.

The number $, being a quadratic irrational, has a peri-
odic sequence of integers ci ( alternatively 1 and 2) in its
continued fraction expansion:

$ = c0 + 1/ {c1 + 1/ (c2 + 1/ [c3 + ...])} (A.3)
$ = [c0, c1, c2, c3,...] = [2, 1, 2, 1, 2, ...] .

This compares to ξ = [2, 1, 2, 1, 2, 1, 1, 2, 1, 7, 6, 1,
1, 5, 4, ...], the corresponding infinite expansion of ξ in con-
tinuous fraction, which is nonperiodic, so that ξ is an ir-
rational but not a quadratic irrational (it is not even al-
gebraic). The two [ci] sequences are the same through to
c5, and differ seriously at c9. Their first rational conver-
gents (approximants) are identical, and the helices indis-
tinguishable through 112 steps. For reference, 30/11 =
[2, 1, 2, 1, 2] is the rational number of edges per turn for
the B-C helix.

The difference between the Coxeter chain and its
quasiperiodic relative can be understood by considering
the rolling of the strip tiled by triangles into a cylinder.
For the Coxeter chain, it is necessary to fold the strip along
the edges of the tiling, in order to have straight edges of
flat triangles on the cylinder. The normal to the surface
of the cylinder is not a continuous function of the posi-
tion and the mean curvature is not defined on the edges
of the tiling. In the quasicrystalline chain, the strip is gen-
tly rolled into a cylinder with a constant mean curvature
everywhere, so that the edges of the triangles are curved
lines, which affect slightly the metric properties (distances,
areas) of the tiling.

The quasicrystal approach presented above is based
chiefly on crystallography. It is also possible to use
arithmetic. Let the lattice vector q = ca1 + da2 with c,
d integers, and the rational x = −d/c. The chain can be
drawn in the extended triangular lattice as the lattice
vector L(a1 + a2) in the direction (a1 + a2). Its length
L = (3d − 2c) is also the area of the strip (in units of√

3/2). The winding number w (of the helix around the
cylinder) is the component along b1 of the chain vector,
namely L(a1+a2)−q = wb1. Thus w = d−c. The rational
L/w = y = (3x+ 2)/(x+ 1) is the number to be inflated.
We have the B-C solution y = 30/11 (or y = [2, 1, 2, 1, 2],
in continued fraction expansion), for x = 8/3. But also,
for x = 0/1 (q−1 = −a1), y = 2/1 (or y = [2]), and for
x = 1/0 (q0 = a2), y = 3/1 = [2, 1]. The approximants
are therefore the rational convergents of the quadratic
irrational $ = 1 +

√
3 = [2, 1, 2, 1, 2, 1, 2, 1, ....], solution

of the equation $ = 2 + 1/[1 + (1/$)] = [3$+ 2]/[$+ 1].
This produces a sequence of inflated words wi,
A → B → BBA → BBAB → BBABBBABBBA →
BBABBBABBBABBAB → BBAB BBAB BBA BBAB
BBAB BBAB BBA BBAB BBAB BBAB BBA...., accord-

ing to the rule wi = (wi−1)ci · wi−2, where the ci are
the alternating integers 2 and 1 in the continued fraction
expansion (7) of $. The words can also be obtained by
using the substitution rule A → BBA, B → BBAB, at
each successive (double) step. The double inflation step
betrays the period 2, 1 in the continued fraction expan-
sion. Thus AA, isolated B and BBBB are forbidden. The
words can be translated directly into the pattern of Fig-
ure 2: Starting from the origin, B is a step along the helix,
and AB a step which crosses the border of the strip and
completes one winding turn around the cylinder.
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